Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 11
  • Print publication year: 2008
  • Online publication date: June 2012

7 - Computational Models of Episodic Memory

from Part III - Computational Modeling of Various Cognitive Functionalities and Domains


The chapter focuses on problems in higher-level cognition: inferring causal structure from patterns of statistical correlation, learning about categories and hidden properties of objects, and learning the meanings of words. This chapter discusses the basic principles that underlie Bayesian models of cognition and several advanced techniques for probabilistic modeling and inference coming out of recent work in computer science and statistics. The first step is to summarize the logic of Bayesian inference based on probabilistic models. A discussion is then provided of three recent innovations that make it easier to define and use probabilistic models of complex domains: graphical models, hierarchical Bayesian models, and Markov chain Monte Carlo. The central ideas behind each of these techniques is illustrated by considering a detailed cognitive modeling application, drawn from causal learning, property induction, and language modeling, respectively.


Ackley, D. H., Hinton, G. E., & Sejnowski, T. J. (1985). A learning algorithm for Boltzmann machines. Cognitive Science, 9, 147–169.
Aggleton, J. P., & Brown, M. W. (1999). Episodic memory, amnesia, and the hippocampalanterior thalamic axis. Behavioral and Brain Sciences, 22, 425–490.
Alvarez, P., & Squire, L. R. (1994). Memory consolidation and the medial temporal lobe: A simple network model. Proceedings of the National Academy of Sciences, USA, 91, 7041–7045.
Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ: Lawrence Erlbaum.
Anderson, J. R., & Reder, L. M. (1999). The fan effect: New results and new theories. Journal of Experimental Psychology: General, 128, 186.
Anderson, M. C. (2003). Rethinking interference theory: Executive control and the mechanisms of forgetting. Journal of Memory and Language, 49, 415–445.
Anderson, M. C., Bjork, E. L., & Bjork, R. A. (2000). Retrieval-induced forgetting: Evidence for a recall-specific mechanism. Memory & Cognition, 28, 522.
Barense, M. D., Bussey, T. J., Lee, A. C., Rogers, T. T., Davies, R. R., Saksida, L. M., et al. (2005). Functional specialization in the human medial temporal lobe. Journal of Neuroscience, 25(44), 10239–10246.
Barnes, J. M., & Underwood, B. J. (1959). Fate of first-list associations in transfer theory. Journal of Experimental Psychology, 58, 97–105.
Becker, S. (2005). A computational principle for hippocampal learning and neurogenesis. Hippocampus, 15(6), 722–738.
Becker, S., & Lim, J. (2003). A computational model of prefrontal control in free recall: Strategic memory use in the california verbal learning task. Journal of Cognitive Neuroscience, 15, 821–832.
Bjork, R. A., & Whitten, W. B. (1974). Recency-sensitive retrieval processes in long-term free recall. Cognitive Psychology, 6, 173–189.
Bogacz, R., & Brown, M. W. (2003). Comparison of computational models of familiarity discrimination in the perirhinal cortex. Hippocampus, 13, 494–524.
Botvinick, M., & Plaut, D. C. (2006). Short-term memory for serial order: A recurrent neural network model. Psychological Review, 113, 201–233.
Brainerd, C. J., & Reyna, V. F. (1998). When things that were never experienced are easier to “remember” than things that were. Psychological Science, 9, 484.
Brozinsky, C. J., Yonelinas, A. P., Kroll, N. E., & Ranganath, C. (2005). Lag-sensitive repetition suppression effects in the anterior parahippocampal gyrus. Hippocampus, 15, 557–561.
Burgess, N., Becker, S., King, J. A., & O’Keefe, J. (2001). Memory for events and their spatial context: Models and experiments. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 356(1413), 1493–503.
Burgess, N., & Hitch, G. (2005). Computational models of working memory: Putting longterm memory into context. Trends in Cognitive Sciences, 9(11), 535–41.
Burgess, N., & O’Keefe, J. (1996). Neuronal computations underlying the firing of place cells and their role in navigation. Hippocampus, 6, 749–762.
Bussey, T. J., & Saksida, L. M. (2002). The organisation of visual object representations: A connectionist model of effects of lesions in perirhinal cortex. European Journal of Neuroscience, 15, 355–364.
Bussey, T. J., Saksida, L. M., & Murray, E. A. (2002). The role of perirhinal cortex in memory and perception: Conjunctive representations for object identification. In M. P. Witter & F. G. Waterlood (Eds.), The parahippocampal region: Organisation and role in cognitive functions (pp. 239–254). New York: Oxford.
Carlesimo, G. A., Marfia, G. A., Loasses, A., & Caltagirone, C. (1996). Recency effect in anterograde amnesia: Evidence for distinct memory stores underlying enhanced retrieval of terminal items in immediate and delayed recall paradigms. Neuropsychologia, 34(3), 177–184.
Clark, S. E., & Gronlund, S. D. (1996). Global matching models of recognition memory: How the models match the data. Psychonomic Bulletin and Review, 3, 37–60.
Criss, A. H., & Shiffrin, R. M. (2004). Context noise and item noise jointly determine recognition memory: A comment on Dennis and Humphreys (2001). Psychological Review, 111, 800–807.
Davachi, L., Mitchell, J. P., & Wagner, A. D. (2003). Multiple routes to memory: Distinct medial temporal processes build item and source memories. Proceedings of the National Academy of Sciences, 100, 2157–2162.
Davelaar, E.J., Goshen-Gottstein, Y., Ashkenazi, A., Haarmann, H. J., & Usher, M. (2005). The demise of short-term memory revisited: Empirical and computational investigations of recency effects. Psychological Review, 112, 3–42.
Deco, G., Rolls, E. T., & Horwitz, B. (2004). “What” and “where” in visual working memory: A computational neurodynamical perspective. Journal of Cognitive Neuroscience, 16(4), 683–701.
Dennis, S., & Humphreys, M. S. (2001). A context noise model of episodic word recognition. Psychological Review, 108, 452–477.
Dobbins, I. G., Rice, H. J., Wagner, A. D., & Schacter, D. L. (2003). Memory orientation and success: Separate neurocognitive components underlying episodic recognition. Neuropsychologia, 41, 318–333.
Durstewitz, D., Kelc, M., & Gunturkun, O. (1999). A neurocomputational theory of the dopaminergic modulation of working memory functions. Journal of Neuroscience, 19, 2807.
Durstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of Neurophysiology, 83, 1733.
Egorov, A. V., Hamam, B. N., Fransen, E., Hasselmo, M. E., & Alonso, A. A. (2002). Graded persistent activity in entorhinal cortex neurons. Nature, 420, 173–178.
Eichenbaum, H. H., Otto, T., & Cohen, N. J. (1994). Two functional components of the hippocampal memory system. Behavioral and Brain Sciences, 17(3), 449–518.
Eldridge, L. L., Knowlton, B. J., Furmanski, C. S., Bookheimer, S. Y., & Engel, S. A. (2000). Remembering episodes: A selective role for the hippocampus during retrieval. Nature Neuroscience, 3, 1149–1152.
Elman, J. L. (1991). Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7, 195–225.
Estes, W. K. (1955). Statistical theory of distributional phenomena in learning. Psychological Review, 62, 369–377.
Fellous, J. M., Wang, X. J., & Lisman, J. E. (1998). A role for NMDA-receptor channels in working memory. Nature Neuroscience, 1, 273–275.
Ferino, F., Thierry, A. M., & Glowinski, J. (1987). Anatomical and electrophysiological evidence for a direct projection from ammon’s horn to the medial prefrontal cortex in the rat. Experimental Brain Research, 65, 421–426.
Fletcher, P. C., & Henson, R. N. (2001). Frontal lobes and human memory: Insights from functional neuroimaging. Brain, 124(5), 849–881.
Fortin, N. J., Wright, S. P., & Eichenbaum, H. B. (2004). Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature, 431, 188–191.
Frank, M. J., Loughry, B., & O’Reilly, R. C. (2001). Interactions between the frontal cortex and basal ganglia in working memory: A computational model. Cognitive, Affective, and Behavioral Neuroscience, 1, 137–160.
Gillund, G., & Shiffrin, R. M. (1984). A retrieval model for both recognition and recall. Psychological Review, 91, 1–67.
Glanzer, M., Adams, J. K., Iverson, G. J., & Kim, K. (1993). The regularities of recognition memory. Psychological Review, 100, 546–567.
Glenberg, A. M., Bradley, M. M., Stevenson, J. A., Kraus, T. A., Tkachuk, M. J., Gretz, A. L., et al. (1980). A two-process account of long-term serial position effects. Journal of Experimental Psychology: Learning, Memory, and Cognition, 6, 355–369.
Gluck, M. A., Meeter, M., & Myers, C. E. (2003). Computational models of the hippocampal region: Linking incremental learning and episodic memory. Trends in Cognitive Sciences, 7(6), 269–276.
Goldman-Rakic, P. S., Selemon, L. D., & Schwartz, M. L. (1984). Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey. Neuroscience, 12, 719–743.
Gonsalves, B. D., Kahn, I., Curran, T., Norman, K. A., & Wagner, A. D. (2005). Memory strength and repetition suppression: Multi-modal imaging of medial temporal contributions to recognition. Neuron, 47, 751–761.
Grossberg, S. (1976). Adaptive pattern classification and universal recoding I: Parallel development and coding of neural feature detectors. Biological Cybernetics, 23, 121–134.
Grossberg, S. (1986). The adaptive self-organization of serial order in behavior: Speech, language, and motor control. In E. C. Schwab & H. C. Nusbaum (Eds.), Pattern recognition in humans and machines. Volume I: Speech perception (pp. 187–294). New York: Academic Press.
Grossberg, S., & Stone, G. (1986). Neural dynamics of word recognition and recall: Attentional priming, learning, and resonance. Psychological Review, 93, 46–74.
Gruppuso, V., Lindsay, D. S., & Kelley, C. M. (1997). The process-dissociation procedure and similarity: Defining and estimating recollection and familiarity in recognition memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 259.
Hasselmo, M. E. (1995). Neuromodulation and cortical function: Modeling the physiological basis of behavior. Behavioural Brain Research, 67, 1–27.
Hasselmo, M. E., Bodelon, C., & Wyble, B. P. (2002). A proposed function for hippocampal theta rhythm: Separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14, 793–818.
Hasselmo, M. E., & Fehlau, B. P. (2001). Differences in time course of ACh and GABA modulation of excitatory synaptic potentials in slices of rat hippocampus. Journal of Neurophysiology, 86(4), 1792–1802.
Hasselmo, M. E., & Schnell, E. (1994). Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. Journal of Neuroscience, 14(6), 3898–3914.
Hasselmo, M. E., Schnell, E., & Barkai, E. (1995). Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. Journal of Neuroscience, 15(7 Pt. 2), 5249–5262.
Hasselmo, M. E., & Wyble, B. (1997). Free recall and recognition in a network model of the hippocampus: Simulating effects of scopolamine on human memory function. Behavioural Brain Research, 89, 1–34.
Hasselmo, M. E., Wyble, B., & Wallenstein, G. V. (1996). Encoding and retrieval of episodic memories: Role of cholinergic and GABAergic modulation in the hippocampus. Hippocampus, 6, 693–708.
Henson, R. N. A., Cansino, S., Herron, J. E., Robb, W. G., & Rugg, M. D. (2003). A familiarity signal in human anterior medial temporal cortex? Hippocampus, 13, 301–304.
Hinton, G. E. (1989). Deterministic Boltzmann learning performs steepest descent in weight-space. Neural Computation, 1, 143–150.
Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Parallel distributed processing. Volume 1: Foundations (pp. 282–317). Cambridge, MA: MIT Press.
Hintzman, D. L. (1988). Judgments of frequency and recognition memory in a multiple-trace memory model. Psychological Review, 95, 528–551.
Hintzman, D. L., Curran, T., & Oppy, B. (1992). Effects of similiarity and repetition on memory: Registration without learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 667–680.
Hirshman, E., Fisher, J., Henthorn, T., Arndt, J., & Passannante, A. (2002). Midazolam amnesia and dual-process models of the word-frequency mirror effect. Journal of Memory and Language, 47, 499–516.
Holdstock, J. S., Mayes, A. R., Roberts, N., Cezayirli, E., Isaac, C. L., O’Reilly, R. C. et al. (2002). Under what conditions is recognition spared relative to recall after selective hippocampal damage in humans? Hippocampus, 12, 341–351.
Howard, M. W., Addis, K.M., Jing, B., & Kahana, M. J. (2007). Semantic structure and episodic memory. In T. Landauer, D. McNamara, S. Dennis, & W. Kintsch (Eds.), Handbook of Latent Semantic Analysis (pp. 121–141). Mahwah, NJ: Lawrence Erlbaum.
Howard, M. W., Fotedar, M. S., Datey, A. V., & Hasselmo, M. E. (2005). The temporal context model in spatial navigation and relational learning: Toward a common explanation of medial temporal lobe function across domains. Psychological Review, 112, 75–116.
Howard, M. W., & Kahana, M. J. (1999). Contextual variability and serial position effects in free recall. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 923.
Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of Mathematical Psychology, 46, 269–299.
Howard, M. W., Kahana, M. J., & Wingfield, A. (2006). Aging and contextual binding: Modeling recency and lag-recency effects with the temporal context model. Psychonomic Bulletin and Review, 13, 439–445.
Humphreys, M. S., Bain, J. D., & Pike, R. (1989). Different ways to cue a coherent memory system: A theory for episodic, semantic, and procedural tasks. Psychological Review, 96, 208–233.
Jacoby, L. L., Yonelinas, A. P., & Jennings, J. M. (1997). The relation between conscious and unconscious (automatic) influences: A declaration of independence. In J. D. Cohen & J. W. Schooler (Eds.), Scientific approaches to consciousness (pp. 13–47). Mahway, NJ: Lawrence Erlbaum.
Jay, T. M., & Witter, M. P. (1991). Distribution of hippocampal CA1 and subicular efferents in the prefrontal cortex of the rat studied by means of anterograde transport of phaseolus vulgaris-leucoagglutinin. The Journal of Comparative Neurology, 313, 574–586.
Jensen, O., & Lisman, J. E. (2005). Hippocampal sequence-encoding driven by a cortical multi-item working memory buffer. Trends in Neurosciences, 28(2), 67–72.
Joordens, S., & Hockley, W. E. (2000). Recollection and familiarity through the looking glass: When old does not mirror new. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 1534.
Kahana, M. J. (1996). Associative retrieval processes in free recall. Memory and Cognition, 24, 103–109.
Kahana, M. J., & Sekuler, R. (2002). Recognizing spatial patterns: A noisy exemplar approach. Vision Research, 42, 2177–2192.
Koutstaal, W., Schacter, D. L., & Jackson, E. M. (1999). Perceptually based false recognition of novel objects in amnesia: Effects of category size and similarity to category prototypes. Cognitive Neuropsychology, 16, 317.
Levitt, J. B., Lewis, D. A., Yoshioka, T., & Lund, J. S. (1993). Topography of pyramidal neuron intrinsic connections in macaque monkey prefrontal cortex (areas 9 & 46). Journal of Comparative Neurology, 338, 360–376.
Li, L., Miller, E. K., & Desimone, R. (1993). The representation of stimulus familiarity in anterior inferior temporal cortex. Journal of Neurophysiology, 69, 1918–1929.
Malmberg, K. J., Holden, J. E., & Shiffrin, R. M. (2004). Modeling the effects of repetitions, similarity, and normative word frequency on old-new recognition and judgments of frequency. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 319–331.
Malmberg, K. J., & Shiffrin, R. M. (2005). The “one-shot” hypothesis for context storage. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(2), 322–336.
Malmberg, K. J., & Xu, J. (2007). On the flexibility and fallibility of associative memory. Memory and Cognition, 35, 545–556.
Malmberg, K. J., Zeelenberg, R., & Shiffrin, R. M. (2004). Turning up the noise or turning down the volume? On the nature of the impairment of episodic recognition memory by midazolam. Journal of Experimental Psychology. Learning, Memory, and Cognition, 30(2), 540–549.
Manns, J. R., Hopkins, R. O., Reed, J. M., Kitchener, E. G., & Squire, L. R. (2003). Recognition memory and the human hippocampus. Neuron, 37, 171–180.
Marr, D. (1971). Simple memory: A theory for archicortex. Philosophical Transactions of the Royal Society (London) B, 262, 23–81.
Mayes, A. R., Isaac, C. L., Downes, J. J., Hold-stock, J. S., Hunkin, N. M., Montaldi, D. et al. (2001). Memory for single items, word pairs, and temporal order in a patient with selective hippocampal lesions. Cognitive Neuropsychology, 18, 97–123.
McClelland, J. L., & Chappell, M. (1998). Familiarity breeds differentiation: A subjective-likelihood approach to the effects of experience in recognition memory. Psychological Review, 105, 724.
McClelland, J. L., & Goddard, N. H. (1996). Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus, 6, 654–665.
McClelland, J. L., McNaughton, B. L., & O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.
McNaughton, B. L., & Morris, R. G. M. (1987). Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends in Neurosciences, 10(10), 408–415.
Meeter, M., & Murre, J. (in press). Tracelink: A model of amnesia and consolidation. Cognitive Neuropsychology.
Meeter, M., Murre, J., & Talamini, L. M. (2004). Mode shifting between storage and recall based on novelty detection in oscillating hippocampal circuits. Hippocampus, 14, 722–741.
Meeter, M., Myers, C. E., & Gluck, M. A. (2005). Integrating incremental learning and episodic memory models of the hippocampal region. Psychological Review, 112, 560–85.
Mehta, M. R., Lee, A. K., & Wilson, M. A. (2002). Role of experience and oscillations in transforming a rate code into a temporal code. Nature, 416, 741–745.
Melton, A. W., & Irwin, J. M. (1940). The influence of degree of interpolated learning on retroactive inhibition and the overt transfer of specific responses. American Journal of Psychology, 3, 173–203.
Mensink, G., & Raaijmakers, J. G. (1988). A model for interference and forgetting. Psychological Review, 95, 434–455.
Minai, A. A., & Levy, W. B. (1994). Setting the activity level in sparse random networks [Letter]. Neural Computation, 6, 85–99.
Moll, M., & Miikkulainen, R. (1997). Convergence-zone episodic memory: Analysis and simulations. Neural Networks, 10, 1017–1036.
Morris, R., Pandya, D. N., & Petrides, M. (1999). Fiber system linking the mid-dorsolateral frontal cortex with the retrosplenial/pre-subicular region in the rhesus monkey. The Journal of Comparative Neurology, 407, 183–192.
Movellan, J. R. (1990). Contrastive Hebbian learning in the continuous Hopfield model. In D. S. Tourtezky, G. E. Hinton, & T. J. Sejnowski (Eds.), Proceedings of the 1990 connectionist models summer school (pp. 10–17). San Mateo, CA: Morgan Kaufmann.
Murdock, B. B. (1993). TODAM2: A model for the storage and retrieval of item, associative, and serial-order information. Psychological Review, 100, 183–203.
Murnane, K., & Shiffrin, R. (1991). Interference and the representation of events in memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, 855–874.
Norman, K. A., Newman, E. L., & Detre, G. J. (2007). A neural network model of retrieval-induced forgetting. Psychological Review, 114, 887–953.
Norman, K. A., Newman, E. L., Detre, G. J., & Polyn, S. M. (2006). How inhibitory oscillations can train neural networks and punish competitors. Neural Computation, 18, 1577–1610.
Norman, K. A., Newman, E. L., & Perotte, A. J. (2005). Methods for reducing interference in the complementary learning systems model: Oscillating inhibition and autonomous memory rehearsal. Neural Networks, 18, 1212–1228.
Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review, 104, 611–646.
Nowlan, S. J. (1990). Maximum likelihood competitive learning. In D. S. Touretzky (Ed.), Advances in neural information processing systems, 2 (pp. 574–582). San Mateo, CA: Morgan Kaufmann.
Oja, E. (1982). A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology, 15, 267–273.
O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford, UK: Oxford University Press.
O’Reilly, R. C. (1998). Six principles for biologically-based computational models of cortical cognition. Trends in Cognitive Sciences, 2(11), 455–462.
O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A computational model of learning in the frontal cortex and basal ganglia. Neural Computation, 18, 283–328.
O’Reilly, R. C., & McClelland, J. L. (1994). Hippocampal conjunctive encoding, storage, and recall: Avoiding a tradeoff. Hippocampus, 4(6), 661–682.
O’Reilly, R. C., & Munakata, Y. (2000). Computational explorations in cognitive neuroscience: Understanding the mind by simulating the brain. Cambridge, MA: MIT Press.
O’Reilly, R. C., Norman, K. A., & McClelland, J. L. (1998). A hippocampal model of recognition memory. In M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Advances in neural information processing systems 10 (pp. 73–79). Cambridge, MA: MIT Press.
O’Reilly, R. C., & Rudy, J. W. (2001). Conjunctive representations in learning and memory: Principles of cortical and hippocampal function. Psychological Review, 108, 311–345.
Peterson, L. R., & Peterson, M. R. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193–198.
Polyn, S. M. (2005). Neuroimaging, behavioral, and computational investigations of memory targeting. Unpublished doctoral dissertation, Princeton University, Princeton, NJ.
Polyn, S. M., Norman, K. A., & Cohen, J. D. (2003, April). Modeling prefrontal and medial temporal contributions to episodic memory. Paper Presented at the 10th Annual Meeting of the Cognitive Neuroscience Society, New York, NY.
Pucak, M. L., Levitt, J. B., Lund, J. S., & Lewis, D. A. (1996). Patterns of intrinsic and associational circuitry in monkey prefrontal cortex. Journal of Comparative Neurology, 376, 614–630.
Raaijmakers, J. G. W. (2005). Modeling implicit and explicit memory. In C. Izawa & N. Ohta (Eds.), Human learning and memory: Advances in theory and application (pp. 85–105). Mahwah, NJ: Lawrence, Erlbaum.
Raaijmakers, J. G. W., & Shiffrin, R. M. (1981). Search of associative memory. Psychological Review, 88, 93–134.
Raaijmakers, J. G. W., & Shiffrin, R. M. (2002). Models of memory. In H. Pashler & D. Medin (Eds.), Stevens’ handbook of experimental psychology, Third edition, Volume 2: Memory and cognitive processes (pp. 43–76). New York: John Wiley and Sons.
Ranganath, C., Yonelinas, A. P., Cohen, M. X., Dy, C. J., Tom, S., & D’Esposito, M. (2003). Dissociable correlates for familiarity and recollection within the medial temporal lobes. Neuropsychologia, 42, 2–13.
Reder, L. M., Nhouyvanisvong, A., Schunn, C. D., Ayers, M. S., Angstadt, P., & Hiraki, K. A. (2000). A mechanistic account of the mirror effect for word frequency: A computational model of remember-know judgments in a continuous recognition paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 294–320.
Rolls, E. T. (1989). Functions of neuronal networks in the hippocampus and neocortex in memory. In J. H. Byrne & W. O. Berry (Eds.), Neural models of plasticity: Experimental and theoretical approaches (pp. 240–265). San Diego, CA: Academic Press.
Rumelhart, D. E., & Zipser, D. (1986). Feature discovery by competitive learning. In D. E. Rumelhart, J. L. McClelland, & PDP Research Group (Eds.), Parallel distributed processing. Volume 1: Foundations (pp. 151–193). Cambridge, MA: MIT Press.
Russchen, F. T., Amaral, D. G., & Price, J. L. (1987). The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, macaca fascicularis. The Journal of Comparative Neuroanatomy, 256, 175–210.
Schacter, D. L. (1987). Memory, amnesia, and frontal lobe dysfunction. Psychobiology, 15, 21–36.
Scoville, W. B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 11–21.
Sherry, D. F., & Schacter, D. L. (1987). The evolution of multiple memory systems. Psychological Review, 94(4), 439–454.
Shiffrin, R. M., Huber, D. E., & Marinelli, K. (1995). Effects of category length and strength on familiarity in recognition. Journal of Experimental Psychology: Learning, Memory and Cognition, 21, 267–287.
Shiffrin, R. M., & Steyvers, M. (1997). A model for recognition memory: REM – retrieving effectively from memory. Psychonomic Bulletin and Review, 4, 145–166.
Shimamura, A. P. (1994). Memory and frontal lobe function. In M. S. Gazzaniga (Ed.), The cognitive neurosciences (pp. 803–815). Cambridge, MA: MIT Press.
Simons, J. S., & Spiers, H. J. (2003). Prefrontal and medial temporal lobe interactions in longterm memory. Nature Reviews Neuroscience, 4(8), 637–648.
Sohal, V. S., & Hasselmo, M. E. (2000). A model for experience-dependent changes in the responses of inferotemporal neurons. Network : Computation in Neural Systems, 11, 169.
Sohn, M. H., Goode, A., Stenger, V. A., Jung, K. J., Carter, C. S., & Anderson, J. R. (2005). An information-processing model of three cortical regions: evidence in episodic memory retrieval. Neuroimage, 25(1), 21–33.
Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231.
Squire, L. R., Shimamura, A. P., & Amaral, D. G. (1989). Memory and the hippocampus. In J. H. Byrne & W. O. Berry (Eds.), Neural models of plasticity: Experimental and theoretical approaches (pp. 208–239). San Diego, CA: Academic Press.
Standing, L. (1973). Learning 10,000 pictures. Quarterly Journal of Experimental Psychology, 25, 207–222.
Sutherland, R. J., & Rudy, J. W. (1989). Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia. Psychobiology, 17(2), 129–144.
Teyler, T. J., & Discenna, P. (1986). The hippocampal memory indexing theory. Behavioral Neuroscience, 100, 147–154.
Treves, A., & Rolls, E. T. (1994). A computational analysis of the role of the hippocampus in memory. Hippocampus, 4, 374–392.
Usher, M., & Cohen, J. D. (1999). Short-term memory and selection processes in a frontal-lobe model. In D. Heinke, G. W. Humphries, & A. Olsen (Eds.), Connectionist models in cognitive neuroscience (pp. 78–91). London: Springer-Verlag.
Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108, 550–592.
Westerberg, C. E., Paller, K. A., Weintraub, S., Mesulam, M. M., Holdstock, J., Mayes, A., et al. (2006). When memory does not fail: Familiarity-based recognition in mild cognitive impairment and Alzheimer’s disease. Neuropsychology, 20, 193–205.
Witter, M. P., Wouterlood, F. G., Naber, P. A., & Van Haeften, T. (2000). Anatomical organization of the parahippocampal-hippocampal network. Ann. N. Y. Acad. Sci., 911, 1–24.
Wu, X., Baxter, R. A., & Levy, W. B. (1996). Context codes and the effect of noisy learning on a simplified hippocampal CA3 model. Biological Cybernetics, 74, 159–165.
Wyble, B. P., Linster, C., & Hasselmo, M. E. (2000). Size of CA1-evoked synaptic potentials is related to theta rhythm phase in rat hippocampus. Journal of Neurophysiology, 83(4), 2138–2144.
Xiang, J. Z., & Brown, M. W. (1998). Differential encoding of novelty, familiarity, and recency in regions of the anterior temporal lobe. Neuropharmacology, 37, 657–676.
Xu, J., & Malmberg, K. J. (2007). Modeling the effects of verbal- and non-verbal pair strength on associative recognition. Memory and Cognition, 35, 526–544.
Yonelinas, A. P. (2002). The nature of recollection and familiarity: A review of 30 years of research. Journal of Memory and Language, 46, 441–517.
Yonelinas, A. P., Kroll, N. E., Quamme, J. R., Lazzara, M. M., Sauve, M. J., Widaman, K. F., et al. (2002). Effects of extensive temporal lobe damage or mild hypoxia on recollection and familiarity. Nature Neuroscience, 5(11), 1236–1241.