Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 9
  • Print publication year: 2008
  • Online publication date: June 2012

6 - Constraints in Cognitive Architectures

from Part II - Cognitive Modeling Paradigms


Anderson, J. R. (1976). Language, memory and thought. Mahwah, NJ: Lawrence Erlbaum.
Anderson, J. R. (1990). The adaptive character of thought. Mahwah, NJ: Lawrence Erlbaum.
Anderson, J. R. (2005). Human symbol manipulation within an integrated cognitive architecture. Cognitive Science, 29(3), 313–341.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of mind. Psychological Review, 111(4), 1036–1060.
Anderson, J. R., & Lebiere, C. L. (1998). The atomic components of thought. Mahwah, NJ: Lawrence Erlbaum.
Anderson, J. R., & Lebiere, C. L. (2003). The Newell test for a theory of cognition. Behavioral & Brain Sciences, 26, 587–637.
Anderson, J. R., & Matessa, M. P. (1997). A production system theory of serial memory. Psychological Review, 104, 728–748.
Anderson, J. R., Taatgen, N. A., & Byrne, M. D. (2005). Learning to achieve perfect time sharing: Architectural implications of Hazeltine, Teague, & Ivry (2002). Journal of Experimental Psychology: Human Perception and Performance, 31(4), 749–761.
Berry, D. C., & Broadbent, D. E. (1984). On the relationship between task performance and associated verbalizable knowledge. The Quarterly Journal of Experimental Psychology, 36A,
Byrne, M. D., & Anderson, J. R. (2001). Serial modules in parallel: The psychological refractory period and perfect time-sharing. Psychological Review, 108, 847–869.
Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum.
Chater, N., & Vitányi, P. (2003). Simplicity: A unifying principle in cognitive science? Trends in Cognitive Sciences, 7(1), 19–22.
Chong, R. S. (1999). Modeling dual-task performance improvement: Casting executive process knowledge acquisition as strategy refinement. Unpublished doctoral dissertation, University of Michigan.
Cooper, R., & Fox, J. (1998). COGENT: A visual design environment for cognitive modelling. Behavior Research Methods, Instruments, & Computers, 30, 553–564.
Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179–211.
Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28, 3–71.
Forgy, C. L. (1982). Rete: A fast algorithm for the many object pattern match problem. Artificial Intelligence, 19, 17–37.
Hornof, A. J., & Kieras, D. E. (1997). Cognitive modeling reveals menu search is both random and systematic. In Proceedings of CHI-97 (pp. 107–114). New York: Association for Computing Machinery.
Huffman, S. B., & Laird, J. E. (1995). Flexibly instructable agents. Journal of Artificial Intelligence Research, 3, 271–324.
Just, M. A., & Carpenter, P. A. (1992). A Capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99, 122–149.
Kieras, O. E., & Meyer, D. E. (1997). A computational theory of executive cognitive process and multiple-task performance: Part 1. Psychological Review, 104(1), 3–65.
Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). SOAR: An architecture for general intelligence. Artificial Intelligence, 33, 1–64.
Lewis, R. L. (1996). Interference in short-term memory: The magical number two (or three) in sentence processing. Journal of Psycholinguistic Research, 25, 9–115.
Lovett, M. C., Reder, L. M., & Lebiere, C. (1999). Modeling working memory in a unified architecture: An ACT-R perspective. In A. Miyake & P. Shah (Eds.), Models of working memory (pp. 135–182). Cambridge, UK: Cambridge University Press.
Marinier, R. P., & Laird, J. E. (2004). Toward a comprehensive computational model of emotions and feelings. In Proceedings of the Sixth International Conference on Cognitive Modeling (pp. 172–177). Mahwah, NJ: Lawrance Erlbaum.
McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.
McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connectionist networks: The sequential learning problem. In G. H. Bower (Ed.), The psychology of learning and motivation, vol. 24 (pp. 109–164). San Diego, CA: Academic Press.
Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive processes and multiple-task performance. Part 1. Basic mechanisms Psychological Review, 104, 2–65.
Miller, G. A. (1956). The magic number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.
Nason, S., & Laird, J. E. (2004). Soar-RL: Integrating reinforcement learning with Soar. In Proceedings of the Sixth International Conference on Cognitive Modeling (pp. 208–213). Mahwah, NJ: Lawrence Erlbaum.
Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.
Newell, A., & Simon, H. A. (1963). GPS, a program that simulates human thought. In E. A. Feigenbaum & J. Feldman (Eds.), Computers and thought (pp. 279–293). New York: McGraw-Hill.
O’Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive neuroscience. Cambridge, MA: MIT Press.
Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116, 220–244.
Penrose, R. (1989). The emperor’s new mind. Oxford, UK: Oxford University Press.
Popper, K. R. (1962). Conjectures and refutations: The growth of scientific knowledge. New York: Basic Books.
Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107, 358–367.
Salvucci, D. D., & Macuga, K. L. (2002). Predicting the effects of cellular-phone dialing on driver performance. Cognitive Systems Research, 3, 95–102.
Schumacher, E. H., Seymour, T. L., Glass, J. M., Fencsik, D. E., Lauber, E. J., Kieras, D. E., et al. (2001). Virtually perfect time sharing in dual-task performance: Uncorking the central cognitive bottleneck. Psychological Science, 12(2), 101–108.
Smolensky, P. (1990). Tensor product variable binding and the representation of symbolic structures in connectionist networks. Artificial Intelligence, 46, 159–216.
Sun, R. (2003). A tutorial on Clarion. Technical report. Cognitive Science Department, Rens-selaer Polytechnic Institute. Retrieved December 6, 2005, from∼rsun/sun.tutorial.pdf.
Sun, R., Merrill, E., & Peterson, T. (2001). From implicit skills to explicit knowledge: A bottom-up model of skill learning. Cognitive Science, 25(2), 203–244.
Sun, R., Slusarz, P., & Terry, C. (2005). The interaction of the explicit and the implicit in skill learning: A dual-process approach. Psychological Review, 112(1), 159–192.
Sun, R., & Zhang, X. (2004). Top-down versus bottom-up learning in cognitive skill acquisition. Cognitive Systems Research, 5(1), 63–89.
Taatgen, N. A. (2005). Modeling parallelization and speed improvement in skill acquisition: From dual tasks to complex dynamic skills. Cognitive Science, 29, 421– 455.
Taatgen, N. A. (2007). The minimal control principle. In W. Gray (Ed.), Integrated models of cognitive systems (pp. 368–379). Oxford, UK: Oxford University Press.
Taatgen, N. A., & Anderson, J. R. (2002). Why do children learn to say “broke”? A model of learning the past tense without feedback, Cognition, 86(2), 123–155.
Taatgen, N. A., & Lee, F. J. (2003). Production compilation: A simple mechanism to model complex skill acquisition. Human Factors, 45(1), 61–76.
Taatgen, N. A., van Rijn, D. H., & Anderson, J. R. (2007). An integrated theory of prospective time interval estimation: the role of cognition, attention and learning. Psychlogical Review, 114(3), 577–598.
Taatgen, N. A., & Wallach, D. (2002). Whether skill acquisition is rule or instance based is determined by the structure of the task. Cognitive Science Quarterly, 2(2), 163–204.
Tambe, M., Newell, A., & Rosenbloom, P. S. (1990). The problem of expensive chunks and its solution by restricting expressiveness. Machine Learning, 5, 299–348.
Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 2nd series, 42, 230–265.
Turing A. (1950). Computing machinery and intelligence. Mind, 59, 433–460.
Young, R. M., & Lewis, R. L. (1999). The Soar cognitive architecture and human working memory. In A. Miyake & P. Shah (Eds.), Models of working memory (pp. 224– 256). Cambridge, UK: Cambridge University Press.