Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T07:25:34.402Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

37 - Brain Changes in the Development of Expertise: Neuroanatomical and Neurophysiological Evidence about Skill-Based Adaptations

from PART VI - GENERALIZABLE MECHANISMS MEDIATING EXPERTISE AND GENERAL ISSUES

Nicole M. Hill
Affiliation:
Learning Research and Development Center, University of Pittsburgh
Walter Schneider
Affiliation:
Learning Research and Development Center, University of Pittsburgh
K. Anders Ericsson
Affiliation:
Florida State University
Neil Charness
Affiliation:
Florida State University
Paul J. Feltovich
Affiliation:
University of West Florida
Robert R. Hoffman
Affiliation:
University of West Florida
Get access

Summary

Introduction

As humans acquire skills there are dramatic changes in brain activity that complement the profound changes in processing speed and effort seen in behavioral data. These changes involve learning, developing new representations, strategy shifts, and use of wider cues and approaches. Experts differ from novices in terms of their knowledge, effort, recognition, analysis, strategy, memory use, and monitoring (e.g., see Chi, Chapter 2; Feltovich, Prietula, & Ericsson, Chapter 4). In the last decade, there have be major advances in our ability to noninvasively track human brain activity. There are now over a hundred experiments tracking learning or expert performance. Patterns are beginning to emerge that show that learning and skilled performance produce changes in brain activation – and different types of changes – depending on the brain structure and the nature of the skill being learned.

In this chapter, we will review the changes that occur in the brain as skill is acquired. We will detail the anatomy and processes involved. We will provide a brief summary of the methods employed. We will review the nature of learning of skills, resource utilization, and performance of experts. The reader who wishes to learn more details regarding these methods might examine a current introductory chapter (Schneider & Chein, 2003) or current textbooks of cognitive neuroscience (Gazzaniga, Ivry, & Mangun, 2002), brain imaging (Jezzard, Mathews, & Smith, 2001), and cognitive neuroscience modeling (O'Reilly & Munakata, 2000).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adcock, R. A., Constable, R. T., Gore, J. C., & Goldman-Rakic, P. S. (2000). Functional neuroanatomy of executive processes involved in dual-task performance. Proceedings of the National Academy of Sciences, 97(7), 3567–3572.CrossRefGoogle ScholarPubMed
Aguirre, G. K., Singh, R., & D'Esposito, M. (1999). Stimulus inversion and the responses of face and object-sensitive cortical areas. Neuroreport, 10, 189–194.CrossRefGoogle ScholarPubMed
Ahissar, M., & Hochstein, S. (2004). The reverse hierarchy theory of visual perceptual learning. Trends in Cognitive Sciences, 8(10), 457–464.CrossRefGoogle ScholarPubMed
Baddeley, A. (2003). Working memory and language: An overview. Journal of Communications Disorders, 36, 189–208.CrossRefGoogle ScholarPubMed
Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In Bower, G. A. (Ed.), Recent Advances in Learning and Motivation, Vol. 8 (pp. 47–89). New York: Academic Press.Google Scholar
Baker, C. I., Behrmann, M., & Olson, C. R. (2002). Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nature Neuroscience, 5(11), 1210–1216.CrossRefGoogle ScholarPubMed
Baraduc, P., Lang, N., Rothwell, J. C., & Wolpert, D. M. (2004). Consolidation of dynamic motor learning is not disrupted by rTMS of primary motor cortex. Current Biology, 14(3), 252–256.CrossRefGoogle Scholar
Bengtsson, S. L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., & Ullen, F. (2005). Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience, 8(9), 1148–1150.CrossRefGoogle ScholarPubMed
Beyerstein, B. L. (1999). Whence cometh the myth that we only use ten percent of our brains? In Sala, S. D. (Ed.), Mind Myths: Exploring Everyday Mysteries of the Mind and Brain (pp. 1–24). Chichester, UK: Chichester, UK.Google Scholar
Bolger, D. J. (2005). [Pilot fMRI data of learning a novel orthography.] Unpublished raw data.
Bolger, D. J., Perfetti, C. A., & Schneider, W. (2005). Cross-cultural effect on the brain revisited: Universal structures plus writing system variation, Human Brain Mapping, 25, 92–104.CrossRefGoogle ScholarPubMed
Bolger, D. J., Schneider, W., & Perfetti, C. A. (2005). The Development of Orthographic Knowledge: A Cognitive Neuroscience Investigation of Reading. Paper presented at the 12th Annual Meeting of the Society for the Scientific Study of Reading, Toronto, Ontario.Google Scholar
Bunge, S. A., Klingberg, T., Jacobsen, R. B., & Gabrieli, J. D. E. (2000). A resource model of the neural basis of executive working memory. Proceedings of the National Academy of Sciences, 97(7), 3573–3578.CrossRefGoogle ScholarPubMed
Buonomano, D. V., & Merzenich, M. M. (1998). Cortical plasticity: From synapses to maps. Annual Review of Neuroscience, 21, 149–186.CrossRefGoogle ScholarPubMed
Cabeza, R., & Nyberg, L. (2000). Imaging cognition ⅱ: An empirical review of 275 pet and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1–47.CrossRefGoogle ScholarPubMed
Calvo-Merino, B., Glaser, D. E., Grèzes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An fMRI study with expert dancers. Cerbral Cortex, 15, 1243–1249.CrossRefGoogle ScholarPubMed
Carpenter, P. A., Just, M. A., & Reichle, E. D. (2000). Working memory and executive function: Evidence from neuroimaging. Current Opinion in Neurobiology, 10, 195–199.CrossRefGoogle ScholarPubMed
Chein, J. M., McHugo, M., & Schneider, W. (in preparation). The transition from controlled to automatic processing in simple search tasks as revealed with fMRI. Manuscript in preparation.
Chein, J. M., & Schneider, W. (in press). Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning. Cognitive Brain Research.Google Scholar
Connor, C. E. (2002). Representing whole objects: Temporal neurons learn to play their parts. Nature Neuroscience, 5(11), 1105–1106.CrossRefGoogle ScholarPubMed
D'Esposito, M., Detre, J. A., Alsop, D. C., & Shin, R. K. (1995). The neural basis of the central executive system of working memory. Nature, 378(6554), 279–281.CrossRefGoogle ScholarPubMed
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487–506.CrossRefGoogle ScholarPubMed
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270(5234), 305–307.CrossRefGoogle ScholarPubMed
Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. S., Kim, J. S., Alvarado, M., & Kramer, A. F. (2005a). Training-induced plasticity in older adults: Effects of training on hemispheric asymmetry. Unpublished manuscript, Urbana.Google Scholar
Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. S., Kim, J. S., Alvarado, M., & Kramer, A. F. (2005b). Training induced changes in dual-task processing: An fMRI study. Unpublished manuscript, Urbana.Google Scholar
Erickson, K. I., Colcombe, S. J., Wadhwa, R., Bherer, L., Peterson, M. S., Scalf, P. S., & Kramer, A. F. (2005c). Neural correlates of dual-task performance after minimizing task-preparation. Unpublished manuscript, Urbana.Google Scholar
Felleman, D. J., & Essen, D. C., (1991). Distributed hierarchical processing in primate cerebral cortex. Cerebral Cortex, 1, 1–47.CrossRefGoogle ScholarPubMed
Feltovich, P. J., Spiro, R. J., & Coulson, R. L. (1997). Issues of expert flexibility in contexts characterized by complexity and change. In Feltovich, P. J., Ford, K. M., & Hoffman, P. R. (Eds.), Expertise in Context (pp. 125–146). Menlo PK, CA: AAAI/MIT Press.Google Scholar
Fisk, A. D., & Schneider, W. (1983). Category and word search: Generalizing search principles to complex processing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 9(2), 177–195.Google ScholarPubMed
Fitts, P., & Posner, M. I. (1967). Human Performance. Monterey, CA: Brooks/Cole. Fitts, P., & Gibson, E. J. (1969). Principles of Perceptual Learning and Development. Englewood Cliffs, NJ: Prentice Hall. Fitts, P., & Welford, A. T. (1968). Fundamentals of Skill. London: Methuen.Google Scholar
Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291, 312–316.CrossRefGoogle ScholarPubMed
Furmanski, C. S., & Engel, S. A. (2000). Perceptual learning in object recognition: Object specificity and size invariance. Vision Research, 40, 473–484.CrossRefGoogle ScholarPubMed
Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Science, 2(12), 493–501.CrossRefGoogle ScholarPubMed
Garavan, H., Ross, T. J., Li, S. J., & Stein, E. A. (2000). A parametric manipulation of central executive functioning. Cerebral Cortex, 10, 585–592.CrossRefGoogle ScholarPubMed
Gaser, C., & Schlaug, G. (2003). Gray matter differences between musicians and nonmusicians. Annals of the New York Academy of Sciences, 999, 514–517.CrossRefGoogle ScholarPubMed
Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neuroscience, 3(2), 191–197.CrossRefGoogle ScholarPubMed
Gauthier, I., & Tarr, M. J. (1997). Becoming a “greeble” expert: Exploring mechanisms for face recognition. Vision Research, 12, 1673–1682.CrossRefGoogle Scholar
Gauthier, I., & Tarr, M. J. (2002). Unraveling mechanisms for expert object recognition: Bridging brain activity and behavior. Journal of Experimental Psychology: Human Perception and Performance, 28(2), 431–446.Google ScholarPubMed
Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (2002). Cognitive Neuroscience: the Biology of the Mind (Second Edition). New York: W. W. Norton & Company.Google Scholar
Golby, A. J., Gabrieli, J. D., Chiao, J. Y., & Eberhardt, J. L. (2001). Differential responses in the fusiform region to same-race and other-race faces. Nature Neuroscience, 4(8), 845–850.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., & Price, C. J. (2001). Identification of famous faces and buildings: A functional neuroimaging study of semantically unique items. Brain, 124, 2087–2097.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Price, C. J., Josephs, O., Vandenberghe, R., Cappa, S. F., Kapur, N., Frackowiak, R. S. J., & Tempini, M. L. (1998). The neural systems sustaining face and proper-name processing. Brain, 121, 2103–2118.CrossRefGoogle ScholarPubMed
Grill-Spector, K. (2003). The neural basis of object perception. Current Opinion in Neurobiology, 13, 159–166.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Kushnir, T., Edelman, S., Avidan-Carmel, G., Itzchak, Y., & Malach, R. (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron, 24, 187–203.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Kushnir, T., Hendler, T., Edelman, S., Itzchak, Y., & Malach, R. (1998). A sequence of object-processing stages revealed by fMRI in the human occipital lobe. Human Brain Mapping, 6, 316–328.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron, 37, 877–888.CrossRefGoogle ScholarPubMed
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., & Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293, 2425–2430.CrossRefGoogle ScholarPubMed
Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223–233.CrossRefGoogle ScholarPubMed
Haxby, J. V., Ungerleider, L. G., Clark, V. P., Schouten, J. L., Hoffman, E. A., & Martin, A. (1999). The effect of face inversion on activity in human neural systems for face and object perception. Neuron, 22, 189–199.CrossRefGoogle ScholarPubMed
Hazeltine, E., Grafton, S. T., & Ivry, R. (1997). Attention and stimulus characteristics determine the locus of motor-sequence encoding. A pet study. Brain, 120, 123–140.CrossRefGoogle ScholarPubMed
Hempel, A., Giesel, F. L., Garcia, Caraballo N. M., Amann, M., Meyer, H., Wustenberg, T., Essig, M., & Schroder, J. (2004). Plasticity of cortical activation related to working memory during training. American Journal of Psychiatry, 161(4), 745–747.CrossRefGoogle ScholarPubMed
Herath, P., Klingberg, T., Young, J., Amunts, K., & Roland, P. (2001). Neural correlates of dual task interference can be dissociated from those of divided attention: An fMRI study. Cerebral Cortex, 11, 796–805.CrossRefGoogle ScholarPubMed
Hill, N. M., & Schneider, W. (2005). Changes in neural activation related to dual-task practice: Evidence for a domain general learning network. Poster presented at the 11th annual meeting of Human Brain Mapping. Toronto, ON.
Honda, M., Deiber, M. P., Ibanez, V., Pascual-Leone, A., Zhuang, P., & Hallett, M. (1998). Dynamic cortical involvement in implicit and explicit motor sequence learning. A pet study. Brain, 121, 2159–2173.CrossRefGoogle ScholarPubMed
Horwitz, B., Rumsey, J. M., & Donohue, B. C. (1998). Functional connectivity of the angular gyrus in normal reading and dyslexia. Proceedings of the National Academy of Science of the United States of America, 95, 8939–8944.CrossRefGoogle ScholarPubMed
Huntley, G. W. (1997). Correlation between patterns of horizontal connectivity and the extend of short-term representational plasticity in rat motor cortex. Cerebral Cortex, 7, 143–156.CrossRefGoogle ScholarPubMed
Ishai, A., Ungerleider, L., Martin, A., Schouten, J. L., & Haxby, J. V. (1999). Distributed representation of objects in the human ventral visual pathway. Proceedings of the National Academy of Sciences of the United States of America, 96, 9379–9384.CrossRefGoogle ScholarPubMed
Jäncke, L., Shah, N. J., & Peters, M. (2000). Cortical activation in primary and secondary motor areas for complex bimanual movements in professional pianists. Cognitive Brain Research, 10, 177–183.CrossRefGoogle ScholarPubMed
Jaeggi, S. M., Seewer, R., Nirkko, A. C., Eckstein, D., Schroth, G., Gronerm R., & Gutbrod, K. (2003). Does excessive memory load attenuate activation in the prefrontal cortex? Load-dependent processing in single and dual task: functional magnetic resonance imaging study. NeuroImage, 19, 210–225.CrossRef
Jansma, J. M., Ramsey, N. F., Slagter, H. A., & Kahn, R. S. (2001). Functional anatomical correlates of controlled and automatic processing. Journal of Cognitve Neuroscience, 13, 730–743.CrossRefGoogle ScholarPubMed
Jezzard, P., Matthews, P. M., & Smith, S. M. (2001). Functional MRI: An introduction to methods. Oxford: Oxford University Press.Google Scholar
Jiang, Y. (2004). Resolving dual-task interference: An fMRI study. Neuroimage, 22, 748–754.CrossRefGoogle Scholar
Just, M. A., Carpenter, P. A., Keller, T. A., Emery, L., Zajac, H., & Thulborn, K. R. (2001). Interdependence of nonoverlapping cortical systems in dual cognitive tasks. Neuroimage, 14, 417–426.CrossRefGoogle ScholarPubMed
Kanwisher, N. (2000). Domain specificity in face perception. Nature Neuroscience, 3(8), 759–763.CrossRefGoogle ScholarPubMed
Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302–4311.CrossRefGoogle ScholarPubMed
Kanwisher, N., & O'Craven, K. (2000). Mental imagery of faces and places activates corresponding stimulus-specific brain regions. Journal of Cognitive Neuroscience, 12(6) 1013–1023.Google Scholar
Kanwisher, N., Tong, F., & Nakayama, K. (1998). The effect of face inversion on the human fusiform face area. Cognition, 68, B1–B11.CrossRefGoogle ScholarPubMed
Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377, 155–158.Google ScholarPubMed
Karni, A., & Sagi, D. (1991). Where practice makes perfect in texture discrimination: Evidence for primary visual cortex plasticity. Proceedings of the National Academy of Science of the United States of America, 88(11), 4966–4970.CrossRefGoogle ScholarPubMed
Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1998). The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences of the United States of America, 95, 861–868.CrossRefGoogle ScholarPubMed
Kelly, A. M. C., & Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cerebral Cortex, 15(8), 1089–1102.CrossRefGoogle Scholar
Klingberg, T. (1998). Concurrent performance of two working memory tasks: Potential mechanisms of interference. Cerebral Cortex, 8, 593–601.CrossRefGoogle Scholar
Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of working memory in children with adhd. Journal of Clinical and Experimental Neuropsychology, 24(6), 781–791.CrossRefGoogle ScholarPubMed
Klingberg, T., Hedehus, M., Temple, E., Salz, T., Gabrieli, J. D., Moseley, M. E., & Poldrack, R. A. (2000). Microstructure of temporo-parietal white matter as a basis for reading ability: Evidence from diffusion tensor magnetic resonance imaging. Neuron, 25, 493–500.CrossRefGoogle ScholarPubMed
Kobatake, E., Wang, G., & Tanaka, K. (1998). Effects of shape-discrimination training on the selectivity of inferotemporal cells in adult monkeys. Journal of Neurophysiology, 80, 324–330.CrossRefGoogle ScholarPubMed
Kolb, B., & Whishaw, I. Q. (2003). Fundamentals of Human Neuropsychology (Fifth Edition). New York: Worth Publishers.Google Scholar
Landau, S. M., Schumacher, E. H., Garavan, H., Druzgal, T. J., & D'Esposito, M. (2004). A functional mri study of the influence of practice on component processes of working memory. Neuroimage, 22, 211–221.CrossRefGoogle ScholarPubMed
Lay, B. S., Sparrow, W. A., Hughes, K. M., & O'Dwyer, N. J. (2002). Practice effects on coordination and control, metabolic energy expenditure, and muscle activation. Human Movement Science, 21, 807–830.CrossRefGoogle ScholarPubMed
Lerner, Y., Hendler, T., Ben-Bashat, D., Harel, M., & Malach, R. (2001). A hierarchical axis of object processing stages in the human visual cortex. Cerebral Cortex, 11(4), 287–297.CrossRefGoogle ScholarPubMed
Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior temporal cortex of monkeys. Current Biology, 5, 552–563.CrossRefGoogle ScholarPubMed
Maguire, E. A., Frackowiak, S. J., & Frith, C. D. (1997). Recalling routes around London: Activation of the right hippocampus in taxi drivers. The Journal of Neuroscience, 17(18), 7103–7110.CrossRefGoogle ScholarPubMed
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Richard, J. A., Frackowiak, S. J., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Science United States of America, 97(8), 4398–4403.CrossRefGoogle ScholarPubMed
Maguire, E. A., Spiers, H. J., Good, C. D., Hartley, T., Frackowiak, S. J., & Burgess, N. (2003). Navigation expertise and the human hippocampus: A structural brain imaging analysis. Hippocampus, 13, 250–259.CrossRefGoogle ScholarPubMed
Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., Ledden, P. J., Brady, T. J., Rosen, B. R., & Tootell, R. B. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences of the United States of America, 92(18), 8135–8139.CrossRefGoogle ScholarPubMed
Marcantoni, W. S., Lepage, M., Beaudoin, G., Bourgouin, P., & Richer, F. (2003). Neural correlates of dual task interference in rapid visual streams: An fMRI study. Brain and Cognition, 53, 318–321.CrossRefGoogle Scholar
McCandliss, B. D., Cohen, L. G., & Dehaene, S. (2003). The visual word form area: Expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293–299.CrossRefGoogle ScholarPubMed
McCarthy, G., Puce, A., Gore, J. C., & Allison, T. (1997). Face-specific processing in the human fusi-form gyrus. Journal of Cognitive Neuroscience, 9(5), 605–610.CrossRefGoogle Scholar
McCarthy, R., & Warrington, E. K. (1990). The dissolution of semantics. Nature, 343(6259), 599.CrossRefGoogle ScholarPubMed
Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-task performance: Part I. Basic mechanisms. Psychological Review, 104, 2–65.Google Scholar
Miozzo, M., & Caramazza, A. (1998). Varieties of pure alexia: the case of failure to access graphemic representations. Cognitive Neuropsychology, 15(1–2), 203–238.CrossRefGoogle ScholarPubMed
Moscovitch, M., Wincour, G., & Behrmann, M. (1997). What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition. Journal of Cognitive Neuroscience, 9(5), 555–604.CrossRefGoogle ScholarPubMed
Muellbacher, W., Ziemann, U., Wissel, J., Dang, N., Kofler, M., Facchini, S., Borrojerdi, B., Poewe, W., & Hallett, M. (2002). Early consolidation in human primary motor cortex. Nature, 415, 640–644.CrossRefGoogle ScholarPubMed
Nakamura, K., Sakai, K., & Hikosaka, O. (1998). Neuronal activity in medial frontal cortex during learning of sequential procedures. Journal of Neurophysiology, 80, 2671–2687.CrossRefGoogle ScholarPubMed
Nakamura, K., Sakai, K., & Hikosaka, O. (1999). Effects of local inactivation of monkey medial frontal cortex in learning of sequential procedures. Journal of Neurophysiology, 82(2), 1063–1068.CrossRefGoogle ScholarPubMed
O'Reilly, R. C., & Munakata, Y. (2000). Computational Explorations in Cognitive Neuroscience: Understanding the Mind by Simulating the Brain. Cambridge, MA: MIT Press.Google Scholar
Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7, 75–79.CrossRefGoogle ScholarPubMed
Olshausen, B. A., Anderson, C. H., & Essen, D. C. (1993). A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. Journal of Neuroscience, 13(11), 4700–4719.CrossRefGoogle Scholar
Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220–244.CrossRefGoogle ScholarPubMed
Pesenti, M., Thioux, M., Seron, X., & Volder, A. (2000). Neuroanatomical substrates of Arabic number processing, numerical comparison and simple addition: A PET study. Journal of Cognitive Neuroscience, 12, 461–479.CrossRefGoogle ScholarPubMed
Pesenti, M., Zago, L., Crivello, F., Mellet, E., Samson, D., Duroux, B., Seron, X., Mazoyer, B., & Tzourio-Mazoyer, N. (2001). Mental calculation expertise in a prodigy is sustained by right prefrontal and medial-temporal areas. Nature Neuroscience, 4(1), 103–107.CrossRefGoogle Scholar
Phelps, E. A. (2001). Faces and races in the brain. Nature Neuroscience, 4(8), 775–776.CrossRefGoogle Scholar
Poldrack, R. A. (2000). Imaging brain plasticity: Conceptual and methodological issues. Neuroimage, 12, 1–13.CrossRefGoogle ScholarPubMed
Poldrack, R. A., Clark, J., Paré-Blagoev, E. J., Shohamy, D., Moyano, J. C., Myers, C., & Gluck, M. A. (2001). Interactive memory systems in the human brain. Nature, 414, 546–550.CrossRefGoogle ScholarPubMed
Poldrack, R. A., & Gabrieli, J. D. E. (2001). Characterizing the neural mechanisms of skill learning and repetition priming. Evidence from mirror reading. Brain, 124, 67–82.CrossRefGoogle ScholarPubMed
Price, C. J., Devlin, J. T. (2003). The myth of the visual word form area. Neuroimage, 19, 473–481.CrossRefGoogle ScholarPubMed
Pugh, K. R., Mencl, W. E., Jenner, A. R., Katz, L., Frost, S. J., Lee, J. R., Shaywitz, S. E., & Shaywitz, B. A. (2001). Neurobiological studies of reading and reading disability. Journal of Communication Disorders, 39, 479–492.CrossRefGoogle Scholar
Rainer, G., & Miller, E. K. (2000). Effects of visual experience on the representation of objects in the prefrontal cortex. Neuron, 27, 179–189.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., & Fazio, F. (1996). Localization of grasp representations in humans by pet: 1. Observation versus execution. Experimental Brain Research, 111, 103–111.CrossRefGoogle ScholarPubMed
Sakai, K., & Miyashita, Y. (1991). Neural organization for the long-term memory of paired associates. Nature, 354(6349), 108–109.CrossRefGoogle ScholarPubMed
Sakai, K., & Miyashita, Y. (1994). Visual imagery: An interaction between memory retrieval and focal attention. Trends in Neuroscience, 17(7), 287–289.CrossRefGoogle ScholarPubMed
Sandak, R., Mencl, W. E., Frost, S. J., Rueckl, J. G., Katz, L., Moore, D. L., Mason, S. A., Fulbright, R. K., Constable, R. T., & Pugh, K. R. (2004). The neurobiology of adaptive learning in reading: A contrast of different training conditions. Cognitive, Affective, & Behavioral Neuroscience, 4(1), 67–88.CrossRefGoogle ScholarPubMed
Sanes, J. N., & Donoghue, J. P. (2000). Plasticity and primary motor cortex. Annual Review of Neuroscience, 23, 393–415.CrossRefGoogle ScholarPubMed
Schneider, W., & Chein, J. M. (2003). Controlled & automatic processing: Behavior, theory, and biological mechanisms. Cognitive Science, 27, 525–559.CrossRefGoogle Scholar
Schneider, W., & Detweiler, M. (1988). The role of practice in dual-task performance: Toward workload modeling in a connectionist/control architecture. Human Factors, 30(5), 539–566.CrossRefGoogle Scholar
Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic human information processing I: Detection, search, and attention. Psychological Review, 84(1), 1–66.CrossRefGoogle Scholar
Shiffrin, R. M. (1988). Attention. In Atkinson, R. C., Herrnstein, R. J., Lindzey, G., & Luce, R. D. (Eds.), Stevens' Handbook of Experimental Psychology, 2nd Edition (pp. 739–811). New York: Wiley.Google Scholar
Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing II: Perceptual learning, automatic attending, and a general theory. Psychological Review, 84(2), 127–190.CrossRefGoogle Scholar
Shima, K., & Tanji, J. (2000). Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. Journal of Neurophysiology, 84, 2148–2160.CrossRefGoogle ScholarPubMed
Sigala, N., & Logothetis, N. K. (2002). Visual categorization shapes feature selectivity in the primate temporal cortex. Nature, 415, 318–320.CrossRefGoogle ScholarPubMed
Small, S., Hlustik, P., Chen, E., Dick, F., Gauthier, J., & Solodkin, A. (2005). Distributed population codes in the primary motor cortex of violinist. Paper presented at the 11th Annual Meeting of the Organization for Human Brain Mapping, Toronto, Ontario.Google Scholar
Stelzel, C., Schumacher, E. H., Schubert, T., & D'Esposito (in press). The neural effect of stimulus-response modality compatibility on dual-task performance: an fMRI study. Psychological Research.
Szameitat, A. J., Lepsien, J., von Cramon, D. Y., Sterr, A., & Schubert, T. (in press). Task-order coordination in dual-task performance and the lateral pre-frontal cortex: an event-related fMRI study. Psychological Research.
Szameitat, A. J., Schubert, T., Muller, K., & Cramon, D. Y. (2002). Localization of executive functions in dual-task performance with fMRI. Journal of Cognitve Neuroscience, 14(8), 1184–1199.CrossRefGoogle ScholarPubMed
Tanji, J., & Shima, K. (1994). Role for supplementary motor area cells in planning several movements ahead. Nature, 371(6496), 413–416.CrossRefGoogle ScholarPubMed
Tarr, M. J., & Gauthier, I. (2000). FFA: A flexible fusiform area for subordinate-level visual processing automatized by expertise. Nature Neuroscience, 3(8), 764–769.CrossRefGoogle ScholarPubMed
Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. (2003). Development of neural mechanisms for reading. Nature Neuroscience, 6, 767–777.CrossRefGoogle ScholarPubMed
Ungerleider, L. G., Doyon, J., & Karni, A. (2002). Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory, 78, 553–564.CrossRefGoogle ScholarPubMed
Worden, M., & Schneider, W. (1995). Cognitive task design for fMRI. International Journal of Imaging Systems and Technology, 6, 253–270.CrossRefGoogle Scholar
Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81(1), 141–145.CrossRefGoogle Scholar
Yin, R. K. (1970). Face recognition by brain-injured patients. A dissociable ability? Neuropsychologia, 8, 395–402.CrossRefGoogle ScholarPubMed
Yovel, G., & Kanwisher, N. (2004). Face perception: Domain specific, not process specific. Neuron, 44, 889–898.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×