Skip to main content Accessibility help
×
Hostname: page-component-68945f75b7-9klrw Total loading time: 0 Render date: 2024-08-05T22:37:42.808Z Has data issue: false hasContentIssue false

Subpart II.1 - Infancy: The Roots of Human Thinking

from Part II - Fundamentals of Cognitive Development from Infancy to Adolescence and Young Adulthood

Published online by Cambridge University Press:  24 February 2022

Olivier Houdé
Affiliation:
Université de Paris V
Grégoire Borst
Affiliation:
Université de Paris V
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Amsterdam, B. (1972). Mirror self-image reactions before age two. Psychobiology, 5, 297305.CrossRefGoogle ScholarPubMed
Astington, J. W. (1993). The Child’s Discovery of the Mind. Cambridge, MA: Harvard University Press.Google Scholar
Bassano, D., & Maillochon, I. (1994). Early grammatical and prosodic marking of utterance modality in French. A longitudinal case study. Journal of Child Language, 21, 649675.CrossRefGoogle ScholarPubMed
Bates, E. (1976). Language and Context: The Acquisition of Pragmatics. New York: Academic Press.Google Scholar
Bates, E. (1979). The Emergence of Symbols. Cognition and Communication in Infancy. New York: Academic Press.Google Scholar
Beran, M. J. (2004). Long-term retention of the differential values of Arabic numerals by chimpanzees (Pan troglodytes). Animal Cognition, 7, 8692.CrossRefGoogle ScholarPubMed
Beran, M. J., Parrish, A. E., & Evans, T. A. (2015). Numerical cognition and quantitative abilities in nonhuman primates. In Geary, D., Berch, D., & Mann Koepke, K. (eds.), Evolutionary Origins and Early Development of Number Processing (pp. 91119). New York: Elsevier.CrossRefGoogle Scholar
Bickerton, D. (1990). Language and Species. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Boesch, C. (1991). Teaching among wild chimpanzees. Animal Behaviour, 41, 530532.CrossRefGoogle Scholar
Boesch, C., & Boesch, H. (1984). Mental maps in wild chimpanzees: An analysis of hammer transports for nut cracking. Primates, 25, 160170.CrossRefGoogle Scholar
Bovet, D., & Vauclair, J. (1998). Functional categorization of objects and of their pictures in baboons (Papio anubis). Learning & Motivation, 29, 309322.CrossRefGoogle Scholar
Bovet, D., & Vauclair, J. (2001). Judgement of conceptual identity in monkeys. Psychonomic Bulletin & Review, 8, 470475.CrossRefGoogle ScholarPubMed
Bovet, D., & Washburn, D. A. (2003). Rhesus macaques (Macaca mulatta) categorize unknown conspecifics according to their dominance relations. Journal of Comparative Psychology, 117, 400405.CrossRefGoogle ScholarPubMed
Boysen, S. T., & Berntson, G. G. (1989). Numerical competence in a chimpanzee (Pan troglodytes). Journal of Comparative Psychology, 103, 2331.CrossRefGoogle Scholar
Boysen, S. T., Berntson, G. G., Shreyer, T. A., & Hannan, M. B. (1995). Indicating acts during counting by a chimpanzee (Pan troglodytes). Journal of Comparative Psychology, 109, 4751.CrossRefGoogle ScholarPubMed
Brosnan, S. F. (2014). Precursors of morality: Evidence for moral behaviors in non-human primates. In Christen, M. E., van Schaik, C. E., Fischer, J. E., Huppenbauer, M. E., & Tanner, C. E. (eds.), Empirically Informed Ethics: Morality between Facts and Norms (pp. 8598). Cham, Switzerland: Springer.CrossRefGoogle Scholar
Bruner, J. S. (1983). Child’s Talk: Learning to Use Language. New York: W. W. Norton & Company Inc.Google Scholar
Byrne, R., & Whiten, A. (1988). Machiavellian Intelligence. Oxford: Oxford University Press.Google Scholar
Call, J., & Tomasello, M. (1999). A nonverbal false belief task: The performance of children and great apes. Child Development, 70, 381395.CrossRefGoogle ScholarPubMed
Chang, L., Fang, Q., Zhang, S., Poo, M., & Gong, N. (2015). Mirror-induced self-directed behaviors in rhesus monkeys after visual-somatosensory training. Current Biology, 25, 16.CrossRefGoogle ScholarPubMed
Chomsky, N. (1968). Language and Mind. New York: Harcourt, Brace & World.Google Scholar
Dasser, V. (1988). A social concept in Java monkeys. Animal Behaviour, 36, 225230.CrossRefGoogle Scholar
de Saussure, F. (1966). Course in General Linguistics, ed. Bally, C., & Sechehaye, A.. New York: McGraw-Hill.Google Scholar
de Waal, F. B. M. (1996). Good Natured: The Origins of Right and Wrong in Primates and Other Animals. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Dennett, D. (1983). Intentional systems in cognitive ethology: The “Panglossian paradigm” defended. The Behavioral and Brain Sciences, 6, 343390.CrossRefGoogle Scholar
Flemming, T. M., Thompson, R. K. R., & Fagot, J. (2013). Baboons, like humans, solve analogy by categorical abstraction of relations. Animal Cognition, 16, 519524.CrossRefGoogle ScholarPubMed
Gallup, G. G. (1970). Chimpanzees: Self recognition. Science, 167, 8687.CrossRefGoogle Scholar
Hagège, C. (1985). L’homme de paroles. Paris: Fayard.Google Scholar
Hall, K., & Brosnan, S. F. (2016). A comparative perspective on the evolution of moral behaviour. In Shackelford, T. K., & Hansen, R. D. (eds.), The Evolution of Morality (pp. 157176). Cham, Switzerland: Springer.CrossRefGoogle Scholar
Halliday, T. R., & Slater, P. J. B. (eds.) (1983). Animal Behaviour, Vol.3: Genes, Development and Learning. Oxford: Blackwell Scientific Publications.Google Scholar
Hamlin, J. K. (2013). Moral judgment and action in preverbal infants and toddlers: Evidence for an innate moral core. Current Directions in Psychological Science, 22, 186193.CrossRefGoogle Scholar
Hare, B., Addessi, E., Call, J., Tomasello, M., & Visalberghi, E. (2003). Do capuchin monkeys, Cebus apella, know what conspecifics do and do not see? Animal Behaviour, 65, 131142.CrossRefGoogle Scholar
Hare, B., Call, J., & Tomasello, M. (2001). Do chimpanzees know what conspecifics know and do not know? Animal Behaviour, 61, 139151.CrossRefGoogle Scholar
Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298, 15691579.CrossRefGoogle ScholarPubMed
Herrnstein, R. J. (1990). Levels of stimulus control: A functional approach. Cognition, 37, 133166.CrossRefGoogle ScholarPubMed
Hobaiter, C., & Byrne, R. W. (2011). The gestural repertoire of the wild chimpanzee. Animal Cognition, 14, 745767.CrossRefGoogle ScholarPubMed
Hockett, C. F. (1960). The origin of speech. Scientific American, 203, 8896.CrossRefGoogle ScholarPubMed
Hopkins, W. D., & Vauclair, J. (2012). Evolution of behavioral and brain asymmetries in primates. In Tallerman, M., & Gibson, K. (eds.), Handbook of Language Evolution (pp. 184197). Oxford: Oxford University Press.Google Scholar
Humphrey, N. (1976). The social function of intellect. In Bateson, P. P. G., & Hinde, R. A. (eds.), Growing Points in Ethology (pp. 303317). New York: Cambridge University Press.Google Scholar
Koehler, W. (1925). The Mentality of Apes. New York: Harcourt, Brace & Company Inc.Google Scholar
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354, 110114.CrossRefGoogle ScholarPubMed
Kummer, H. (1968). Social Organization of Hamadryas Baboons. Chicago, IL: University of Chicago Press.Google Scholar
Kummer, H. (1982). Social knowledge in free-ranging primates. In Griffin, D. R. (ed.), Animal Mind–Human Mind (pp. 113130). Berlin: Springer Verlag.CrossRefGoogle Scholar
Leroi-Gourhan, A. (1993). Gesture and Speech. Cambridge, MA: MIT Press.Google Scholar
Meguerditchian, A., & Vauclair, J. (2008). Vocal and gestural communication in nonhuman primates and the question of the origin of language. In Roska-Hardy, L. S., & Neumann-Held, E. M. (eds.), Learning from Animals? (pp. 6185). London: Psychology Press.Google Scholar
Moore, R. (2013). Social learning and teaching in chimpanzees. Biology & Philosophy, 28, 879901.CrossRefGoogle Scholar
Nieder, A. (2009). Prefrontal cortex and the evolution of symbolic reference. Current Opinion in Neurobiology, 19, 99108.CrossRefGoogle ScholarPubMed
Parrish, A. E., & Brosnan, S. F. (2012). Primate cognition. In Ramachandran, V. S. (ed.), The Encyclopedia of Human Behavior (vol. 3, pp. 174180). New York: Academic Press.CrossRefGoogle Scholar
Pinker, S. (1994). The Language Instinct: How the Mind Creates Language. New York: W. Morrow and Co.CrossRefGoogle Scholar
Pinker, S. (2013). Language, Cognition and Human Nature. New York: Oxford University Press.CrossRefGoogle Scholar
Pollick, A. S., & de Waal, F. B. M. (2007). Ape gestures and language evolution. Proceedings of the National Academy of Sciences (USA), 104, 81848189.CrossRefGoogle ScholarPubMed
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? The Behavioral and Brain Sciences, 1, 515526.CrossRefGoogle Scholar
Sanz, C., & Morgan, D. (2007). Chimpanzee tool technology in the Goualougo triangle, Republic of Congo. Journal of Human Evolution, 52, 420433.CrossRefGoogle ScholarPubMed
Sanz, C., Morgan, D., & Gulick, S. (2004). New insights into chimpanzees, tools, and termites from the Congo Basin. American Naturalist, 164, 567581.CrossRefGoogle ScholarPubMed
Sarnecka, B. W., & Carey, S. (2008). How counting represents number: What children must learn and when they learn it. Cognition, 108, 662674.CrossRefGoogle Scholar
Savage-Rumbaugh, E. S. (1986). Ape Language. From Conditioned Response to Symbol. New York: Columbia University Press.CrossRefGoogle Scholar
Savage-Rumbaugh, E. S., McDonald, K., Sevcik, R. A., Hopkins, W. D., & Rubert, E. (1986). Spontaneous symbol acquisition and communicative use by pygmy chimpanzees (Pan paniscus). Journal of Experimental Psychology: General, 115, 211235.CrossRefGoogle ScholarPubMed
Seyfarth, R. M., & Cheney, D. L. (2012). Primate social cognition as a precursor to language. In Gibson, K., & Tallerman, M. (eds.), Oxford Handbook of Language Evolution (pp. 5970). Oxford: Oxford University Press.Google Scholar
Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980). Monkey responses to three different alarm calls: Evidence of predator classification and semantic communication. Science, 210, 801803.CrossRefGoogle ScholarPubMed
Slocombe, K. E., & Zuberbühler, K. (2005). Functionally referential communication in a chimpanzee. Current Biology, 15, 17791784.CrossRefGoogle Scholar
Southgate, V., Senju, A., & Csibra, G. (2007). Action anticipation through attribution of false belief in 2-year-olds. Psychological Science, 18, 587592.CrossRefGoogle ScholarPubMed
Thompson, R. K. R., & Oden, D. L. (2000). Categorical perception and conceptual judgments by nonhuman primates: The paleological monkey and the analogical ape. Cognitive Science, 24, 363396.CrossRefGoogle Scholar
Tomasello, M. (2016). A Natural History of Human Morality. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Tomasello, M. (2019). Becoming Human: A Theory of Ontogeny. Cambridge, MA: The Belknap Press.Google Scholar
Tomasello, M., & Call, J. (1997). Primate Cognition. New York: Oxford University Press.CrossRefGoogle Scholar
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The ontogeny of cultural cognition. The Behavioral and Brain Sciences, 28, 675735.CrossRefGoogle Scholar
Tomasello, M., Kruger, A. C., & Ratner, H. H. (1993). Cultural learning. The Behavioral and Brain Sciences, 16, 495552.CrossRefGoogle Scholar
Vauclair, J. (1990). Primate cognition: From representation to language. In Parker, S. T., & Gibson, K. (eds.), Language and Intelligence in Monkeys and Apes: Comparative Developmental Perspectives (pp. 312329). Cambridge, UK: Cambridge University Press.Google Scholar
Vauclair, J. (1996). Animal Cognition: Recent Developments in Comparative Psychology. Cambridge, MA: Harvard University Press.Google Scholar
Vauclair, J. (2003). Would humans without language be apes? In Valsiner, J. (Series ed.) & Toomela, A. (Vol. ed.), Cultural Guidance in the Development of the Human Mind: Vol. 7. Advances in Child Development within Culturally Structured Environments (pp. 926). Greenwich, CT: Ablex Publishing Corporation.Google Scholar
Vauclair, J. (2012). Piaget and the comparative psychology of animal cognition. In Marti, E., & Rodríguez, C. (eds.), After Piaget (pp. 5972). New Brunswick, NJ: Transaction Publishers.Google Scholar
Vauclair, J., & Cochet, H. (2013). Ontogeny and phylogeny of communicative gestures, speech-gestures relationships and left hemisphere specialization for language. In Botha, R. and Everaert, M. (eds.), Oxford Studies in the Evolution of Language: The Evolutionary Emergence of Human Language (pp. 160180). Oxford: Oxford University Press.CrossRefGoogle Scholar
Vidal, J. M., & Vauclair, J. (1996). Un Animal politique autre qu’humain? Epokhè, 6, 3555.Google Scholar
Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13, 103128.CrossRefGoogle ScholarPubMed
Winnicott, D. W. (1971). Playing and Reality. London: Routledge.Google Scholar
Yerkes, R. M. (1916). The Mental Life of Monkeys and Apes: A Study of Ideational Behavior. New York: Holt & Co.CrossRefGoogle Scholar

References

Aguiar, A., & Baillargeon, R. (1999). 2.5-month-old infants’ reasoning about when objects should and should not be occluded. Cognitive Psychology, 39, 116157.CrossRefGoogle Scholar
Aguiar, A., & Baillargeon, R. (2002). Developments in young infants’ reasoning about occluded objects. Cognitive Psychology, 45, 267336.CrossRefGoogle ScholarPubMed
Ahmed, A., & Ruffman, T. (1998). Why do infants make A not B errors in a search task, yet show memory for the location of hidden objects in a nonsearch task? Developmental Psychology, 34, 441453.CrossRefGoogle ScholarPubMed
Anderson, E. M., Hespos, S. J., & Rips, L. J. (2018). Five-month-old infants have expectations for the accumulation of nonsolid substances. Cognition, 175, 110.CrossRefGoogle ScholarPubMed
Angelone, B. L., Levin, D. T., & Simons, D. J. (2003). The relationship between change detection and recognition of centrally attended objects in motion pictures. Perception, 32, 947962.CrossRefGoogle ScholarPubMed
Applin, J. B., & Kibbe, M. M. (2019). Six-month-old infants predict agents’ goal-directed actions on occluded objects. Infancy, 24, 392410.CrossRefGoogle ScholarPubMed
Baillargeon, R. (1987). Object permanence in 3.5- and 4.5-month-old infants. Developmental Psychology, 23, 655664.CrossRefGoogle Scholar
Baillargeon, R. (1991). Reasoning about the height and location of a hidden object in 4.5- and 6.5-month-old infants. Cognition, 38, 1342.CrossRefGoogle ScholarPubMed
Baillargeon, R. (1993). The object concept revisited: New directions in the investigation of infants’ physical knowledge. In Granrud, C. E. (ed.), Visual Perception and Cognition in Infancy (pp. 265315). Hillsdale, NJ: Erlbaum.Google Scholar
Baillargeon, R. (1995). A model of physical reasoning in infancy. In Rovee-Collier, C., & Lipsitt, L. P. (eds.), Advances in Infancy Research (Vol. 9, pp. 305371). Norwood, NJ: Ablex.Google Scholar
Baillargeon, R. (2008). Innate ideas revisited: For a principle of persistence in infants’ physical reasoning. Perspectives on Psychological Science, 3, 213.CrossRefGoogle ScholarPubMed
Baillargeon, R., & Carey, S. (2012). Core cognition and beyond: The acquisition of physical and numerical knowledge. In Pauen, S. (ed.), Early Childhood Development and Later Outcome (pp. 3365). Cambridge: Cambridge University Press.Google Scholar
Baillargeon, R., & DeJong, G. F. (2017). Explanation-based learning in infancy. Psychonomic Bulletin & Review, 24, 15111526.CrossRefGoogle ScholarPubMed
Baillargeon, R., & DeVos, J. (1991). Object permanence in young infants: Further evidence. Child Development, 62, 12271246.CrossRefGoogle ScholarPubMed
Baillargeon, R., & Graber, M. (1987). Where’s the rabbit? 5.5-month-old infants’ representation of the height of a hidden object. Cognitive Development, 2, 375392.CrossRefGoogle Scholar
Baillargeon, R., Graber, M., DeVos, J., & Black, J. (1990). Why do young infants fail to search for hidden objects? Cognition, 36, 225284.CrossRefGoogle Scholar
Baillargeon, R., Li, J., Gertner, Y., & Wu, D. (2011). How do infants reason about physical events? In Goswami, U. (ed.), The Wiley-Blackwell Handbook of Childhood Cognitive Development, 11 (2nd ed., pp. 1148). Oxford: Blackwell.Google Scholar
Baillargeon, R., Li, J., Ng, W., & Yuan, S. (2009a). An account of infants’ physical reasoning. In Woodward, A., & Needham, A. (eds.), Learning and the Infant Mind (pp. 66116). New York: Oxford University Press.Google Scholar
Baillargeon, R., Needham, A., & DeVos, J. (1992). The development of young infants’ intuitions about support. Early Development and Parenting, 1, 6978.CrossRefGoogle Scholar
Baillargeon, R., Spelke, E. S., & Wasserman, S. (1985). Object permanence in five-month-old infants. Cognition, 20, 191208.CrossRefGoogle ScholarPubMed
Baillargeon, R., Stavans, M., Wu, D., Gertner, Y., Setoh, P., Kittredge, A. K., & Bernard, A. (2012). Object individuation and physical reasoning in infancy: An integrative account. Language Learning and Development, 8, 446.CrossRefGoogle ScholarPubMed
Baillargeon, R., Wu, D., Yuan, S., Li, J., & Luo, Y. (2009b). Young infants’ expectations about self-propelled objects. In Hood, B., & Santos, L. (eds.), The Origins of Object Knowledge (pp. 285352). Oxford: Oxford University Press.CrossRefGoogle Scholar
Bogartz, R. S., Shinskey, J. L., & Speaker, C. J. (1997). Interpreting infant looking: The event set × event set design. Developmental Psychology, 33, 408422.CrossRefGoogle ScholarPubMed
Bonatti, L., Frot, E., Zangl, R., & Mehler, J. (2002). The human first hypothesis: Identification of conspecifics and individuation of objects in the young infant. Cognitive Psychology, 44, 388426.CrossRefGoogle ScholarPubMed
Boudreau, J. P., & Bushnell, E. W. (2000). Spilling thoughts: Configuring attentional resources in infants’ goal-directed actions. Infant Behavior and Development, 23, 543566.CrossRefGoogle Scholar
Cacchione, T., Schaub, S., & Rakoczy, H. (2013). Fourteen-month-old infants infer the continuous identity of objects on the basis of nonvisible causal properties. Developmental Psychology, 49, 13251329.CrossRefGoogle ScholarPubMed
Carey, S. (2011). The Origin of Concepts. New York: Oxford University Press.Google ScholarPubMed
Casasola, M. (2008). The development of infants’ spatial categories. Current Directions in Psychological Science, 17, 2125.CrossRefGoogle Scholar
Cashon, C. H., & Cohen, L. B. (2000). Eight‐month‐old infants’ perception of possible and impossible events. Infancy, 1, 429446.CrossRefGoogle ScholarPubMed
Dan, N., Omori, T., & Tomiyasu, Y. (2000). Development of infants’ intuitions about support relations: Sensitivity to stability. Developmental Science, 3, 171180.CrossRefGoogle Scholar
Daum, M. M., Prinz, W., & Aschersleben, G. (2009). Means-end behavior in young infants: The interplay of action perception and action production. Infancy, 14, 613640.CrossRefGoogle ScholarPubMed
Decarli, G., Franchin, L., Piazza, M., & Surian, L. (2020). Infants’ use of motion cues in object individuation processes. Journal of Experimental Child Psychology, 197, 104868.CrossRefGoogle ScholarPubMed
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.CrossRefGoogle ScholarPubMed
Fischer, J., Mikhael, J. G., Tenenbaum, J. B., & Kanwisher, N. (2016). Functional neuroanatomy of intuitive physical inference. Proceedings of the National Academy of Sciences (USA), 113, E5072E5081.CrossRefGoogle ScholarPubMed
Futó, J., Téglás, E., Csibra, G., & Gergely, G. (2010). Communicative function demonstration induces kind-based artifact representation in preverbal infants. Cognition, 117, 18.CrossRefGoogle ScholarPubMed
Gelman, R. (1990). First principles organize attention to and learning about relevant data: Number and the animate-inanimate distinction as examples. Cognitive Science, 14, 79106.Google Scholar
Goldman, E. J., & Wang, S. H. (2019). Comparison facilitates the use of height information by 5-month-olds in containment events. Developmental Psychology, 55, 24752482.CrossRefGoogle ScholarPubMed
Gordon, R. D., & Irwin, D. E. (1996). What’s in an object file? Evidence from priming studies. Perception & Psychophysics, 58, 12601277.CrossRefGoogle Scholar
Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral occipital complex and its role in object recognition. Vision Research, 41, 14091422.CrossRefGoogle ScholarPubMed
Haith, M. M. (1998). Who put the cog in infant cognition? Is rich interpretation too costly? Infant Behavior and Development, 21, 167179.CrossRefGoogle Scholar
Hauf, P., Paulus, M., & Baillargeon, R. (2012). Infants use compression information to infer objects’ weights: Examining cognition, exploration, and prospective action in a preferential-reaching task. Child Development, 83, 19781995.CrossRefGoogle Scholar
Hespos, S. J., & Baillargeon, R. (2001a). Infants’ knowledge about occlusion and containment events: A surprising discrepancy. Psychological Science, 12, 141147.CrossRefGoogle ScholarPubMed
Hespos, S. J., & Baillargeon, R. (2001b). Reasoning about containment events in very young infants. Cognition, 78, 207245.CrossRefGoogle ScholarPubMed
Hespos, S. J., & Baillargeon, R. (2006). Décalage in infants’ knowledge about occlusion and containment events: Converging evidence from action tasks. Cognition, 99, B31B41.CrossRefGoogle ScholarPubMed
Hespos, S. J., & Baillargeon, R. (2008). Young infants’ actions reveal their developing knowledge of support variables: Converging evidence for violation-of-expectation findings. Cognition, 107, 304316.CrossRefGoogle ScholarPubMed
Hespos, S. J., Ferry, A. L., Anderson, E. M., Hollenbeck, E. N., & Rips, L. J. (2016). Five-month-old infants have general knowledge of how nonsolid substances behave and interact. Psychological Science, 27, 244256.CrossRefGoogle ScholarPubMed
Hollingworth, A., Williams, C. C., & Henderson, J. M. (2001). To see and remember: Visually specific information is retained in memory from previously attended objects in natural scenes. Psychonomic Bulletin & Review, 8, 761768.CrossRefGoogle ScholarPubMed
Huettel, S. A., & Needham, A. (2000). Effects of balance relations between objects on infant’s object segregation. Developmental Science, 3, 415427.CrossRefGoogle Scholar
Huttenlocher, J., Duffy, S., & Levine, S. (2002). Infants and toddlers discriminate amount: Are they measuring? Psychological Science, 13, 244249.CrossRefGoogle ScholarPubMed
Huttenlocher, J., Hedges, L. V., & Duncan, S. (1991). Categories and particulars: Prototype effects in estimating spatial location. Psychological Review, 98, 352376.CrossRefGoogle ScholarPubMed
Hyde, D. C., Aparicio Betancourt, M., & Simon, C. E. (2015). Human temporal-parietal junction spontaneously tracks others’ beliefs: A functional near-infrared spectroscopy study. Human Brain Mapping, 36, 48314846.CrossRefGoogle ScholarPubMed
Hyde, D. C., Simon, C. E., Ting, F., & Nikolaeva, J. I. (2018). Functional organization of the temporal–parietal junction for theory of mind in preverbal infants: A near-infrared spectroscopy study. Journal of Neuroscience, 38, 42644274.CrossRefGoogle ScholarPubMed
Jin, K. S., Houston, J. L., Baillargeon, R., Groh, A. M., & Roisman, G. I. (2018). Young infants expect an unfamiliar adult to comfort a crying baby: Evidence from a standard violation-of-expectation task and a novel infant-triggered-video task. Cognitive Psychology, 102, 120.CrossRefGoogle Scholar
Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object-specific integration of information. Cognitive Psychology, 24, 175219.CrossRefGoogle ScholarPubMed
Káldy, Z., & Leslie, A. M. (2003). Identification of objects in 9-month-old infants: Integrating “what” and “where” information. Developmental Science, 6, 360373.CrossRefGoogle Scholar
Káldy, Z., & Leslie, A. M. (2005). A memory span of one? Object identification in 6.5-month-old infants. Cognition, 97, 153177.CrossRefGoogle ScholarPubMed
Kampis, D., Parise, E., Csibra, , G., & Kovács, Á. M. (2015). Neural signatures for sustaining object representations attributed to others in preverbal human infants. Proceedings of the Royal Society B: Biological Sciences, 282, 20151683.CrossRefGoogle ScholarPubMed
Keen, R. E., & Berthier, N. E. (2004). Continuities and discontinuities in infants’ representation of objects and events. In Kail, R. V. (ed.), Advances in Child Development and Behavior (Vol. 32, pp. 243279). San Diego, CA: Elsevier Academic Press.Google Scholar
Keil, F. C. (1995). The growth of causal understandings of natural kinds. In Sperber, D., Premack, D., & Premack, A. J. (eds.), Causal Cognition: A Multidisciplinary Debate (pp. 234262). Oxford: Clarendon Press.Google Scholar
Kibbe, M. M., & Leslie, A. M. (2011). What do infants remember when they forget? Location and identity in 6-month-olds’ memory for objects. Psychological Science, 22, 15001505.CrossRefGoogle ScholarPubMed
Kibbe, M. M., & Leslie, A. M. (2013). What’s the object of object working memory in infancy? Unraveling “what” and “how many.” Cognitive Psychology, 66, 380404.CrossRefGoogle Scholar
Kibbe, M. M., & Leslie, A. M. (2019). Conceptually rich, perceptually sparse: Object representations in 6-month-old infants’ working memory. Psychological Science, 30, 362375.CrossRefGoogle ScholarPubMed
Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83, B35B42.CrossRefGoogle ScholarPubMed
Kominsky, J. F., Strickland, B., Wertz, A. E., Elsner, C., Wynn, K., & Keil, F. C. (2017). Categories and constraints in causal perception. Psychological Science, 28, 16491662.CrossRefGoogle ScholarPubMed
Kosugi, D., & Fujita, K. (2002). How do 8-month-old infants recognize causality in object motion and that in human action? Japanese Psychological Research, 44, 6678.CrossRefGoogle Scholar
Kotovsky, L., & Baillargeon, R. (1994). Calibration-based reasoning about collision events in 11-month-old infants. Cognition, 51, 107129.CrossRefGoogle ScholarPubMed
Kotovsky, L., & Baillargeon, R. (1998). The development of calibration-based reasoning about collision events in young infants. Cognition, 67, 311351.CrossRefGoogle ScholarPubMed
Kotovsky, L., & Baillargeon, R. (2000). Reasoning about collision events involving inert objects in 7.5-month-old infants. Developmental Science, 3, 344359.CrossRefGoogle Scholar
Kovács, Á. M., Téglás, E., & Endress, A. D. (2010). The social sense: Susceptibility to others’ beliefs in human infants and adults. Science, 330, 18301834.CrossRefGoogle ScholarPubMed
Leslie, A. M. (1994). ToMM, ToBy, and Agency: Core architecture and domain specificity. In Hirschfeld, L. A., & Gelman, S. A. (eds.), Mapping the Mind: Domain Specificity in Cognition and Culture (pp. 119148). New York: Cambridge University Press.CrossRefGoogle Scholar
Leslie, A. M. (1995). A theory of agency. In Sperber, D., Premack, D., & Premack, A. J. (eds.), Causal Cognition: A Multidisciplinary Debate (pp. 121149). Oxford: Clarendon Press.Google Scholar
Leslie, A. M., & Keeble, S. (1987). Do six-month-old infants perceive causality? Cognition, 25, 265288.CrossRefGoogle ScholarPubMed
Leslie, A. M., Xu, F., Tremoulet, P. D., & Scholl, B. J. (1998). Indexing and the object concept: developing “what” and “where” systems. Trends in Cognitive Sciences, 2, 1018.CrossRefGoogle Scholar
Lin, Y., & Baillargeon, R. (2018). Infants individuate objects with distinct prior event roles. Paper presented at the Biennial International Congress of Infant Studies, June 2018, Philadelphia, PA.Google Scholar
Lin, Y., & Baillargeon, R. (2019). Testing a new two-system model of early individuation. Paper presented at the Biennial Meeting of the Cognitive Development Society, September 2019, Louisville, KY.Google Scholar
Lin, Y., Li, J., Gertner, Y., Ng, W., Fisher, C. L., & Baillargeon, R. (2021). How do the object-file and physical-reasoning systems interact? Evidence from priming effects with object arrays or novel labels. Cognitive Psychology, 125, 101368.CrossRefGoogle ScholarPubMed
Lin, Y., Stavans, M., & Baillargeon, R. (2019). Infants can use many types of categories to individuate objects. Paper presented at the Biennial Meeting of the Society for Research in Child Development, March 2019, Baltimore, MD.Google Scholar
Liu, S., Brooks, N. B., & Spelke, E. S. (2019). Origins of the concepts cause, cost, and goal in prereaching infants. Proceedings of the National Academy of Sciences (USA), 116, 1774717752.CrossRefGoogle ScholarPubMed
Luo, Y., & Baillargeon, R. (2005). When the ordinary seems unexpected: Evidence for incremental physical knowledge in young infants. Cognition, 95, 297328.CrossRefGoogle ScholarPubMed
Luo, Y., Kaufman, L., & Baillargeon, R. (2009). Young infants’ reasoning about physical events involving inert and self-propelled objects. Cognitive Psychology, 58, 441486.CrossRefGoogle ScholarPubMed
Mascalzoni, E., Regolin, L., Vallortigara, G., & Simion, F. (2013). The cradle of causal reasoning: Newborns’ preference for physical causality. Developmental Science, 16, 327335.CrossRefGoogle ScholarPubMed
McCurry, S., Wilcox, T., & Woods, R. (2009). Beyond the search barrier: A new task for assessing object individuation in young infants. Infant Behavior and Development, 32, 429436.CrossRefGoogle Scholar
Merced-Nieves, F. M., Aguiar, A., Dzwilewski, K. L. C., Musaad, S., Korrick, S. A., & Schantz, S. L. (2020). Association of prenatal maternal perceived stress with a sexually dimorphic measure of cognition in 4.5-month-old infants. Neurotoxicology and Teratology, 77, 106850.CrossRefGoogle Scholar
Mitroff, S. R., Simons, D. J., & Levin, D. T. (2004). Nothing compares 2 views: Change blindness can occur despite preserved access to the changed information. Perception & Psychophysics, 66, 12681281.CrossRefGoogle Scholar
Mou, Y., & Luo, Y. (2017). Is it a container? Young infants’ understanding of containment events. Infancy, 22, 256270.CrossRefGoogle ScholarPubMed
Needham, A., & Baillargeon, R. (1993). Intuitions about support in 4.5-month-old infants. Cognition, 47, 121148.CrossRefGoogle Scholar
Newcombe, N., Huttenlocher, J., & Learmonth, A. (1999). Infants’ coding of location in continuous space. Infant Behavior and Development, 22, 483510.CrossRefGoogle Scholar
Oakes, L. M., Ross-Sheehy, S., & Luck, S. J. (2006). Rapid development of feature binding in visual short-term memory. Psychological Science, 17, 781787.CrossRefGoogle ScholarPubMed
Pauen, S. (2002). The global-to-basic level shift in infants’ categorical thinking: First evidence from a longitudinal study. International Journal of Behavioral Development, 26, 492499.CrossRefGoogle Scholar
Piaget, J. (1952). The Origins of Intelligence in Children. New York: International Universities Press.CrossRefGoogle Scholar
Piaget, J. (1954). The Construction of Reality in the Child. New York: Basic Books.CrossRefGoogle Scholar
Pylyshyn, Z. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial-index model. Cognition, 32, 6597.CrossRefGoogle ScholarPubMed
Pylyshyn, Z. W. (2007). Things and Places: How the Mind Connects with the World. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Rensink, R. A., O’Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368373.CrossRefGoogle Scholar
Rips, L. J., Blok, S., & Newman, G. (2006). Tracing the identity of objects. Psychological Review, 113, 130.CrossRefGoogle ScholarPubMed
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 19261928.CrossRefGoogle ScholarPubMed
Saffran, J. R., & Kirkham, N. Z. (2018). Infant statistical learning. Annual Review of Psychology, 69, 181203.CrossRefGoogle ScholarPubMed
Saxe, R., Tenenbaum, J., & Carey, S. (2005). Secret agents: 10- and 12-month-old infants’ inferences about hidden causes. Psychological Science, 16, 9951001.CrossRefGoogle ScholarPubMed
Saxe, R., Tzelnic, T., & Carey, S. (2006). Five-month-old infants know humans are solid, like inanimate objects. Cognition, 101, B1B8.CrossRefGoogle ScholarPubMed
Saxe, R., Tzelnic, T., & Carey, S. (2007). Knowing who dunnit: Infants identify the causal agent in an unseen causal interaction. Developmental Psychology, 43, 149158.CrossRefGoogle Scholar
Setoh, P., Wu, D., Baillargeon, R., & Gelman, R. (2013). Young infants have biological expectations about animals. Proceedings of the National Academy of Sciences (USA), 110, 1593715942.CrossRefGoogle ScholarPubMed
Shinskey, J. L. (2002). Infants’ object search: Effects of variable object visibility under constant means-end demands. Journal of Cognition and Development, 3, 119142.CrossRefGoogle Scholar
Simons, D. J., Chabris, C. F., Schnur, T., & Levin, D. T. (2002). Evidence for preserved representations in change blindness. Consciousness and Cognition, 11, 7897.CrossRefGoogle ScholarPubMed
Simons, D. J., & Levin, D. T. (1998). Failure to detect changes to people during a real-world interaction. Psychonomic Bulletin & Review, 5, 644649.CrossRefGoogle Scholar
Southgate, V., & Vernetti, A. (2014). Belief-based action prediction in preverbal infants. Cognition, 130, 110.CrossRefGoogle ScholarPubMed
Spelke, E. S., Breinlinger, K., Macomber, J., & Jacobson, K. (1992). Origins of knowledge. Psychological Review, 99, 605632.CrossRefGoogle ScholarPubMed
Spelke, E. S., Kestenbaum, R., Simons, D. J., & Wein, D. (1995a). Spatiotemporal continuity, smoothness of motion and object identity in infancy. British Journal of Developmental Psychology, 13, 113142.CrossRefGoogle Scholar
Spelke, E. S., Phillips, A., & Woodward, A. L. (1995b). Infants’ knowledge of object motion and human action. In Sperber, D., Premack, D., & Premack, A. J. (eds.), Causal Cognition: A Multidisciplinary Debate (pp. 4478). Oxford: Clarendon Press.Google Scholar
Stahl, A. E., & Feigenson, L. (2015). Observing the unexpected enhances infants’ learning and exploration. Science, 348, 9194.CrossRefGoogle ScholarPubMed
Stavans, M., & Baillargeon, R. (2018). Four-month-old infants individuate and track simple tools following functional demonstrations. Developmental Science, 21, e12500.CrossRefGoogle ScholarPubMed
Stavans, M., Lin, Y., Wu, D., & Baillargeon, R. (2019). Catastrophic individuation failures in infancy: A new model and predictions. Psychological Review, 126, 196225.CrossRefGoogle ScholarPubMed
Strickland, B., & Scholl, B. J. (2015). Visual perception involves event-type representations: The case of containment versus occlusion. Journal of Experimental Psychology: General, 144, 570580.CrossRefGoogle ScholarPubMed
Surian, L., & Caldi, S. (2010). Infants’ individuation of agents and inert objects. Developmental Science, 13, 143150.CrossRefGoogle ScholarPubMed
Thelen, E., & Smith, L. B. (1994), A Dynamic Systems Approach to the Development of Perception and Action. Cambridge, MA: MIT Press.Google Scholar
Ullman, T. D., Spelke, E., Battaglia, P., & Tenenbaum, J. B. (2017). Mind games: Game engines as an architecture for intuitive physics. Trends in Cognitive Sciences, 21, 649665.CrossRefGoogle ScholarPubMed
Van de Walle, G. A., Carey, S., & Prevor, M. (2000). Bases for object individuation in infancy: Evidence from manual search. Journal of Cognition and Development, 1, 249280.CrossRefGoogle Scholar
Wang, S. (2011). Priming 4.5-month-old infants to use height information by enhancing retrieval. Developmental Psychology, 47, 2638.CrossRefGoogle Scholar
Wang, S. (2019). Regularity detection and explanation-based learning jointly support learning about physical events in early infancy. Cognitive Psychology, 113, 101219.CrossRefGoogle ScholarPubMed
Wang, S., & Baillargeon, R. (2005). Inducing infants to detect a physical violation in a single trial. Psychological Science, 16, 542549.CrossRefGoogle Scholar
Wang, S., & Baillargeon, R. (2006). Infants’ physical knowledge affects their change detection. Developmental Science, 9, 173181.CrossRefGoogle ScholarPubMed
Wang, S., & Baillargeon, R. (2008a). Can infants be “taught” to attend to a new physical variable in an event category? The case of height in covering events. Cognitive Psychology, 56, 284326.CrossRefGoogle Scholar
Wang, S., & Baillargeon, R. (2008b). Detecting impossible changes in infancy: A three-system account. Trends in Cognitive Sciences, 12, 1723.CrossRefGoogle ScholarPubMed
Wang, S., Baillargeon, R., & Brueckner, L. (2004). Young infants’ reasoning about hidden objects: Evidence from violation-of-expectation tasks with test trials only. Cognition, 93, 167198.CrossRefGoogle ScholarPubMed
Wang, S., Baillargeon, R., & Paterson, S. (2005). Detecting continuity violations in infancy: A new account and new evidence from covering and tube events. Cognition, 95, 129173.CrossRefGoogle ScholarPubMed
Wang, S., & Goldman, E. J. (2016). Infants actively construct and update their representations of physical events: Evidence from change detection by 12-month-olds. Child Development Research, article 3102481.CrossRefGoogle Scholar
Wang, S., Kaufman, L., & Baillargeon, R. (2003). Should all stationary objects move when hit? Developments in infants’ causal and statistical expectations about collision events. Infant Behavior and Development, 26, 529568.CrossRefGoogle ScholarPubMed
Wang, S., & Kohne, L. (2007). Visual experience enhances infants’ use of task-relevant information in an action task. Developmental Psychology, 43, 15131522.CrossRefGoogle Scholar
Wang, S., & Mitroff, S. R. (2009). Preserved visual representations despite change blindness in infants. Developmental Science, 12, 681687.CrossRefGoogle ScholarPubMed
Wang, S., & Onishi, K. H. (2017). Enhancing young infants’ representations of physical events through improved retrieval (not encoding) of information. Journal of Cognition and Development, 18, 289308.CrossRefGoogle Scholar
Wang, S., Zhang, Y., & Baillargeon, R. (2016). Young infants view physically possible support events as unexpected: New evidence for rule learning. Cognition, 157, 100105.CrossRefGoogle ScholarPubMed
Wellman, H. M., & Gelman, S. A. (1992). Cognitive development: Foundational theories of core domains. Annual Review of Psychology, 43, 337375.CrossRefGoogle ScholarPubMed
Wilcox, T. (1999). Object individuation: Infants’ use of shape, size, pattern, and color. Cognition, 72, 125166.CrossRefGoogle ScholarPubMed
Wilcox, T., & Baillargeon, R. (1998). Object individuation in infancy: The use of featural information in reasoning about occlusion events. Cognitive Psychology, 37, 97155.CrossRefGoogle ScholarPubMed
Wilcox, T., & Chapa, C. (2004). Priming infants to attend to color and pattern information in an individuation task. Cognition, 90, 265302.CrossRefGoogle Scholar
Wilcox, T., Nadel, L., & Rosser, R. (1996). Location memory in healthy preterm and full-term infants. Infant Behavior and Development, 19, 309323.CrossRefGoogle Scholar
Wilcox, T., & Schweinle, A. (2002). Object individuation and event mapping: Developmental changes in infants’ use of featural information. Developmental Science, 5, 132150.CrossRefGoogle Scholar
Wilcox, T., Smith, T., & Woods, R. (2011). Priming infants to use pattern information in an object individuation task: The role of comparison. Developmental Psychology, 47, 886.CrossRefGoogle Scholar
Wilson, R. A., & Keil, F. C. (2000). The shadows and shallows of explanation. In Keil, F. C., & Wilson, R. A. (eds.), Explanation and Cognition (pp. 87114). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749750.CrossRefGoogle ScholarPubMed
Xu, F. (2002). The role of language in acquiring object kind concepts in infancy. Cognition, 85, 223250.CrossRefGoogle ScholarPubMed
Xu, F., & Baker, A. (2005). Object individuation in 10-month-old infants using a simplified manual search method. Journal of Cognition and Development, 6, 307323.CrossRefGoogle Scholar
Xu, F., & Carey, S. (1996). Infants’ metaphysics: The case of numerical identity. Cognitive Psychology, 30, 111153.CrossRefGoogle ScholarPubMed
Xu, F., Carey, S., & Quint, N. (2004). The emergence of kind-based object individuation in infancy. Cognitive Psychology, 49, 155190.CrossRefGoogle ScholarPubMed
Zhang, Y, & Wang, S. (2019). Violation to infant faulty knowledge induces object exploration by 7.5-month-olds in support events. Paper presented at the Biennial Meeting of the Cognitive Development Society, September 2019, Louisville, KY.Google Scholar

References

Antell, S. E., & Caron, A. J. (1985). Neonatal perception of spatial relationships. Infant Behavior and Development, 8, 1523.CrossRefGoogle Scholar
Baillargeon, R. (1987). Object permanence in 3 1/2- and 4 1/2-month-old infants. Developmental Psychology, 23, 655664.CrossRefGoogle Scholar
Behl-Chadha, G. (1996). Basic-level and superordinate-like categorical representations in early infancy. Cognition, 60, 105141.CrossRefGoogle ScholarPubMed
Benton, D. T., & Rakison, D. H. (2018). Computational Modeling and What It Can Tell You about Behavior. Thousand Oaks, CA: SAGE Research Methods Cases.CrossRefGoogle Scholar
Best, C. A., Yim, H., & Sloutsky, V. M. (2013). The cost of selective attention in category learning: Developmental differences between adults and infants. Journal of Experimental Child Psychology, 116, 105119.CrossRefGoogle ScholarPubMed
Bomba, P. C., & Siqueland, E. R. (1983). The nature and structure of infant form categories. Journal of Experimental Child Psychology, 35, 294328.CrossRefGoogle Scholar
Brooks, L. (1978). Nonanalytic concept formation and memory for instances. In Rosch, E. H., and Lloyd, B. B. (eds.), Cognition and Categorisation (pp. 169–211). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Bruner, J. S., Olver, R. R., & Greenfield, P. M. (1966). Studies in Cognitive Growth. New York: Wiley.Google Scholar
Bruner, R., Goodnow, J. J., and Austin, G. A. (eds.) (1956). A Study of Thinking (pp. 3170). New York: Wiley.Google Scholar
Casasola, M. (2005). Can language do the driving? The effect of linguistic input on infants’ categorization of support spatial relations. Developmental Psychology, 41, 183192.CrossRefGoogle ScholarPubMed
Casasola, M., & Bhagwat, J. (2007). Do novel words facilitate 18‐month‐olds’ spatial categorization? Child Development, 78, 18181829.CrossRefGoogle ScholarPubMed
Casasola, M., & Cohen, L. B. (2002). Infant categorization of containment, support and tight‐fit spatial relationships. Developmental Science, 5, 247264.Google Scholar
Casasola, M., Cohen, L. B., & Chiarello, E. (2003). Six‐month‐old infants’ categorization of containment spatial relations. Child Development, 74, 679693.CrossRefGoogle ScholarPubMed
Casasola, M., & Park, Y. (2013). Developmental changes in infant spatial categorization: When more is best and when less is enough. Child Development, 84, 10041019.CrossRefGoogle Scholar
Choi, S. (2006). Influence of language-specific input on spatial cognition: Categories of containment. First Language, 26, 207232.CrossRefGoogle Scholar
Choi, S., & Bowerman, M. (1991). Learning to express motion events in English and Korean: The influence of language-specific lexicalization patterns. Cognition, 41, 83121.CrossRefGoogle ScholarPubMed
Choi, S., McDonough, L., Bowerman, M., & Mandler, J. M. (1999). Early sensitivity to language-specific spatial categories in English and Korean. Cognitive Development, 14(2), 241268.CrossRefGoogle Scholar
Cromer, R. F. (1974). The development of language and cognition: The cognition hypothesis. In Foss, B. M. (ed.), New Perspectives in Child Development (pp. 184252). London: Penguin.Google Scholar
de Boysson-Bardies, B., & Vihman, M. M. (1991). Adaptation to language: Evidence from babbling and first words in four languages. Language, 67, 297319.CrossRefGoogle Scholar
Dromi, E. (1987). Early Lexical Development. New York. Cambridge University Press.Google Scholar
Eimas, P. D., & Quinn, P. C. (1994). Studies on the formation of perceptually based basic-level categories in young infants. Child Development, 65, 903917.CrossRefGoogle ScholarPubMed
Freeman, N. H., Lloyd, S., & Sinha, C. G. (1980). Infant search tasks reveal early concepts of containment and canonical usage of objects. Cognition, 8, 243262.CrossRefGoogle ScholarPubMed
French, R. M., Mareschal, D., Mermillod, M., & Quinn, P. C. (2004). The role of bottom-up processing in perceptual categorization by 3- to 4-month old infants: Simulations and data. Journal of Experimental Psychology: General, 133, 382397.CrossRefGoogle Scholar
Gava, L., Valenza, E., & Turati, C. (2009). Newborns’ perception of left–right spatial relations. Child Development, 80, 17971810.CrossRefGoogle ScholarPubMed
Gelman, R. (1990). First principles organize attention to and learning about relevant data: Number and the animate-inanimate distinction as examples. Cognitive Science, 14, 79106.Google Scholar
Gelman, R., Durgin, F., & Kaufman, L. (1995). Distinguishing between animate and inanimates: Not by motion alone. In Sperber, D., Premack, D., & Premack, A. J. (eds.), Causal Cognition (pp. 150184). Oxford: Clarendon.Google Scholar
Gelman, S. A., & Coley, J. D. (1990). The importance of knowing a dodo is a bird: Categories and inferences in 2-year-old children. Developmental Psychology, 26, 796.CrossRefGoogle Scholar
Gentner, D., Özyürek, A., Gürcanli, Ö., & Goldin-Meadow, S. (2013). Spatial language facilitates spatial cognition: Evidence from children who lack language input. Cognition, 127, 318330.CrossRefGoogle ScholarPubMed
Goldfield, B. A., & Reznick, J. S. (1990). Early lexical acquisition: Rate, content, and the vocabulary spurt. Journal of Child Language, 17, 171183.CrossRefGoogle ScholarPubMed
Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T., & Danks, D. (2004). A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review, 111, 3.CrossRefGoogle ScholarPubMed
Gopnik, A., & Meltzoff, A. (1987). The development of categorization in the second year and its relation to other cognitive and linguistic developments. Child Development, 58, 15231531.CrossRefGoogle Scholar
Hamlin, J. K., Wynn, K., & Bloom, P. (2007). Social evaluation by preverbal infants. Nature, 450, 557.CrossRefGoogle ScholarPubMed
Hespos, S. J., & Spelke, E. S. (2004). Conceptual precursors to language. Nature, 430, 453.CrossRefGoogle ScholarPubMed
Hurley, K. B., & Oakes, L. M. (2015). Experience and distribution of attention: Pet exposure and infants’ scanning of animal images. Journal of Cognition and Development, 16, 1130.CrossRefGoogle ScholarPubMed
James, W. (2013). The Principles of Psychology. Redditch, Worcestershire: Read Books Ltd.Google Scholar
Ji, L. J., Zhang, Z., & Nisbett, R. E. (2004). Is it culture or is it language? Examination of language effects in cross-cultural research on categorization. Journal of Personality and Social Psychology, 87, 57.CrossRefGoogle ScholarPubMed
Johnson, C., & Rakison, D. H. (2006). Early categorization of animate/inanimate concepts in young children with autism. Journal of Developmental and Physical Disabilities, 18, 7389.CrossRefGoogle Scholar
Jones, S. S., & Smith, L. B. (1993). The place of perception in children’s concepts. Cognitive Development, 8, 113139.CrossRefGoogle Scholar
Keil, F. C. (1981). Constraints on knowledge and cognitive development. Psychological Review, 88, 197227.CrossRefGoogle Scholar
Kovack-Lesh, K. A., McMurray, B., & Oakes, L. M. (2014). Four-month-old infants’ visual investigation of cats and dogs: Relations with pet experience and attentional strategy. Developmental Psychology, 50, 402.CrossRefGoogle ScholarPubMed
Langlois, J. H., Roggman, L. A., Casey, R. J., Ritter, J. M., Rieser-Danner, L. A., & Jenkins, V. Y. (1987). Infant preferences for attractive faces: Rudiments of a stereotype? Developmental Psychology, 23, 363.CrossRefGoogle Scholar
Leslie, A. (1994). ToMM, ToBy, and Agency: Core architecture and domain specificity. In Hirschfeld, L., & Gelman, S. (eds.), Mapping the Mind: Domain Specificity in Cognition and Culture (pp. 119148). New York: Cambridge University Press.CrossRefGoogle Scholar
Leslie, A. (1995). A theory of agency. In Sperber, D., Premack, D., & Premack, A. J. (eds.), Causal Cognition (pp. 121141). Oxford: Clarendon.Google Scholar
Madole, K. L., & Cohen, L. B. (1995). The role of object parts in infants’ attention to form-function correlations. Developmental Psychology, 31, 637.CrossRefGoogle Scholar
Mandler, J. M. (1992). How to build a baby: II. Conceptual primitives. Psychological Review, 99, 587604.CrossRefGoogle ScholarPubMed
Mandler, J. M. (2000). Perceptual and conceptual processes in infancy. Journal of Cognition and Development, 1, 336.CrossRefGoogle Scholar
Mandler, J. M. (2003). Conceptual categorization. In Rakison, D. H., & Oakes, L. M. (eds.), Early Category and Concept Development: Making Sense of the Blooming, Buzzing Confusion (pp. 103131). New York: Oxford University Press.CrossRefGoogle Scholar
Mandler, J. M., & Bauer, P. J. (1988). The cradle of categorization: Is the basic level basic? Cognitive Development, 3, 247264.CrossRefGoogle Scholar
Mandler, J. M., Bauer, P. J., & McDonough, L. (1991). Separating the sheep from the goats: Differentiating global categories. Cognitive Psychology, 23, 263298.CrossRefGoogle Scholar
Mandler, J. M., & McDonough, L. (1996). Drinking and driving don’t mix: Inductive generalization in infancy. Cognition, 59, 307335.CrossRefGoogle ScholarPubMed
Mareschal, D., French, R. M., & Quinn, P. C. (2000). A connectionist account of asymmetric category learning in early infancy. Developmental Psychology, 36, 635.CrossRefGoogle ScholarPubMed
Mareschal, D., Quinn, P. C., & French, R. M. (2002). Asymmetric interference in 3- to 4-month olds’ sequential category learning. Cognitive Science, 26, 377389.Google Scholar
McDonough, L., Choi, S., & Mandler, J. M. (2003). Understanding spatial relations: Flexible infants, lexical adults. Cognitive Psychology, 46, 229259.CrossRefGoogle ScholarPubMed
Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207238.CrossRefGoogle Scholar
Medin, D. L., Wattenmaker, W. D., & Hampson, S. E. (1987). Family resemblance, conceptual cohesiveness, and category construction. Cognitive Psychology, 19, 242279.CrossRefGoogle ScholarPubMed
Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92, 289316.CrossRefGoogle ScholarPubMed
Nazzi, T., & Gopnik, A. (2001). Linguistic and cognitive abilities in infancy: When does language become a tool for categorization? Cognition, 80, B11B20.CrossRefGoogle ScholarPubMed
Neisser, U. (1987). From direct perception to conceptual structure. In Neisser, U. (ed.), Concepts and Conceptual Development (pp. 1124). London: Cambridge University Press.Google Scholar
Nelson, K. (1973). Some evidence for the cognitive primacy of categorisation and its functional basis. Merrill-Palmer Quarterly, 19, 2139.Google Scholar
Newcombe, N., & Huttenlocher, J. (2000). Making Space. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Oakes, L. M. (2010). Using habituation of looking time to assess mental processes in infancy. Journal of Cognition and Development, 11, 255268.CrossRefGoogle ScholarPubMed
Oakes, L. M., & Cohen, L. B. (1990). Infant perception of a causal event. Cognitive Development, 5, 193207.CrossRefGoogle Scholar
Oakes, L. M., Coppage, D. J., & Dingel, A. (1997). By land or by sea: The role of perceptual similarity in infants’ categorization of animals. Developmental Psychology, 33, 396.CrossRefGoogle ScholarPubMed
Oakes, L. M. & Madole, K. L. (2003). Principles of developmental change in infants’ category formation. In Rakison, D. H., & Oakes, L. M. (eds.), Early Category and Concept Development: Making Sense of the Blooming, Buzzing Confusion (pp. 159192). New York: Oxford University Press.Google Scholar
Park, Y., & Casasola, M. (2015). Plain or decorated? Object visual features matter in infant spatial categorization. Journal of Experimental Child Psychology, 140, 105119.CrossRefGoogle ScholarPubMed
Piaget, J. (1952). The Origins of Intelligence in Children. New York: W. W. Norton & Co.CrossRefGoogle Scholar
Premack, D. (1990). The infants’ theory of self-propelled objects. Cognition, 36, 116.CrossRefGoogle ScholarPubMed
Quinn, P. C. (1994). The categorization of above and below spatial relations by young infants. Child Development, 65, 58-69.CrossRefGoogle ScholarPubMed
Quinn, P. C., Cummins, M., Kase, J., Martin, E., & Weissman, S. (1996). Development of categorical representations for above and below spatial relations in 3-to 7-month-old infants. Developmental Psychology, 32, 942950.CrossRefGoogle Scholar
Quinn, P. C., & Eimas, P. D. (1996). Perceptual organization and categorization. In Rovee-Collier, C., & Lipsitt, L. (eds.), Advances in Infancy Research (Vol. 10, pp. 136). Norwood, NJ: Ablex Publishing.Google Scholar
Quinn, P. C., & Eimas, P. D. (1997). A reexamination of the perceptual-to-conceptual shift in mental representations. Review of General Psychology, 1, 171187.CrossRefGoogle Scholar
Quinn, P. C., & Eimas, P. D. (2000). The emergence of category representations during infancy: Are separate perceptual and conceptual processes required? Journal of Cognition and Development, 1, 5561.CrossRefGoogle Scholar
Quinn, P. C., Eimas, P. D., & Rosenkrantz, S. L. (1993). Evidence for representations of perceptually similar natural categories by 3-month-old and 4-month-old infants. Perception, 22, 463475.CrossRefGoogle ScholarPubMed
Quinn, P. C., Eimas, P. D., & Tarr, M. J. (2001). Perceptual categorization of cat and dog silhouettes by 3-to 4-month-old infants. Journal of Experimental Child Psychology, 79, 7894.CrossRefGoogle Scholar
Quinn, P. C., & Johnson, M. H. (2000). Global-before-basic object categorization in connectionist networks and 2-month-old infants. Infancy, 1, 3146.CrossRefGoogle ScholarPubMed
Quinn, P. C., Johnson, M. H., Mareschal, D., Rakison, D. H., & Younger, B. A. (2000). Understanding early categorization: One process or two? Infancy, 1, 111122.CrossRefGoogle ScholarPubMed
Quinn, P. C., Norris, C. M., Pasko, R. N., Schmader, T. M., & Mash, C. (1999). Formation of a categorical representation for the spatial relation between by 6-to 7-month-old infants. Visual Cognition, 6, 569585.CrossRefGoogle Scholar
Rakison, D. H. (2003). Parts, categorization, and the animate-inanimate distinction in infancy. In Rakison, D. H., & Oakes, L. M. (eds.), Early Category and Concept Development: Making Sense of the Blooming Buzzing Confusion (pp. 159192). New York: Oxford University Press.CrossRefGoogle Scholar
Rakison, D. H. (2005). A secret agent? How infants learn about the identity of objects in a causal scene. Journal of Experimental Child Psychology, 91, 271296.CrossRefGoogle Scholar
Rakison, D. H., & Benton, D. T. (2019). Second‐order correlation learning of dynamic stimuli: Evidence from infants and computational modeling. Infancy, 24, 5778.CrossRefGoogle ScholarPubMed
Rakison, D. H., & Butterworth, G. E. (1998a). Infants’ attention to object structure in early categorization. Developmental Psychology, 34, 13101325.CrossRefGoogle ScholarPubMed
Rakison, D. H., & Butterworth, G. E. (1998b). Infants’ use of object parts in early categorization. Developmental Psychology, 34, 4962.CrossRefGoogle ScholarPubMed
Rakison, D. H., & Cohen, L. B. (1999). Infants’ use of functional parts in basic-like categorization. Developmental Science, 2, 423432.CrossRefGoogle Scholar
Rakison, D. H., & Hahn, E. (2004). The mechanisms of early categorization and induction: Smart or dumb infants? In Kail, R. (ed.), Advances in Child Development and Behavior (Vol. 32, pp. 281322). New York: Academic Press.Google Scholar
Rakison, D. H., & Lupyan, G. (2008). Developing object concepts in infancy: An associative learning perspective. Monographs of the Society for Research in Child Development, 73, 1110.Google ScholarPubMed
Rakison, D. H., & Poulin-Dubois, D. (2001). Developmental origin of the animate-inanimate distinction. Psychological Bulletin, 127, 209228.CrossRefGoogle ScholarPubMed
Rakison, D. H., & Poulin-Dubois, D. (2002). You go this way and I’ll go that way: Developmental changes in infants’ attention to correlations among dynamic parts in motion events. Child Development, 73, 682699.CrossRefGoogle Scholar
Rakison, D. H., & Yermolayeva, Y. (2010). Infant categorization. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 894905.Google ScholarPubMed
Regier, T., & Carlson, L. A. (2001). Grounding spatial language in perception: An empirical and computational investigation. Journal of Experimental Psychology: General, 130, 273.CrossRefGoogle ScholarPubMed
Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimental Psychology General, 104, 192233.CrossRefGoogle Scholar
Rosch, E. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382439.CrossRefGoogle Scholar
Rosch, E. (1978). Principles of categorisation. In Rosch, E., & Lloyd, B. (eds.), Cognition and Categorisation (pp. 2748). Lawrence Erlbaum, NJ, Hillsdale.Google Scholar
Rosch, E., & Mervis, C. B. (1975). Family resemblances: Studies in the internal structure of categories. Cognitive Psychology, 7, 573605.CrossRefGoogle Scholar
Sapir, E. (1921). An Introduction to the Study of Speech. New York: Harcourt, Brace.Google Scholar
Smith, L. B., Colunga, E., & Yoshida, H. (2003). Making an ontology: Cross-linguistic evidence. In Rakison, D. H., & Oakes, L. M. (eds.), Early Category and Concept Development: Making Sense of the Blooming Buzzing Confusion (pp. 275302). New York: Oxford University Press.CrossRefGoogle Scholar
Smith, L. B., & Heise, D. (1992). Perceptual similarity and conceptual structure. In Burns, B. (ed.), Percepts, Concepts, and Categories (Vol. 93, pp. 233272). Amsterdam: Elsevier.Google Scholar
Smith, L. B., Jones, S. S., & Landau, B. (1992). Count nouns, adjectives, and perceptual properties in children's novel word interpretations. Developmental Psychology, 28, 273286.CrossRefGoogle Scholar
Smith, L. B., Jones, S. S., & Landau, B. (1996). Naming in young children: A dumb attentional mechanism? Cognition, 60, 143171.CrossRefGoogle ScholarPubMed
Smith, L. B., & Samuelson, L. K. (2003). Different is good: Connectionism and dynamic systems theory are complementary emergentist approaches to development. Developmental Science, 6, 434439.CrossRefGoogle Scholar
Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 8996.CrossRefGoogle ScholarPubMed
Spelke, E. S., & Kinzler, K. D. (2009). Innateness, learning, and rationality. Child Development Perspectives, 3, 9698.CrossRefGoogle ScholarPubMed
Spelke, E. S., Phillips, A., & Woodward, A. L. (1995). Infants’ knowledge of object motion and human action. In Sperber, D., Premack, D., & Premack, A. J. (eds.), Causal Cognition (pp. 150184). Oxford: Clarendon.Google Scholar
Waxman, S., & Booth, A. (2003). The origins and evolution of links between word learning and conceptual organization: New evidence from 11‐month‐olds. Developmental Science, 6, 128135.CrossRefGoogle Scholar
Waxman, S. R., & Hall, D. G. (1993). The development of a linkage between count nouns and object categories: Evidence from fifteen‐to twenty‐one‐month‐old infants. Child Development, 64, 12241241.CrossRefGoogle ScholarPubMed
Waxman, S. R., & Markow, D. B. (1995). Words as invitations to form categories: Evidence from 12-to 13-month-old infants. Cognitive Psychology, 29, 257302.CrossRefGoogle Scholar
Whorf, B. L. (1940). Science and Linguistics (pp. 207219). Indianapolis, IN: Bobbs-Merrill.Google Scholar
Whorf, B. L. (1956). Language, Thought, and Reality: Selected Writings of Benjamin Lee Whorf. Carroll, J. B. (Ed.). Cambridge, MA: Technology Press of MIT.Google Scholar
Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749750.CrossRefGoogle ScholarPubMed
Yermolayeva, Y., & Rakison, D. H. (2014). Connectionist modeling of developmental changes in infancy: Approaches, challenges, and contributions. Psychological Bulletin, 140, 224.CrossRefGoogle ScholarPubMed
Yoshida, H., & Smith, L. B. (2003). Known and novel noun extensions: Attention at two levels of abstraction. Child Development, 74, 564577.CrossRefGoogle ScholarPubMed
Younger, B. A., & Cohen, L. B. (1986). Developmental change in infants' perception of correlations among attributes. Child Development, 57, 803815.CrossRefGoogle ScholarPubMed

References

Baddeley, A. D. (1996). Exploring the central executive. The Quarterly Journal of Experimental Psychology Section A, 49, 528.CrossRefGoogle Scholar
Baddeley, A. D. (2002). Is working memory still working? European Psychologist, 7, 8597.CrossRefGoogle Scholar
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Bower, G. H. (ed.), The Psychology of Learning and Motivation: Advances in Research and Theory (Vol. 8, pp. 4789). New York: Academic Press.Google Scholar
Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in kindergarten. Child Development, 78, 647663.CrossRefGoogle ScholarPubMed
Briars, D., & Siegler, R. S. (1984). A featural analysis of preschoolers’ counting knowledge. Developmental Psychology, 20, 607618.CrossRefGoogle Scholar
Bull, R., Espy, K. A., & Wiebe, S. A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: Longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33, 205228.CrossRefGoogle ScholarPubMed
Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development Perspectives, 8, 3641.CrossRefGoogle Scholar
Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children’s mathematics ability: inhibition, switching, and working memory. Developmental Neuropsychology, 19, 273293.CrossRefGoogle ScholarPubMed
Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46, 318.CrossRefGoogle ScholarPubMed
Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14, 534541.CrossRefGoogle ScholarPubMed
Bynner, J. (1997). Basic skills in adolescents’ occupational preparation. The Career Development Quarterly, 45, 305321.CrossRefGoogle Scholar
Carey, S. (2004). Bootstrapping and the origins of concepts. Daedalus, 133, 5968.CrossRefGoogle Scholar
Carey, S. (2009). The Origin of Concepts. New York: Oxford University Press.CrossRefGoogle Scholar
Carey, S. (2011). Précis of the origin of concepts. Behavioral and Brain Sciences, 34, 113124.CrossRefGoogle ScholarPubMed
Cheung, P., Rubenson, M., & Barner, D. (2017). To infinity and beyond: Children generalize the successor function to all possible numbers years after learning to count. Cognitive Psychology, 92, 2236.CrossRefGoogle ScholarPubMed
Chu, F. W., vanMarle, K., & Geary, D. C. (2013). Quantitative deficits of preschool children at risk for mathematical learning disability. Frontiers in Psychology, 4, 195.CrossRefGoogle ScholarPubMed
Chu, F. W., vanMarle, K., & Geary, D. C. (2015). Early numerical foundations of young children’s mathematical development. Journal of Experimental Child Psychology, 132, 205212.CrossRefGoogle ScholarPubMed
Chu, F. W., vanMarle, K., & Geary, D. C. (2016). Predicting children’s reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Frontiers in Psychology, 7, 114.CrossRefGoogle ScholarPubMed
Chu, F. W., vanMarle, K., Rouder, J., & Geary, D. C. (2018). Children’s early understanding of number predicts their later problem-solving sophistication in addition. Journal of Experimental Child Psychology, 169, 7392.CrossRefGoogle ScholarPubMed
Clark, C. A. C., Pritchard, V. E., & Woodward, L. J. (2010). Preschool executive functioning abilities predict early mathematics achievement. Developmental Psychology, 46, 11761191.CrossRefGoogle ScholarPubMed
Coubart, A., Izard, V., Spelke, E. S., Marie, J., & Streri, A. (2014). Dissociation between small and large numerosities in newborn infants. Developmental Science, 17, 1122.CrossRefGoogle ScholarPubMed
Cowan, R., Donlan, C., Shepherd, D. L., Cole-Fletcher, R., Saxton, M., & Hurry, J. (2011). Basic calculation proficiency and mathematics achievement in elementary school children. Journal of Educational Psychology, 103, 786803.CrossRefGoogle Scholar
Cowan, R., & Powell, D. (2014). The contributions of domain-general and numerical factors to third-grade arithmetic skills and mathematical learning disability. Journal of Educational Psychology, 106, 214229.CrossRefGoogle ScholarPubMed
Davidson, K., Eng, K., & Barner, D. (2012). Does learning to count involve a semantic induction? Cognition, 123, 162173.CrossRefGoogle ScholarPubMed
de Hevia, M. D., Izard, V., Coubart, A., Spelke, E. S., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences, 111, 48094813.CrossRefGoogle ScholarPubMed
De Smedt, B., & Gilmore, C. K. (2011). Defective number module or impaired access? Numerical magnitude processing in first graders with mathematical difficulties. Journal of Experimental Child Psychology, 108, 278292.CrossRefGoogle ScholarPubMed
De Smedt, B., Janssen, R., Bouwens, K., Verschaffel, L., Boets, B., & Ghesquière, P. (2009). Working memory and individual differences in mathematics achievement: A longitudinal study from first grade to second grade. Journal of Experimental Child Psychology, 103, 186201.CrossRefGoogle ScholarPubMed
De Visscher, A., & Noël, M.-P. (2014). Arithmetic facts storage deficit: The hypersensitivity-to-interference in memory hypothesis. Developmental Science, 17, 434442.CrossRefGoogle ScholarPubMed
Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35, 1321.CrossRefGoogle Scholar
Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487506.CrossRefGoogle ScholarPubMed
Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., … Sexton, H. (2007). School readiness and later achievement. Developmental Psychology, 43, 14281446.CrossRefGoogle ScholarPubMed
Eason, S. H., & Levine, S. C. (2017). Math learning begins at home. Zero to Three, 37, 3544.Google Scholar
Edwards, L. A., Wagner, J. B., Simon, C. E., & Hyde, D. C. (2016). Functional brain organization for number processing in pre‐verbal infants. Developmental Science, 19, 757769.CrossRefGoogle ScholarPubMed
Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn, T. E. (2004). The contribution of executive functions to emergent mathematic skills in preschool children. Developmental Neuropsychology, 26, 465486.CrossRefGoogle ScholarPubMed
Feigenson, L., & Carey, S. (2003). Tracking individuals via object-files: Evidence from infants’ manual search. Developmental Science, 6, 568584.CrossRefGoogle Scholar
Feigenson, L., Carey, S., & Hauser, M. (2002). The representations underlying infants’ choice of more: Object-files versus analog magnitudes. Psychological Science, 13, 150156.CrossRefGoogle ScholarPubMed
Feigenson, L., Libertus, M. E., & Halberda, J. (2013). Links between the intuitive sense of number and formal mathematics ability. Child Development Perspectives, 7, 7479.CrossRefGoogle ScholarPubMed
Friso-van den Bos, I., Van Der Ven, S. H., Kroesbergen, E. H., & Van Luit, J. E. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 2944.CrossRefGoogle Scholar
Fuchs, L. S., Geary, D. C., Compton, D. L., Fuchs, D., Hamlett, C. L., Seethaler, P. M., … Schatschneider, C. (2010). Do different types of school mathematics development depend on different constellations of numerical versus general cognitive abilities? Developmental Psychology, 46, 17311746.CrossRefGoogle ScholarPubMed
Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low‐income homes: Contributions of inhibitory control. Developmental Science, 16, 136148.CrossRefGoogle ScholarPubMed
Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 4374.CrossRefGoogle ScholarPubMed
Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4, 5965.CrossRefGoogle ScholarPubMed
Gallistel, C. R., & Gelman, R. (2005). Mathematical cognition. In Holyoak, K., & Morrison, R. (eds.), The Cambridge Handbook of Thinking and Reasoning (pp. 559588). New York: Cambridge University Press.Google Scholar
Gathercole, S. E., & Pickering, S. J. (2000). Working memory deficits in children with low achievements in the national curriculum at 7 years of age. British Journal of Educational Psychology, 70, 177194.CrossRefGoogle ScholarPubMed
Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and genetic components. Psychological Bulletin, 114, 345362.CrossRefGoogle ScholarPubMed
Geary, D. C. (2005). The Origin of Mind: Evolution of Brain, Cognition, and General Intelligence. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Geary, D. C. (2011). Cognitive predictors of achievement growth in mathematics: A 5-year longitudinal study. Developmental Psychology, 47, 1539.CrossRefGoogle ScholarPubMed
Geary, D. C., Bailey, D. H., & Hoard, M. K. (2009). Predicting mathematical achievement and mathematical learning disability with a simple screening tool: The number sets test. Journal of Psychoeducational Assessment, 27, 265279.CrossRefGoogle ScholarPubMed
Geary, D. C., Brown, S. C., & Samaranayake, V. A. (1991). Cognitive addition: A short longitudinal study of strategy choice and speed-of-processing differences in normal and mathematically disabled children. Developmental Psychology, 27, 787797.CrossRefGoogle Scholar
Geary, D. C., Hoard, M. K., Byrd‐Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 13431359.CrossRefGoogle ScholarPubMed
Geary, D. C., Hoard, M. K., & Nugent, L. (2012b). Independent contributions of the central executive, intelligence, and in-class attentive behavior to developmental change in the strategies used to solve addition problems. Journal of Experimental Child Psychology, 113, 4965.CrossRefGoogle ScholarPubMed
Geary, D. C., Hoard, M. K., Nugent, L., & Bailey, D. H. (2013). Adolescents’ functional numeracy is predicted by their school entry number system knowledge. PLoS ONE, 8, e54651.CrossRefGoogle ScholarPubMed
Geary, D. C., & Moore, A. M. (2016). Cognitive and brain systems underlying early mathematical development. Progress in Brain Research, 227, 75103.CrossRefGoogle ScholarPubMed
Geary, D. C., Nicholas, A., Li, Y., & Sun, J. (2017). Developmental change in the influence of domain-general abilities and domain-specific knowledge on mathematics achievement: An eight-year longitudinal study. Journal of educational Psychology, 109, 680693.CrossRefGoogle ScholarPubMed
Geary, D. C., & vanMarle, K. (2016). Young children’s core symbolic and nonsymbolic quantitative knowledge in the prediction of later mathematics achievement. Developmental Psychology, 52, 21302144.CrossRefGoogle ScholarPubMed
Geary, D. C., & vanMarle, K. (2018). Growth of symbolic number knowledge accelerates after children understand cardinality. Cognition, 177, 6978.CrossRefGoogle ScholarPubMed
Geary, D. C., vanMarle, K., Chu, F. W., Rouder, J., Hoard, M. K., & Nugent, L. (2018). Early conceptual understanding of cardinality predicts superior school-entry number-system knowledge. Psychological Science, 29, 191205.CrossRefGoogle ScholarPubMed
Gelman, R. (1972). Logical capacity of very young children: Number invariance rules. Child Development, 43, 7590.CrossRefGoogle Scholar
Gelman, R. (1993). A rational-constructivist account of early learning about numbers and objects. Learning and Motivation, 30, 6196.Google Scholar
Gelman, R., & Gallistel, C. R. (1978). The Child’s Understanding of Number. Cambridge, MA: Harvard University Press.Google Scholar
Gelman, R., & Greeno, J. G. (1989). On the nature of competence: Principles for understanding in a domain. In Resnick, L. B. (ed.), Knowing and Learning: Issues for a Cognitive Science of Instruction (pp. 125186). Hillsdale, NJ: Erlbaum.Google Scholar
Gelman, R., & Meck, E. (1983). Preschoolers’ counting: Principles before skill. Cognition, 13, 343359.CrossRefGoogle ScholarPubMed
Gilmore, C. K., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., & Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS ONE, 8, e67374.CrossRefGoogle Scholar
Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394406.CrossRefGoogle ScholarPubMed
Ginsburg, H. P., & Baroody, A. J. (2003). Test of Early Mathematical Ability (3rd ed.). Austin, TX: Pro-Ed.Google Scholar
Gunderson, E. A., Spaepen, E., & Levine, S. C. (2015). Approximate number word knowledge before the cardinal principle. Journal of Experimental Child Psychology, 130, 3555.CrossRefGoogle ScholarPubMed
Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44, 1457.CrossRefGoogle ScholarPubMed
Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665.CrossRefGoogle ScholarPubMed
Huttenlocher, J., Jordan, N. C., & Levine, S. C. (1992). A mental model for early arithmetic. Journal of Experimental Psychology: General, 123, 284296.CrossRefGoogle Scholar
Hyde, D. C. (2011). Two systems of non-symbolic numerical cognition. Frontiers in Human Neuroscience, 5, 18.CrossRefGoogle ScholarPubMed
Iuculano, T., Tang, J., Hall, C. W., & Butterworth, B. (2008). Core information processing deficits in developmental dyscalculia and low numeracy. Developmental Science, 11, 669680.CrossRefGoogle ScholarPubMed
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy Sciences (USA), 106, 1038210385.CrossRefGoogle ScholarPubMed
Kahneman, D., Treisman, A., & Gibbs, B. J. (1992). The reviewing of object files: Object specific integration of information. Cognitive Psychology, 24, 174219.CrossRefGoogle ScholarPubMed
Klibanoff, R. S., Levine, S. C., Huttenlocher, J., Vasilyeva, M., & Hedges, L. V. (2006). Preschool children’s mathematical knowledge: The effect of teacher “math talk.” Developmental Psychology, 42, 5969.CrossRefGoogle ScholarPubMed
Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395438.CrossRefGoogle ScholarPubMed
Lee, M. D., & Sarnecka, B. W. (2011). Number-knower levels in young children: Insights from Bayesian modeling. Cognition, 120, 391402.CrossRefGoogle ScholarPubMed
Leslie, A. M., Gallistel, C. R., & Gelman, R. (2007). Where integers come from. In Carruthers, P., Laurence, S., & Stich, S. (eds.), The Innate Mind, Vol. 3: Foundations and the Future (pp. 109138). New York: Oxford University Press.Google Scholar
Leslie, A. M., Gelman, R., & Gallistel, C. R. (2008). The generative basis of natural number concepts. Trends in Cognitive Sciences, 12, 213218.CrossRefGoogle ScholarPubMed
Libertus, M. E. (2015). The role of intuitive approximation skills for school math abilities. Mind, Brain, and Education, 9, 112120.CrossRefGoogle Scholar
Libertus, M. E. (2019). Understanding the link between the approximate number system and math abilities. In Geary, D. C., Berch, D. B., & Mann-Koepke, K. (eds.), Mathematical Cognition and Learning: Cognitive Foundations for Improving Mathematical Learning, (Vol. 5, pp. 91106). New York: Elsevier.CrossRefGoogle Scholar
Libertus, M. E., & Brannon, E. M. (2010). Stable individual differences in number discrimination in infancy. Developmental Science, 13, 900906.CrossRefGoogle ScholarPubMed
Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14, 12921300.CrossRefGoogle ScholarPubMed
Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense: Large number discrimination in human infants. Psychological Science, 14, 396401.CrossRefGoogle ScholarPubMed
Lyons, I. M., & Beilock, S. L. (2011). Numerical ordering ability mediates the relation between number-sense and arithmetic competence. Cognition, 121, 256261.CrossRefGoogle ScholarPubMed
Lyons, I. M., & Beilock, S. L. (2013). Ordinality and the nature of symbolic numbers. Journal of Neuroscience, 33, 1705217061.CrossRefGoogle ScholarPubMed
Lyons, I. M., Price, G. R., Vaessen, A., Blomert, L., & Ansari, D. (2014). Numerical predictors of arithmetic success in grades 1–6. Developmental Science, 17, 714726.CrossRefGoogle ScholarPubMed
Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82, 12241237.CrossRefGoogle ScholarPubMed
Moore, A. M., vanMarle, K., & Geary, D. C. (2016). Kindergartners’ fluent processing of symbolic numerical magnitude is predicted by their cardinal knowledge and implicit understanding of arithmetic 2 years earlier. Journal of Experimental Child Psychology, 150, 3147.CrossRefGoogle Scholar
Nosworthy, N., Bugden, S., Archibald, L., Evans, B., & Ansari, D. (2013). A two-minute paper-and-pencil test of symbolic and nonsymbolic numerical magnitude processing explains variability in primary school children’s arithmetic competence. PLoS ONE, 8, e67918.CrossRefGoogle ScholarPubMed
Parsons, S., & Bynner, J. (1997). Numeracy and employment. Education and Training, 39, 4351.CrossRefGoogle Scholar
Peng, P., & Fuchs, D. (2016). A meta-analysis of working memory deficits in children with learning difficulties: Is there a difference between verbal domain and numerical domain? Journal of Learning Disabilities, 49, 320.CrossRefGoogle Scholar
Piaget, J. (1952). The Child’s Concept of Number. London: Routledge & Kegan Paul.Google Scholar
Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., ... Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116, 3341.CrossRefGoogle ScholarPubMed
Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17, R1042R1043.CrossRefGoogle ScholarPubMed
Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision, 3, 179197.CrossRefGoogle ScholarPubMed
Ramani, G. B., Rowe, M. L., Eason, S. H., & Leech, K. A. (2015). Math talk during informal learning activities in Head Start families. Cognitive Development, 35, 1533.CrossRefGoogle Scholar
Ritchie, S. J., & Bates, T. C. (2013). Enduring links from childhood mathematics and reading achievement to adult socioeconomic status. Psychological Science, 24, 13011308.CrossRefGoogle ScholarPubMed
Rivera-Batiz, F. (1992). Quantitative literacy and the likelihood of employment among young adults in the United States. Journal of Human Resources, 27, 313328.CrossRefGoogle Scholar
Rose, H., & Betts, J. R. (2004). The effect of high school courses on earnings. Review of Economics and Statistics, 86, 497513.CrossRefGoogle Scholar
Rousselle, L., & Noël, M.-P. (2007). Basic numerical skills in children with mathematical learning disabilities: A comparison of symbolic vs. non-symbolic number magnitude processing. Cognition, 102, 361395.CrossRefGoogle ScholarPubMed
Sasanguie, D., Defever, E., Maertens, B., & Reynvoet, B. (2014). The approximate number system is not predictive for symbolic number processing in kindergarteners. The Quarterly Journal of Experimental Psychology, 67, 271280.CrossRefGoogle Scholar
Scholl, B. J. (2001). Objects and attention: The state of the art. Cognition, 80, 146.CrossRefGoogle ScholarPubMed
Shalev, R. S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: A prospective six-year follow-up. Developmental Medicine and Child Neurology, 47, 121125.CrossRefGoogle ScholarPubMed
Siegel, L. S., & Ryan, E. B. (1989). The development of working memory in normally achieving and subtypes of learning disabled children. Child Development, 60, 973980.CrossRefGoogle ScholarPubMed
Siegler, R. S. (1988). Individual differences in strategy choices: Good students, not-so-good students, and perfectionists. Child Development, 59, 833851.CrossRefGoogle ScholarPubMed
Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428444.CrossRefGoogle ScholarPubMed
Soltész, F., Szűcs, D., & Szűcs, L. (2010). Relationships between magnitude representation, counting and memory in 4-to 7-year-old children: A developmental study. Behavioral and Brain Functions, 6, 13.CrossRefGoogle Scholar
Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences, 110, 1811618120.CrossRefGoogle ScholarPubMed
Swanson, H. L., & Sachse-Lee, C. (2001). Mathematical problem solving and working memory in children with learning disabilities: Both executive and phonological processes are important. Journal of Experimental Child Psychology, 79, 294321.CrossRefGoogle ScholarPubMed
Vanbinst, K., & De Smedt, B. (2016). Individual differences in children’s mathematics achievement: The roles of symbolic numerical magnitude processing and domain-general cognitive functions. Progress in Brain Research, 227, 105130.CrossRefGoogle ScholarPubMed
vanMarle, K. (2013). Infants use different mechanisms to make small and large number ordinal judgments. Journal of Experimental Child Psychology, 114, 102110.CrossRefGoogle ScholarPubMed
vanMarle, K., Chu, F. W., Li, Y., & Geary, D. C. (2014). Acuity of the approximate number system and preschoolers’ quantitative development. Developmental Science, 17, 492505.CrossRefGoogle Scholar
vanMarle, K., Chu, F. W., Mou, Y., Seok, J. H., Rouder, J., & Geary, D. C. (2018). Attaching meaning to the number words: Contributions of the object tracking and approximate number systems. Developmental Science, 21, e12495.CrossRefGoogle Scholar
Walberg, H. J. (1984). Improving the productivity of America’s schools. Educational Leadership, 41, 1927.Google Scholar
Wechsler, D. (2001). Wechsler Individual Achievement Test – Abbreviated II. San Antonio, TX: Psychological Corp.Google Scholar
Wechsler, D. (2002). Wechsler Preschool and Primary Scale of Intelligence (3rd ed.). San Antonio, TX: Psychological Corp.Google Scholar
Wood, J. N., & Spelke, E. S. (2005). Infants’ enumeration of actions: Numerical discrimination and its signature limits. Developmental Science, 8, 173181.CrossRefGoogle ScholarPubMed
Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155193.CrossRefGoogle ScholarPubMed
Wynn, K. (1992). Children’s acquisition of the number words and the counting system. Cognitive Psychology, 24, 220251.CrossRefGoogle Scholar
Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, B1B11.CrossRefGoogle Scholar

References

Adrián, J. E., Clemente, R. A., & Villanueva, L. (2007). Mothers’ use of cognitive state verbs in picture-book reading and the development of children’s understanding of mind: A longitudinal study. Child Development, 78, 10521067.CrossRefGoogle ScholarPubMed
Antilici, F., & Baillargeon, R. (2020). 2.5-year-olds pass an explicit unexpected-transfer false-belief task when processing demands are reduced. Paper presented at the Biennial Meeting of the International Congress of Infant Studies, July 2020, Glasgow, Scotland.Google Scholar
Apperly, I. A., & Butterfill, S. A. (2009). Do humans have two systems to track beliefs and belief-like states? Psychological Review, 116, 953970.CrossRefGoogle ScholarPubMed
Baillargeon, R., Buttelmann, D., & Southgate, V. (2018). Invited Commentary: Interpreting failed replications of early false-belief findings: Methodological and theoretical considerations. Cognitive Development, 46, 112124.CrossRefGoogle Scholar
Baillargeon, R., He, Z., Setoh, P., Scott, R. M., Sloane, S., & Yang, D. Y. J. (2013). False-belief understanding and why it matters. In Mahzarin, R., & Gelman, S. A. (eds.), Navigating the Social World: What Infants, Children, and Other Species Can Teach Us (pp. 8895). Oxford: Oxford University Press.Google Scholar
Baillargeon, R., Scott, R. M., & Bian, L. (2016). Psychological reasoning in infancy. Annual Review of Psychology, 67, 159186.CrossRefGoogle ScholarPubMed
Baillargeon, R., Scott, R. M., He, Z., Sloane, S., Setoh, P., Jin, K., … Bian, L. (2015). Psychological and sociomoral reasoning in infancy. In Mikulincer, M., Shaver, P. R. (eds.), Borgida, E., & Bargh, J. A. (assoc. eds.), APA Handbook of Personality and Social Psychology: Vol.1. Attitudes and Social Cognition (pp. 79150). Washington, DC: American Psychological Association.Google Scholar
Bardi, L., Desmet, C., Nijhof, A., Wiersema, J. R., & Brass, M. (2017). Brain activation for spontaneous and explicit false belief tasks overlaps: New fMRI evidence on belief processing and violation of expectation. Social Cognitive and Affective Neuroscience, 12, 391400.Google ScholarPubMed
Baron-Cohen, S., Leslie, A. M., & Frith, U. (1985). Does the autistic child have a “theory of mind”? Cognition, 21, 3746.CrossRefGoogle ScholarPubMed
Barrett, H. C., Broesch, T., Scott, R. M., He, Z., Baillargeon, R., Wu, D., … Laurence, S. (2013). Early false-belief understanding in traditional non-Western societies. Proceedings of the Royal Society of London B: Biological Sciences, 280, 20122654.Google ScholarPubMed
Bartsch, K. (1996). Between desires and beliefs: Young children’s action predictions. Child Development, 67, 16711685.CrossRefGoogle ScholarPubMed
Begus, K., & Southgate, V. (2012). Infant pointing serves an interrogative function. Developmental Science, 15, 611617.CrossRefGoogle ScholarPubMed
Bergelson, E., & Swingley, D. (2012). At 6–9 months, human infants know the meanings of many common nouns. Proceedings of the National Academy of Sciences, USA, 109, 32533258.CrossRefGoogle ScholarPubMed
Bian, L., He, Z., & Baillargeon, R. (2017). False-belief understanding in young infants: Evidence from anticipatory-looking and violation-of-expectation measures. Paper presented at the Biennial Meeting of the Society for Research in Child Development, April 2017, Austin, TX.Google Scholar
Bíro, S., Verschoor, S., & Coenen, L. (2011). Evidence for a unitary goal concept in 12-month-old infants. Developmental Science, 14, 12551260.CrossRefGoogle ScholarPubMed
Buresh, J. S., & Woodward, A. L. (2007). Infants track action goals within and across agents. Cognition, 104, 287314.CrossRefGoogle ScholarPubMed
Butler, A. G. (2013). Exploring the role of social reasoning and self-efficacy in the mathematics problem-solving performance of lower-and higher-income children. Journal of Educational Research and Practice, 3, 93119.Google Scholar
Buttelmann, D., Carpenter, M., & Tomasello, M. (2009). Eighteen-month-old infants show false belief understanding in an active helping paradigm. Cognition, 112, 337342.CrossRefGoogle Scholar
Buttelmann, F., Suhrke, J., & Buttelmann, D. (2015). What you get is what you believe: Eighteen-month-olds demonstrate belief understanding in an unexpected-identity task. Journal of Experimental Child Psychology, 131, 94103.CrossRefGoogle Scholar
Butterfill, S., & Apperly, I. A. (2013). How to construct a minimal theory of mind. Mind and Language, 28, 606637.CrossRefGoogle Scholar
Butterworth, G., & Jarrett, N. (1991). What minds have in common is space: Spatial mechanisms serving joint visual attention in infancy. British Journal of Developmental Psychology, 9, 5572.CrossRefGoogle Scholar
Carlson, S. M., & Moses, L. J. (2001). Individual differences in inhibitory control and children’s theory of mind. Child Development, 72, 10321053.CrossRefGoogle ScholarPubMed
Carruthers, P. (2016). Two systems for mindreading? Review of Philosophy and Psychology, 7, 141162.CrossRefGoogle Scholar
Carruthers, P. (2018). Young children flexibly attribute mental states to others. Proceedings of the National Academy of Sciences, USA, 115, 1135111353.CrossRefGoogle ScholarPubMed
Cesana-Arlotti, N., Kovács, Á. M., & Téglás, E. (2020). Infants recruit logic to learn about the social world. Nature Communications, 11, 5999.CrossRefGoogle Scholar
Choi, Y. J., & Luo, Y. (2015). 13-month-olds’ understanding of social interactions. Psychological Science, 26, 274283.CrossRefGoogle ScholarPubMed
Choi, Y., Luo, Y., & Baillargeon, R. (in press). Can 5-month-old infants consider the perspective of a novel eyeless agent? New evidence for early mentalistic reasoning. Child Development.Google Scholar
Choi, Y. J., Mou, Y., & Luo, Y. (2018). How do 3-month-old infants attribute preferences to a human agent? Journal of Experimental Child Psychology, 172, 96106.CrossRefGoogle ScholarPubMed
Cowell, J. M., Lee, K., Malcolm-Smith, S., Selcuk, B., Zhou, X., & Decety, J. (2017). The development of generosity and moral cognition across five cultures. Developmental Science, 20, e12403.CrossRefGoogle ScholarPubMed
Crivello, C., & Poulin-Dubois, D. (2018). Infants’ false belief understanding: A non-replication of the helping task. Cognitive Development, 46, 5157.CrossRefGoogle Scholar
Csibra, G. (2008). Goal attribution to inanimate agents by 6.5-month-old infants. Cognition, 107, 705717.CrossRefGoogle ScholarPubMed
Csibra, G., Bíró, S., Koós, O., & Gergely, G. (2003). One-year-old infants use teleological representations of actions productively. Cognitive Science, 27, 111133.Google Scholar
Csibra, G., & Gergely, G. (2009). Natural pedagogy. Trends in Cognitive Sciences, 13, 148153.CrossRefGoogle ScholarPubMed
Csibra, G., Gergely, G., Bíró, S., Koos, O., & Brockbank, M. (1999). Goal attribution without agency cues: The perception of ‘pure reason’ in infancy. Cognition, 72, 237267.CrossRefGoogle ScholarPubMed
Cutting, A. L., & Dunn, J. (1999). Theory of mind, emotion understanding, language, and family background: Individual differences and interrelations. Child Development, 70, 853865.CrossRefGoogle ScholarPubMed
de Villiers, J. & de Villiers, P. (2003). Language for thought: Coming to understand false beliefs. In Gentner, D., & Goldin-Meadow, S. (eds.), Language in Mind: Advances in the Study of Language and Thought (pp. 335384). Harvard, MA: MIT Press.CrossRefGoogle Scholar
Dennett, D. C. (1987). The Intentional Stance. Cambridge, MA: MIT Press.Google Scholar
Devine, R. T., & Hughes, C. (2014). Relations between false belief understanding and executive function in early childhood: A meta-analysis. Child Development, 85, 17771794.CrossRefGoogle ScholarPubMed
Devine, R. T., & Hughes, C. (2018). Family correlates of false belief understanding in early childhood: A meta-analysis. Child Development, 89, 971987.CrossRefGoogle ScholarPubMed
Dörrenberg, S., Rakoczy, H., & Liszkowski, U. (2018). How (not) to measure infant Theory of Mind: Testing the replicability and validity of four non-verbal measures. Cognitive Development, 46, 1230.CrossRefGoogle Scholar
Duh, S., Paik, J. H., Miller, P. H., Gluck, S. C., Li, H., & Himelfarb, I. (2016). Theory of mind and executive function in Chinese preschool children. Developmental Psychology, 52, 582591.CrossRefGoogle ScholarPubMed
Dunfield, K. A., & Kuhlmeier, V. A. (2010). Intention-mediated selective helping in infancy. Psychological Science, 21, 523527.CrossRefGoogle ScholarPubMed
Egyed, K., Király, I., & Gergely, G. (2013). Communicating shared knowledge in infancy. Psychological Science, 24, 13481353.CrossRefGoogle ScholarPubMed
Ensor, R., & Hughes, C. (2008). Content or connectedness? Mother–child talk and early social understanding. Child Development, 79, 201216.CrossRefGoogle ScholarPubMed
Forgács, B., Gervain, J., Parise, E., Csibra, G., Gergely, G., Baross, J., & Király, I. (2020). Electrophysiological investigation of infants’ understanding of understanding. Developmental Cognitive Neuroscience, 43, 100783.CrossRefGoogle Scholar
Forgács, B., Parise, E., Csibra, G., Gergely, G., Jacquey, L., & Gervain, J. (2019). Fourteen-month-old infants track the language comprehension of communicative partners. Developmental Science, 22, e12751.CrossRefGoogle ScholarPubMed
Garnham, W. A., & Ruffman, T. (2001). Doesn’t see, doesn’t know: Is anticipatory looking really related to understanding or belief? Developmental Science, 4, 94100.CrossRefGoogle Scholar
Gergely, G., & Csibra, G. (2003). Teleological reasoning in infancy: The naive theory of rational action. Trends in Cognitive Sciences, 7, 287292.CrossRefGoogle Scholar
Gergely, G., Nádasdy, Z., Csibra, G., & Bíró, S. (1995). Taking the intentional stance at 12 months of age. Cognition, 56, 165193.CrossRefGoogle ScholarPubMed
Glenwright, M., Scott, R. M., Bilevicius, E., Pronovost, M., & Hanlon-Dearman, A. (2021). Children with autism spectrum disorder can attribute false beliefs in a spontaneous-response preferential-looking task. Frontiers in Communication, 6, 146.CrossRefGoogle Scholar
Gopnik, A., & Astington, J. W. (1988). Children’s understanding of representational change and its relation to the understanding of false belief and the appearance-reality distinction. Child Development, 59, 2637.CrossRefGoogle Scholar
Gopnik, A., & Wellman, H. M. (1994). The theory theory. In Hirschfeld, L. A., & Gelman, S. A. (eds.), Mapping the Mind: Domain Specificity in Cognition and Culture (pp. 257293). New York: Cambridge University Press.CrossRefGoogle Scholar
Grosse Wiesmann, C. G., Friederici, A. D., Disla, D., Steinbeis, N., & Singer, T. (2018). Longitudinal evidence for 4-year-olds’ but not 2-and 3-year-olds’ false belief-related action anticipation. Cognitive Development, 46, 5868.CrossRefGoogle ScholarPubMed
Grosso, S. S., Schuwerk, T., Kaltefleiter, L. J., & Sodian, B. (2019). 33-month-old children succeed in a false-belief task with reduced processing demands: A replication of Setoh et al. (2016). Infant Behavior and Development, 54, 151155.CrossRefGoogle Scholar
Hamlin, J. K. (2013). Failed attempts to help and harm: Intention versus outcome in preverbal infants’ social evaluations. Cognition, 18, 451474.CrossRefGoogle Scholar
Hamlin, J. K., & Wynn, K. (2011). Young infants prefer prosocial to antisocial others. Cognitive Development, 26, 3039.CrossRefGoogle ScholarPubMed
Hamlin, J. K., Wynn, K., & Bloom, P. (2007). Social evaluation by preverbal infants. Nature, 450, 557559.CrossRefGoogle ScholarPubMed
Hansen, M. B. (2010). If you know something, say something: Young children’s problem with false beliefs. Frontiers in Psychology, 1, 23.Google ScholarPubMed
Hayne, H. (2004). Infant memory development: Implications for childhood amnesia. Developmental Review, 24, 3373.CrossRefGoogle Scholar
He, Z., Bolz, M., & Baillargeon, R. (2011). False-belief understanding in 2.5-year-olds: Evidence from violation-of-expectation change-of-location, and unexpected-contents tasks. Developmental Science, 14, 292305.CrossRefGoogle Scholar
He, Z., Bolz, M., & Baillargeon, R. (2012). 2.5-year-olds succeed at a verbal anticipatory-looking false-belief task. British Journal of Developmental Psychology, 30, 1429.CrossRefGoogle Scholar
Helming, K. A., Strickland, B., & Jacob, P. (2016). Solving the puzzle about early belief-ascription. Mind & Language, 31, 438469.CrossRefGoogle Scholar
Henderson, A. M., & Woodward, A. L. (2012). Nine-month-old infants generalize object labels, but not object preferences across individuals. Developmental Science, 15, 641652.CrossRefGoogle Scholar
Hespos, S. J., & Baillargeon, R. (2001). Infants’ knowledge about occlusion and containment events: A surprising discrepancy. Psychological Science, 12, 141147.CrossRefGoogle ScholarPubMed
Heyes, C. (2014). False belief in infancy: A fresh look. Developmental Science, 17, 647659.CrossRefGoogle ScholarPubMed
Hofmann, S. G., Doan, S. N., Sprungc, M., Wilson, A., Ebesutanie, C., Andrews, L. A.Harris, P. L. (2016). Training children’s theory-of-mind: A meta-analysis of controlled studies. Cognition, 150, 200212.CrossRefGoogle ScholarPubMed
Holmes, H. A., Black, C., & Miller, S. A. (1996). A cross-task comparison of false belief understanding in a Head Start population. Journal of Experimental Child Psychology, 63, 263285.CrossRefGoogle Scholar
Hughes, C., Adlam, A., Happé, F., Jackson, J., Taylor, A., & Caspi, A. (2000). Good test–retest reliability for standard and advanced false-belief tasks across a wide range of abilities. Journal of Child Psychology and Psychiatry, 41, 483490.CrossRefGoogle ScholarPubMed
Hyde, D. C., Aparicio Betancourt, M., & Simon, C. E. (2015). Human temporal‐parietal junction spontaneously tracks others’ beliefs: A functional near-infrared spectroscopy study. Human Brain Mapping, 36, 48314846.CrossRefGoogle ScholarPubMed
Hyde, D. C., Simon, C. E., Ting, F., & Nikolaeva, J. I. (2018). Functional organization of the temporal–parietal junction for theory of mind in preverbal infants: A near-infrared spectroscopy study. Journal of Neuroscience, 38, 42644274.CrossRefGoogle ScholarPubMed
Imuta, K., Henry, J. D., Slaughter, V., Selcuk, B. & Ruffman, T. (2016). Theory of mind and prosocial behavior in childhood: A meta-analytic review. Developmental Psychology, 52, 11921205.CrossRefGoogle ScholarPubMed
Jin, K. S., Houston, J. L., Baillargeon, R., Groh, A. M., & Roisman, G. I. (2018). Young infants expect an unfamiliar adult to comfort a crying baby: Evidence from a standard violation-of-expectation task and a novel infant-triggered-video task. Cognitive Psychology, 102, 120.CrossRefGoogle Scholar
Jin, K. S., Kim, Y., Song, M., Kim, Y. J., Lee, H., Lee, Y., … Song, H. J. (2019). Fourteen-to eighteen-month-old infants use explicit linguistic information to update an agent’s false belief. Frontiers in Psychology, 10, 2508.CrossRefGoogle ScholarPubMed
Jin, K. S., & Song, H. J. (2017). You changed your mind! Infants interpret a change in word as signaling a change in an agent’s goals. Journal of Experimental Child Psychology, 162, 149162.CrossRefGoogle Scholar
Johnson, S. C., Shimizu, Y. A., & Ok, S. J. (2007). Actors and actions: The role of agent behavior in infants’ attribution of goals. Cognitive Development, 22, 310322.CrossRefGoogle ScholarPubMed
Kamewari, K., Kato, M., Kanda, T., Ishiguro, H., & Hiraki, K. (2005). Six-and-a-half-month-old children positively attribute goals to human action and to humanoid-robot motion. Cognitive Development, 20, 303320.CrossRefGoogle Scholar
Kampis, D., & Hamlin, K. (2019). ManyBabies 2: Theory of mind in infancy. Paper presented at the Biennial Meeting of the Society for Research in Child Development, March 2019, Baltimore, MD.Google Scholar
Kampis, D., Parise, E., Csibra, G., & Kovács, Á. M. (2015). Neural signatures for sustaining object representations attributed to others in preverbal human infants. Proceedings of the Royal Society B: Biological Sciences, 282, 20151683.CrossRefGoogle ScholarPubMed
Kim, E. Y., & Song, H. J. (2015). Six-month-olds actively predict others’ goal-directed actions. Cognitive Development, 33, 113.CrossRefGoogle Scholar
Király, I., Oláh, K., Csibra, G., & Kovács, Á. M. (2018). Retrospective attribution of false beliefs in 3-year-old children. Proceedings of the National Academy of Sciences, USA, 115, 1147711482.CrossRefGoogle ScholarPubMed
Kloo, D., Kristen-Antonow, S., & Sodian, B. (2020). Progressing from an implicit to an explicit false belief understanding: A matter of executive control? International Journal of Behavioral Development, 44, 107–115.CrossRefGoogle Scholar
Knudsen, B., & Liszkowski, U. (2012). 18-month-olds predict specific action mistakes through attribution of false belief, not ignorance, and intervene accordingly. Infancy, 17, 672691.CrossRefGoogle Scholar
Koenig, M. A., & Woodward, A. L. (2010). Sensitivity of 24-month-olds to the prior inaccuracy of the source: Possible mechanisms. Developmental Psychology, 46, 815826.CrossRefGoogle Scholar
Kulke, L., Reiß, M., Krist, H., & Rakoczy, H. (2018a). How robust are anticipatory looking measures of Theory of Mind? Replication attempts across the life span. Cognitive Development, 46, 97111.CrossRefGoogle Scholar
Kulke, L., von Duhn, B., Schneider, D., & Rakoczy, H. (2018b). Is implicit theory of mind a real and robust phenomenon? Results from a systematic replication study. Psychological Science, 29, 888900.CrossRefGoogle ScholarPubMed
Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621647.CrossRefGoogle ScholarPubMed
Lecce, S., & Hughes, C. (2010). The Italian job?: Comparing theory of mind performance in British and Italian children. British Journal of Developmental Psychology, 28, 747766.CrossRefGoogle ScholarPubMed
Leslie, A. M. (1987). Pretense and representation: The origins of “theory of mind.” Psychological Review, 94, 412426.CrossRefGoogle Scholar
Leslie, A. M. (1994). ToMM, ToBy, and agency: Core architecture and domain specificity. In Hirschfeld, L. A., & Gelman, S. A. (eds.), Mapping the Mind: Domain Specificity in Cognition and Culture (pp. 119148). New York: Cambridge University Press.CrossRefGoogle Scholar
Leslie, A. M., Friedman, O., & German, T. P. (2004). Core mechanisms in ‘theory of mind’. Trends in Cognitive Sciences, 8, 528533.CrossRefGoogle ScholarPubMed
Liszkowski, U., Carpenter, M., & Tomasello, M. (2008). Twelve-month-olds communicate helpfully and appropriately for knowledgeable and ignorant partners. Cognition, 108, 732739.CrossRefGoogle ScholarPubMed
Liu, D., Wellman, H. M., Tardif, T., & Sabbagh, M. A. (2008). Theory of mind development in Chinese children: A meta-analysis of false-belief understanding across cultures and languages. Developmental Psychology, 44, 523531.CrossRefGoogle ScholarPubMed
Liu, S., & Sun, R. (2018). Do great minds prefer alike? Thirteen-month-old infants generalize personal preferences across objects of like kind but not across people. Frontiers in Psychology, 9, 2636.CrossRefGoogle Scholar
Low, J., Apperly, I. A., Butterfill, S. A., & Rakoczy, H. (2016). Cognitive architecture of belief reasoning in children and adults: A primer on the two-systems account. Child Development Perspectives, 10, 184189.CrossRefGoogle Scholar
Low, J., Drummond, W., Walmsley, A., & Wang, B. (2014). Representing how rabbits quack and competitors act: Limits on preschoolers’ efficient ability to track perspective. Child Development, 85, 15191534.CrossRefGoogle ScholarPubMed
Low, J., & Watts, J. (2013). Attributing false beliefs about object identity reveals a signature blind spot in humans’ efficient mind-reading system. Psychological Science, 24, 305311.CrossRefGoogle ScholarPubMed
Luo, Y. (2011). Three-month-old infants attribute goals to a non-human agent. Developmental Science, 14, 453460.CrossRefGoogle ScholarPubMed
Luo, Y., & Baillargeon, R. (2005). Can a self-propelled box have a goal? Psychological reasoning in 5-month-old infants. Psychological Science, 16, 601608.CrossRefGoogle ScholarPubMed
Luo, Y., & Baillargeon, R. (2007). Do 12.5-month-old infants consider what objects others can see when interpreting their actions? Cognition, 105, 489512.CrossRefGoogle ScholarPubMed
Luo, Y., & Johnson, S. C. (2009). Recognizing the role of perception in action at 6 months. Developmental Science, 12, 142149.CrossRefGoogle ScholarPubMed
Ma, F., Xu, F., Heyman, G. D., & Lee, K. (2011). Chinese children’s evaluations of white lies: Weighing the consequences for recipients. Journal of Experimental Child Psychology, 108, 308321.CrossRefGoogle ScholarPubMed
Margoni, F., Baillargeon, R., & Surian, L. (2018). Infants distinguish between leaders and bullies. Proceedings of the National Academy of Sciences, USA, 115, E8835E8843.CrossRefGoogle ScholarPubMed
Margoni, F., & Surian, L. (2020). Conceptual continuity in the development of moral judgment. Journal of Experimental Child Psychology, 194, 104812.CrossRefGoogle ScholarPubMed
Martin, A., Onishi, K. H., & Vouloumanos, A. (2012). Understanding the abstract role of speech in communication at 12 months. Cognition, 123, 5060.CrossRefGoogle ScholarPubMed
Mayer, A., & Träuble, B. E. (2013). Synchrony in the onset of mental state understanding across cultures? A study among children in Samoa. International Journal of Behavioral Development, 37, 2128.CrossRefGoogle Scholar
McAlister, A., & Peterson, C. C. (2006). Mental playmates: Siblings, executive functioning, and theory of mind. British Journal of Developmental Psychology, 24, 733751.CrossRefGoogle Scholar
Meltzoff, A. N. (1995). Understanding the intentions of others: Re-enactment of intended acts by 18-month-old children. Developmental Psychology, 31, 838850.CrossRefGoogle ScholarPubMed
Meristo, M., & Surian, L. (2013). Do infants detect indirect reciprocity? Cognition, 129, 102113.CrossRefGoogle ScholarPubMed
Milligan, K., Astington, J. W., & Dack, L. A. (2007). Language and theory of mind: Meta-analysis of the relation between language ability and false-belief understanding. Child Development, 78, 622646.CrossRefGoogle ScholarPubMed
Moll, H., Khalulyan, A., & Moffett, L. (2017). 2.5-year-olds express suspense when others approach reality with false expectations. Child Development, 88, 114122.CrossRefGoogle Scholar
Naito, M., & Koyama, K. (2006). The development of false-belief understanding in Japanese children: Delay and difference? International Journal of Behavioral Development, 30, 290304.CrossRefGoogle Scholar
Onishi, K. H., & Baillargeon, R. (2005). Do 15-month-old infants understand false beliefs? Science, 308, 255258.CrossRefGoogle ScholarPubMed
Perner, J. (1991). Understanding the Representational Mind. Cambridge, MA: MIT Press.Google Scholar
Perner, J. (2010). Who took the cog out of cognitive science? Mentalism in an era of anti-cognitivism. In Frensch, P. A., & Schwarzer, R. (eds.), Cognition and Neuropsychology: International Perspectives on Psychological Science (Vol. 1, pp. 241261). Hove: Psychology Press.Google Scholar
Perner, J., Leekam, S. R., & Wimmer, H. (1987). Three-year-olds’ difficulty with false belief: The case for a conceptual deficit. British Journal of Developmental Psychology, 5, 125137.CrossRefGoogle Scholar
Peterson, C. C., Wellman, H. M., & Slaughter, V. (2012). The mind behind the message: Advancing theory-of-mind scales for typically developing children, and those with deafness, autism, or Asperger syndrome. Child Development, 83, 469485.CrossRefGoogle ScholarPubMed
Poulin-Dubois, D., Brooker, I., & Polonia, A. (2011). Infants prefer to imitate a reliable person. Infant Behavior and Development, 34, 303309.CrossRefGoogle ScholarPubMed
Poulin-Dubois, D., Polonia, A., & Yott, J. (2013). Is false belief skin-deep? The agent’s eye status influences infants’ reasoning in belief-inducing situations. Journal of Cognition and Development, 14, 8799.CrossRefGoogle Scholar
Poulin-Dubois, D., Rakoczy, H., Burnside, K., Crivello, C., Dörrenberg, S., Edwards, K., … Perner, J. (2018). Do infants understand false beliefs? We don’t know yet – A commentary on Baillargeon, Buttelmann, and Southgate’s commentary. Cognitive Development, 48, 302315.CrossRefGoogle Scholar
Powell, L. J., Hobbs, K., Bardis, A., Carey, S., & Saxe, R. (2018). Replications of implicit theory of mind tasks with varying representational demands. Cognitive Development, 46, 4050.CrossRefGoogle Scholar
Priewasser, B., Rafetseder, E., Gargitter, C., & Perner, J. (2018). Helping as an early indicator of a theory of mind: Mentalism or teleology? Cognitive Development, 46, 6978.CrossRefGoogle ScholarPubMed
Rhodes, M., & Brandone, A. C. (2014). Three-year-olds’ theories of mind in actions and words. Frontiers in Psychology, 5, 263.CrossRefGoogle ScholarPubMed
Richardson, H., Lisandrelli, G., Riobueno-Naylor, A., & Saxe, R. (2018). Development of the social brain from age three to twelve years. Nature Communications, 9, 1027.CrossRefGoogle ScholarPubMed
Roby, E., & Scott, R. M. (2016). Rethinking the relationship between social experience and false-belief understanding: A mentalistic account. Frontiers in Psychology, 7, 1721.CrossRefGoogle ScholarPubMed
Roby, E., & Scott, R. M. (2018). The relationship between parental mental-state language and 2.5-year-olds’ performance on a nontraditional false-belief task. Cognition, 180, 1023.CrossRefGoogle Scholar
Rubio-Fernández, P., & Geurts, B. (2013). How to pass the false-belief task before your fourth birthday. Psychological Science, 24, 2733.CrossRefGoogle ScholarPubMed
Rubio-Fernández, P., & Geurts, B. (2016). Don’t mention the marble! The role of attentional processes in false-belief tasks. Review of Philosophy and Psychology, 7, 835850.CrossRefGoogle Scholar
Ruffman, T. (2014). To belief or not belief: Children’s theory of mind. Developmental Review, 34, 265293.CrossRefGoogle Scholar
Ruffman, T., Slade, L., & Crowe, E. (2002). The relation between children’s and mothers’ mental state language and theory-of-mind understanding. Child Development, 73, 734751.CrossRefGoogle ScholarPubMed
Schulze, C., & Buttelmann, D. (2021). Small procedural differences matter: Conceptual and direct replication attempts of the communication-intervention effect on infants’ false-belief ascriptions. Cognitive Development, 59, 101054CrossRefGoogle Scholar
Schuwerk, T., Priewasser, B., Sodian, B., & Perner, J. (2018). The robustness and generalizability of findings on spontaneous false belief sensitivity: A replication attempt. Royal Society Open Science, 5, 172273.CrossRefGoogle ScholarPubMed
Scott, R. M. (2017a). Surprise! 20-month-old infants understand the emotional consequences of false beliefs. Cognition, 159, 33–47.CrossRefGoogle Scholar
Scott, R. M. (2017b). The developmental origins of false-belief understanding. Current Directions in Psychological Science, 26, 6874.CrossRefGoogle Scholar
Scott, R. M., & Baillargeon, R. (2009). Which penguin is this? Attributing false beliefs about object identity at 18 months. Child Development, 80, 11721196.CrossRefGoogle ScholarPubMed
Scott, R. M., & Baillargeon, R. (2017). Early false-belief understanding. Trends in Cognitive Sciences, 21, 237249.CrossRefGoogle ScholarPubMed
Scott, R. M., & Baillargeon, R. (2013). Do infants really expect others to act efficiently? A critical test of the rationality principle. Psychological Science, 24, 466474.CrossRefGoogle Scholar
Scott, R. M., Baillargeon, R., Song, H. J., & Leslie, A. M. (2010). Attributing false beliefs about non-obvious properties at 18 months. Cognitive Psychology, 61, 366395.CrossRefGoogle ScholarPubMed
Scott, R. M., He, Z., Baillargeon, R., & Cummins, D. (2012). False-belief understanding in 2.5-year-olds: Evidence from two novel verbal spontaneous-response tasks. Developmental Science, 15, 181193.CrossRefGoogle Scholar
Scott, R. M., Richman, J. C., & Baillargeon, R. (2015). Infants understand deceptive intentions to implant false beliefs about identity: New evidence for early mentalistic reasoning. Cognitive Psychology, 82, 3256.CrossRefGoogle ScholarPubMed
Scott, R. M., & Roby, E. (2015). Processing demands impact 3-year-olds’ performance in a spontaneous-response task: New evidence for the processing-load account of early false-belief understanding. PLoS ONE, 10, e0142405.CrossRefGoogle Scholar
Scott, R. M., Roby, E., & Setoh, P. (2020). 2.5-year-olds succeed in identity and location elicited-response false-belief tasks with adequate response practice. Journal of Experimental Child Psychology, 198, 104890.CrossRefGoogle Scholar
Senju, A., Southgate, V., Miura, Y., Matsui, T., Hasegawa, T., Tojo, Y., … Csibra, G. (2010). Absence of spontaneous action anticipation by false belief attribution in children with autism spectrum disorder. Development and Psychopathology, 22, 353360.CrossRefGoogle ScholarPubMed
Senju, A., Southgate, V., Snape, C., Leonard, M., & Csibra, G. (2011). Do 18-month-olds really attribute mental states to others? A critical test. Psychological Science, 22, 878880.CrossRefGoogle ScholarPubMed
Senju, A., Southgate, V., White, S., & Frith, U. (2009). Mindblind eyes: An absence of spontaneous theory of mind in Asperger syndrome. Science, 325, 883885.CrossRefGoogle ScholarPubMed
Setoh, P., Scott, R. M., & Baillargeon, R. (2016). Two-and-a-half-year-olds succeed at a traditional false-belief task with reduced processing demands. Proceedings of the National Academy of Sciences, USA, 113, 1336013365.CrossRefGoogle Scholar
Slaughter, V., Peterson, C. C., & Mackintosh, E. (2007). Mind what mother says: Narrative input and theory of mind in typical children and those on the autism spectrum. Child Development, 78, 839858.CrossRefGoogle ScholarPubMed
Sloane, S., Baillargeon, R., & Premack, D. (2012). Do infants have a sense of fairness? Psychological Science, 23, 196204.CrossRefGoogle ScholarPubMed
Song, H. J., & Baillargeon, R. (2008). Infants’ reasoning about others’ false perceptions. Developmental Psychology, 44, 17891795.CrossRefGoogle ScholarPubMed
Song, H. J., Baillargeon, R., & Fisher, C. (2014). The development of infants’ use of novel verbal information when reasoning about others’ actions. PLoS ONE, 9, e92387.CrossRefGoogle ScholarPubMed
Song, H. J., Onishi, K. H., Baillargeon, R., & Fisher, C. (2008). Can an agent’s false belief be corrected by an appropriate communication? Psychological reasoning in 18-month-old infants. Cognition, 109, 295315.CrossRefGoogle Scholar
Southgate, V., Chevallier, C., & Csibra, G. (2010). Seventeen-month-olds appeal to false beliefs to interpret others’ referential communication. Developmental Science, 13, 907912.CrossRefGoogle ScholarPubMed
Southgate, V., Senju, A., & Csibra, G. (2007). Action anticipation through attribution of false belief by 2-year-olds. Psychological Science, 18, 587592.CrossRefGoogle ScholarPubMed
Southgate, V., & Vernetti, A. (2014). Belief-based action prediction in preverbal infants. Cognition, 130, 110.CrossRefGoogle ScholarPubMed
Spaepen, E., & Spelke, E. (2007). Will any doll do? 12-month-olds’ reasoning about goal objects. Cognitive Psychology, 54, 133154.CrossRefGoogle ScholarPubMed
Takagishi, H., Kameshima, S., Schug, J., Koizumi, M., & Yamagishi, T. (2010). Theory of mind enhances preference for fairness. Journal of Experimental Child Psychology, 105, 130137.CrossRefGoogle ScholarPubMed
Ting, F., He, Z., & Baillargeon, R. (2021). Five-month-old infants attribute inferences based on general knowledge to agents. Journal of Experimental Child Psychology, 208, 105126.CrossRefGoogle ScholarPubMed
Tomasello, M. (1999). Having intentions, understanding intentions, and understanding communicative intentions. In Zelazo, P. D., Astington, J. W., & Olson, D. R. (eds.), Developing Theories of Intention: Social Understanding and Self-Control (pp. 6375). Mahwah, NJ: Erlbaum.Google Scholar
Tomasello, M., & Haberl, K. (2003). Understanding attention: 12-and 18-month-olds know what is new for other persons. Developmental Psychology, 39, 906912.CrossRefGoogle Scholar
Vouloumanos, A., Martin, A., & Onishi, K. H. (2014). Do 6-month-olds understand that speech can communicate? Developmental Science, 17, 872879.CrossRefGoogle ScholarPubMed
Wang, S., Baillargeon, R., & Brueckner, L. (2004). Young infants’ reasoning about hidden objects: Evidence from violation-of-expectation tasks with test trials only. Cognition, 93, 167198.CrossRefGoogle ScholarPubMed
Wang, Y., & Su, Y. (2009). False belief understanding: Children catch it from classmates of different ages. International Journal of Behavioral Development, 33, 331336.CrossRefGoogle Scholar
Welder, A. N., & Graham, S. A. (2001). The influence of shape similarity and shared labels on infants’ inductive inferences about nonobvious object properties. Child Development, 72, 16531673.CrossRefGoogle ScholarPubMed
Wellman, H. M., Cross, D., & Watson, J. (2001). Meta-analysis of theory of mind development: The truth about false belief. Child Development, 72, 655684.CrossRefGoogle ScholarPubMed
Wellman, H. M., Fang, F., & Peterson, C. C. (2011). Sequential progressions in a theory-of-mind scale: Longitudinal perspectives. Child Development, 82, 780792.CrossRefGoogle Scholar
Westra, E., & Carruthers, P. (2017). Pragmatic development explains the Theory-of-Mind scale. Cognition, 158, 165176.CrossRefGoogle ScholarPubMed
Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13, 103128.CrossRefGoogle ScholarPubMed
Woodward, A. L. (1998). Infants selectively encode the goal object of an actor’s reach. Cognition, 69, 134.CrossRefGoogle ScholarPubMed
Woodward, A. L. (1999). Infants’ ability to distinguish between purposeful and non-purposeful behaviors. Infant Behavior and Development, 22, 145160.CrossRefGoogle Scholar
Woodward, A. L. (2005). The infant origins of intentional understanding. Advances in Child Development and Behavior, 33, 229262.CrossRefGoogle ScholarPubMed
Woodward, A. L., Sommerville, J. A., & Guajardo, J. J. (2001). How infants make sense of intentional action. In Malle, B. F., Moses, L. J., & Baldwin, D. A. (eds.), Intentions and Intentionality: Foundations of Social Cognition (pp. 149169). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Yazdi, A. A., German, T. P., Defeyter, M. A., & Siegal, M. (2006). Competence and performance in belief-desire reasoning across two cultures: The truth, the whole truth, and nothing but the truth about false belief? Cognition, 100, 343368.CrossRefGoogle ScholarPubMed
Yott, J., & Poulin-Dubois, D. (2012). Breaking the rules: Do infants have a true understanding of false belief? British Journal of Developmental Psychology, 30, 156171.CrossRefGoogle ScholarPubMed
Yott, J., & Poulin-Dubois, D. (2016). Are infants’ theory-of-mind abilities well integrated? Implicit understanding of intentions, desires, and beliefs. Journal of Cognition and Development, 17, 683698.CrossRefGoogle Scholar
Zmyj, N., Buttelmann, D., Carpenter, M., & Daum, M. M. (2010). The reliability of a model influences 14-month-olds’ imitation. Journal of Experimental Child Psychology, 106, 208220.CrossRefGoogle Scholar

References

Anisfeld, M. (1996). Neonatal imitation. Developmental Review, 11, 6097.CrossRefGoogle Scholar
Apperly, I. A., & Butterfill, S. A. (2009). Do humans have two systems to track beliefs and belief-like states? Psychological Review, 116, 953970.CrossRefGoogle ScholarPubMed
Atran, S. (1995). Causal constraints on categories and categorical constraints on biological reasoning across cultures. In Sperber, D., Premack, D., & Premack, A. (eds.), Causal Cognition, a Multidisciplinary Debate (pp. 205233). Oxford: Clarendon Press.Google Scholar
Baumard, N., André, J.-B., & Sperber, D. (2013). A mutualistic approach to morality: The evolution of fairness by partner choice. Behavioral and Brain Sciences, 36, 59122.CrossRefGoogle ScholarPubMed
Begus, K., Gliga, T., & Southgate, V. (2016). Infants’ preferences for native speakers are associated with an expectation of information. Proceedings of the National Academy of Sciences, 113, 1239712402.CrossRefGoogle ScholarPubMed
Bian, L., Sloane, S., & Baillargeon, R. (2018). Infants expect ingroup support to override fairness when resources are limited. Proceedings of the National Academy of Sciences, 115, 27052710.CrossRefGoogle ScholarPubMed
Biro, S., & Leslie, A. (2007). Infants’ perception of goal-directed action: Development through cue-based bootstrapping. Developmental Science, 10, 379398.CrossRefGoogle ScholarPubMed
Boyer, P. (2018). Minds Make Societies, How Cognition Explains the World Humans Create. New Haven, CT: Yale University Press.Google Scholar
Brandone, A. C., Leslie, S. J., Cimpian, A., & Gelman, S. A. (2012). Do lions have manes? For children, generics are about kinds rather than quantities. Child Development, 83, 423433.CrossRefGoogle ScholarPubMed
Brewer, M. B. (1979). In-group bias in the minimal intergroup situation: Cognitive–motivational analysis. Psychological Bulletin, 86, 307324.CrossRefGoogle Scholar
Buon, M., Habib, M., & Frey, D. (2016). Moral development: Conflicts and compromises. In Somerville, J. A., & Decety, J. (eds.), Social Cognition: Development Across the Life Span (pp. 129150). New York: Psychology Press.Google Scholar
Buon, M, Jacob, P., Loissel, E., & Dupoux, E. (2013). A non-mentalistic cause-based heuristic in human social evaluations. Cognition, 126, 149155.CrossRefGoogle ScholarPubMed
Butler, L. P., & Markman, E. M. (2012). Preschoolers use intentional and pedagogical cues to guide inductive inferences and exploration. Child Development, 83, 14161428.CrossRefGoogle ScholarPubMed
Buyukozer Dawkins, M., Sloane, S., & Baillargeon, R. (2019). Do Infants in the first year of life expect equal resource allocations? Frontiers in Psychology, 10, 116.CrossRefGoogle ScholarPubMed
Byrne, R. W., & Whiten, A. (eds.) (1988). Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes and Humans. Oxford: Blackwell.Google Scholar
Carey, S. (1995) On the origin of causal understanding. In Sperber, D., Premack, D., & Premack, A. (eds.), (1995). Causal Cognition, a Multidisciplinary Debate (pp. 205233). Oxford: Clarendon Press.Google Scholar
Clément, F., Koenig, M. A., & Harris, P. L. (2004). The ontogenesis of trust. Mind and Language, 19, 360379.CrossRefGoogle Scholar
Cooper, R. P., & Aslin, R. N. (1990). Preference for infant‐directed speech in the first month after birth. Child Development, 61, 15841595.CrossRefGoogle ScholarPubMed
Cosmides, L., Tooby, J., & Kurzban, R. (2003). Perceptions of race. Trends in Cognitive Sciences, 7, 173179.CrossRefGoogle ScholarPubMed
Csibra, G. (2010). Recognizing communicative intentions in infancy. Mind and Language, 25, 141168.CrossRefGoogle Scholar
Csibra, G., Bíró, S., Koós, O., & Gergely, G. (2003). One-year-old infants use teleological representations of actions productively. Cognitive Science, 27, 111133.Google Scholar
Csibra, G., & Gergely, G. (2009). Natural pedagogy. Trends in Cognitive Sciences, 13, 148153.CrossRefGoogle ScholarPubMed
Csibra, G., Gergely, G., Bíró, S., Koós, O., & Brockbank, M. (1999). Goal attribution without agency cues: The perception of “pure reason” in infancy. Cognition, 72, 237267.CrossRefGoogle ScholarPubMed
Csibra, G., & Volein, Á. (2008). Infants can infer the presence of hidden objects from referential gaze information. British Journal of Developmental Psychology, 26, 111.CrossRefGoogle Scholar
Cushman, F. A., Sheketoff, R., Wharton, S., & Carey, S. (2013). The development of intent-based moral judgment. Cognition, 127, 621.CrossRefGoogle ScholarPubMed
Cushman, F. A., Young, L., & Hauser, M. D. (2006). The role of conscious reasoning and intuition in moral judgment: Testing three principles of harm. Psychological Science, 17, 10821089.CrossRefGoogle ScholarPubMed
Darwin, C. (1871). The Descent of Man, and Selection in Relation to Sex (1st ed.). London: John Murray.Google Scholar
Dörrenberg, S., Rakoczy, H., & Liszkowski, U. (2018). How (not) to measure infant Theory of Mind: Testing the replicability and validity of four non-verbal measures. Cognitive Development, 46, 1230.CrossRefGoogle Scholar
Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution, 22, 469493.CrossRefGoogle Scholar
Dunbar, R. I. M. (2003). The social brain: Mind, language, and society in evolutionary perspective. Annual Review of Anthropology, 32, 163181.CrossRefGoogle Scholar
Egyed, K., Király, I., & Gergely, G. (2013). Communicating shared knowledge in infancy. Psychological Science, 24, 13481353.CrossRefGoogle ScholarPubMed
Falck-Ytter, T., Gredebäck, G., & von Hofsten, C. (2006). Infants predict other people’s action goals. Nature Neuroscience, 9, 878879.CrossRefGoogle ScholarPubMed
Farroni, T., Johnson, M. H., Menon, E., Zulian, L., Faraguna, D., & Csibra, G. (2005). Newborns’ preference for face-relevant stimuli: Effects of contrast polarity. Proceedings of the National Academy of Sciences, 102, 1724517250.CrossRefGoogle ScholarPubMed
Farroni, T., Mansfield, E. M., Lai, C., & Johnson, M. H. (2003). Infants perceiving and acting on the eyes: Tests of an evolutionary hypothesis. Journal of Experimental Child Psychology, 85, 199212.CrossRefGoogle ScholarPubMed
Futó, J., Téglás, E., Csibra, G., & Gergely, G. (2010). Communicative function demonstration induces kind-based artifact representation in preverbal infants. Cognition, 117, 18.CrossRefGoogle ScholarPubMed
Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593609.CrossRefGoogle ScholarPubMed
Gao, T., Newman, G. E., & Scholl, B. J. (2009). The psychophysics of chasing: A case study in the perception of animacy. Cognitive Psychology, 59, 154179.CrossRefGoogle ScholarPubMed
Gelman, S., & Hirschfeld, L. (1999). How biological is essentialism? In Atran, S., & Medin, D. (eds.), Folk Biology (pp. 403446). Cambridge, MA: MIT Press.Google Scholar
Gergely, G., Bekkering, H., & Kiraly, I. (2002). Rational imitation in preverbal infants. Nature, 415, 755.CrossRefGoogle ScholarPubMed
Gergely, G., Nádasdy, Z., Csibra, G., & Bíró, S. (1995) Taking the intentional stance at 12 months of age. Cognition, 56, 165193.CrossRefGoogle ScholarPubMed
Gervain, J., & Mehler, J. (2010). Speech perception and language acquisition in the first year of life. Annual Review of Psychology, 61, 191218.CrossRefGoogle ScholarPubMed
Greene, J. D., Nystrom, L. E., Engell, A. D., Darley, J. M., & Cohen, J. D. (2004). The neural bases of cognitive conflict and control in moral judgment. Neuron, 44, 389400.CrossRefGoogle ScholarPubMed
Haidt, J. (2001). The emotional dog and its rational tail: A social intuitionist approach to moral judgment. Psychological Review, 108, 814834.CrossRefGoogle ScholarPubMed
Haidt, J. (2012). The Righteous Mind: Why Good People Are Divided by Politics and Religion. New York: Pantheon.Google Scholar
Hamlin, J. K. (2013). Moral judgment and action in preverbal infants and toddlers: Evidence for an innate moral core. Current Directions in Psychological Science, 22, 186193.CrossRefGoogle Scholar
Hamlin, J. K., Hallinan, E. V., & Woodward, A. L. (2008). Do as I do: 7-month-old infants selectively reproduce others’ goals. Developmental Science, 11, 487494.CrossRefGoogle Scholar
Hamlin, J. K., Ullman, T., Tenenbaum, J., Goodman, N., & Baker, C. (2013). The mentalistic basis of core social cognition: Experiments in preverbal infants and a computational model. Developmental Science, 16, 209226.CrossRefGoogle Scholar
Hamlin, J. K., & Wynn, K. (2012). Who knows what’s good to eat? Infants fail to match the food preferences of antisocial others. Cognitive Development, 27, 227239.CrossRefGoogle Scholar
Hamlin, J. K., Wynn, K., & Bloom, P. (2007). Social evaluation by preverbal infants. Nature, 450, 557559.CrossRefGoogle ScholarPubMed
Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it, and how did it evolve? Science, 298, 15691579.CrossRefGoogle ScholarPubMed
Heyes, C. (2014). False belief in infancy: A fresh look. Developmental Science, 17, 647659.CrossRefGoogle ScholarPubMed
Heyes, C. (2018). Cognitive Gadgets, the Cultural Evolution of Thinking. Cambridge, MA: Harvard University Press.Google Scholar
Hirschfeld, L. (1995a). Do children have a theory of race? Cognition, 54, 209252.CrossRefGoogle ScholarPubMed
Hirschfeld, L. (1995b). Anthropology, psychology, and the meanings of social causality. In Sperber, D., Premack, D., & Premack, A. (eds.) (1995). Causal Cognition, a Multidisciplinary Debate (pp. 205233). Oxford: Clarendon Press.Google Scholar
Hume, D. (1738). A Treatise of Human Nature: Being an Attempt to Introduce the Experimental Method of Reasoning into Moral Subjects. New York: Oxford University Press.Google Scholar
Humphrey, N. (1976). The social function of the intellect. In Bateson, P. P. G., & Hinde, R. A. (eds.), Growing Points on Ethology (pp. 303317). Cambridge: Cambridge University Press.Google Scholar
Hyde, D. C., Simon, C. E., Ting, F., & Nikolaeva, J. I. (2018). Functional organization of the temporal–parietal junction for theory of mind in preverbal infants: A near-infrared spectroscopy study. Journal of Neuroscience, 38, 42644274.CrossRefGoogle ScholarPubMed
Jacob, P. (2012). Sharing and ascribing goals. Mind and Language, 27, 202229.CrossRefGoogle Scholar
Jin, K., & Baillargeon, R. (2017). Infants possess an abstract expectation of ingroup support. Proceedings of the National Academy of Sciences (USA), 114, 81998204.CrossRefGoogle ScholarPubMed
Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns' preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40, 119.CrossRefGoogle ScholarPubMed
Jovanovic, B., Király, I., Elsner, B., Gergely, G., Prinz, W., & Aschersleben, G. (2007). The role of effects for infants’ perception of action goals. Psychologia, 50, 273290.CrossRefGoogle Scholar
Kampis, D., Somogyi, E., Itakura, S., & Király, I. (2013). Do infants bind mental states to agents? Cognition, 129, 232240.CrossRefGoogle ScholarPubMed
Kant, I. (1785). Groundwork of the Metaphysics of Morals, various printings.Google Scholar
Keil, F. C. (2014). Developmental Psychology: The Growth of Mind and Behavior. New York: W. W. Norton.Google Scholar
Kelly, D. J., Quinn, P. C., Slater, A. M., Lee, K., Gibson, A., Smith, M, Ge, L., & Pascalis, O. (2005). Three-month-olds, but not newborns, prefer own-race faces. Developmental Science, 8, F31F36.CrossRefGoogle Scholar
Kinzler, K. D., & DeJesus, J. M. (2013). Children’s sociolinguistic evaluations of nice foreigners and mean Americans. Developmental Psychology, 49, 655664.CrossRefGoogle ScholarPubMed
Kinzler, K. D., Dupoux, E., & Spelke, E. S. (2007). The native language of social cognition. Proceedings of the National Academy of Sciences (USA), 104, 1257712580.CrossRefGoogle ScholarPubMed
Kinzler, K. D., Dupoux, E., & Spelke, E. S. (2012). “Native” objects and collaborators: Infants’ object choices and acts of giving reflect favor for native over foreign speakers. Journal of Cognitive Development, 13, 6781.CrossRefGoogle ScholarPubMed
Kinzler, K. D., Shutts, K., DeJesus, J., & Spelke, E. S. (2009). Accent trumps race in guiding children’s social preferences. Social Cognition, 27, 623634.CrossRefGoogle ScholarPubMed
Kiràly, I., Jovanovic, B., Prinz, W., Aschersleben, G., & Gergely, G. (2003). The early origins of goal attribution in infancy. Consciousness and Cognition, 12, 752769.CrossRefGoogle ScholarPubMed
Knudsen, B., & Liszkowski, U. (2012). 18-month-olds predict specific action mistakes through attribution of false belief, not ignorance, and intervene accordingly. Infancy, 17, 672691.CrossRefGoogle Scholar
Kohlberg, L. (1976). Moral stages and moralization: The cognitive-developmental. In Lickona, T. (ed.), Moral Development and Behavior: Theory, Research and Social Issues (pp. 3153). New York: Holt, Rinehart and Winston.Google Scholar
Krebs, D. L., & Denton, K. (2005). Toward a more pragmatic approach to morality: A critical evaluation of Kohlberg’s model. Psychological Review, 112, 629649.CrossRefGoogle Scholar
Kuhlmeier, V., Wynn, K., & Bloom, P. (2003). Attribution of dispositional states by 12-month-olds. Psychological Science, 14, 402408.CrossRefGoogle ScholarPubMed
Kurtines, W., & Greif, E. B. (1974). The development of moral thought: Review and evaluation of Kohlberg’s approach. Psychological Bulletin, 81, 453470.CrossRefGoogle ScholarPubMed
Kurzban, R., Tooby, J., & Cosmides, L. (2001). Can race be erased? Coalitional computation and social categorization. Proceedings of the National Academy of Sciences (USA), 98, 1538715392.CrossRefGoogle ScholarPubMed
Leslie, S. J. (2007). Generics and the structure of the mind. Philosophical Perspectives, 21, 375405.CrossRefGoogle Scholar
Leslie, S. J. (2008). Generics: Cognition and acquisition. Philosophical Review, 117, 149.CrossRefGoogle Scholar
Liberman, Z., Woodward, A. L., & Kinzler, K. D. (2017). Preverbal infants infer third-party social relationships based on language. Cognitive Science, 41, 622634.CrossRefGoogle ScholarPubMed
Liszkowski, U., Carpenter, M., Striano, T., & Tomasello, M. (2006). 12- and 18-month-olds point to provide information for others. Journal of Cognition and Development, 7, 173187.CrossRefGoogle Scholar
Locke, J. (1698). An Essay Concerning Human Understanding. London.Google Scholar
Luo, Y. (2011a). Three-month-old infants attribute goals to a non-human agent. Developmental Science, 14, 453460.CrossRefGoogle ScholarPubMed
Luo, Y. (2011b). Do 10-month-old infants understand others’ false beliefs? Cognition, 121, 289298.CrossRefGoogle ScholarPubMed
Luo, Y., & Baillargeon, R. (2005). Can a self-propelled box have a goal?: Psychological reasoning in 5-month-old infants. Psychological Science, 16, 601608.CrossRefGoogle ScholarPubMed
Martin, A., Onishi, K. H., & Vouloumanos, A. (2012). Understanding the abstract role of speech in communication at 12 months. Cognition, 123, 5060.CrossRefGoogle ScholarPubMed
Mascaro, O., & Csibra, G. (2012). Representation of stable social dominance relations by human infants. Proceedings of the National Academy of Sciences (USA), 109, 68626867.CrossRefGoogle ScholarPubMed
Mascaro, O., & Sperber, D. (2009). The moral, epistemic, and mindreading components of children’s vigilance towards deception. Cognition, 112, 367380.CrossRefGoogle ScholarPubMed
Maynard-Smith, J., & Harper, D. (2003). Animal Signals. New York: Oxford University Press.CrossRefGoogle Scholar
Meltzoff, A. N. (1988). Infant imitation after a 1-week delay: Long-term memory for novel acts and multiple stimuli. Developmental Psychology, 24, 470476.CrossRefGoogle ScholarPubMed
Meltzoff, A. N. (2002). Imitation as a mechanism of social cognition: Origins of empathy, theory of mind, and the representation of action. In Goswami, U. (ed.), Blackwell Handbook of Childhood Cognitive Development (pp. 625). Oxford: Blackwell.CrossRefGoogle Scholar
Meltzoff, A. N. (2005). Imitation and other minds: The “Like me” hypothesis. In Hurley, S., & Chater, N. (eds.), Perspectives on Imitation: From Neuroscience to Social Science (Vol. 2, pp. 5577). Cambridge, MA: MIT Press.Google Scholar
Meltzoff, A. N. (2007). “Like me”: A foundation for social cognition. Developmental Science, 10, 126134.CrossRefGoogle ScholarPubMed
Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human neonates. Science, 198, 5.CrossRefGoogle ScholarPubMed
Meltzoff, A. N., & Moore, M. K. (1983). Newborn infants imitate adult facial gestures. Child Development, 54, 702709.CrossRefGoogle ScholarPubMed
Meltzoff, A. N., & Moore, M. K. (1997). Explaining facial imitation: A theoretical model. Early Development and Parenting, 6, 179192.3.0.CO;2-R>CrossRefGoogle ScholarPubMed
Meltzoff, A. N., Murray, L., Simpson, E., Heimann, M., Nagy, E., Nadel, J., Pedersen, E. J., Brooks, R., Messinger, D. S., Pascalis, L. D., Subiaul, F., Paukner, A., & Ferrari, P. F. (2018). Re-examination of Oostenbroek et al. (2016): Evidence for neonatal imitation of tongue protrusion. Developmental Science, 21, e12609.CrossRefGoogle ScholarPubMed
Mikhail, J. (2007). Universal moral grammar: Theory, evidence and the future. Trends in Cognitive Sciences, 11, 143152.CrossRefGoogle ScholarPubMed
New, J., Cosmides, L., & Tooby, J. (2007). Category-specific attention for animals reflects ancestral priorities, not expertise. Proceedings of the National Academy of Sciences (USA), 104, 1659816603.CrossRefGoogle Scholar
Nyström, P. (2008). The infant mirror neuron system studied with high density EEG. Social Neuroscience, 3, 334347.CrossRefGoogle ScholarPubMed
Nyström, P., Ljunghammar, T., Rosander, K., & von Hofsten, C. (2010). Using mu rhythm perturbations to measure mirror neuron activity in infants. Developmental Science, 14, 327335.CrossRefGoogle Scholar
Onishi, K. H., & Baillargeon, R. (2005). Do 15-month-old infants understand false beliefs? Science, 308, 255258.CrossRefGoogle ScholarPubMed
Oostenbroek, J., Slaughter, V., Nielsen, M., & Suddendorf, T. (2013). Why the confusion around neonatal imitation? A review. Journal of Reproductive and Infant Psychology, 31, 328341.CrossRefGoogle Scholar
Oostenbroek, J., Suddendorf, T., Nielsen, M., Redshaw, J., Kennedy-Costantini, S., Davis, J., & Slaughter, V. (2016). Comprehensive longitudinal study challenges the existence of neonatal imitation in humans. Current Biology, 26, 13341338.CrossRefGoogle ScholarPubMed
Perner, J., & Ruffman, T. (2005). Infants’ insight into the mind: How deep? Science, New Series, 308, 214216.Google ScholarPubMed
Piaget, J. (1932). The Moral Judgment of the Child. London: Kegan, Paul, Trench, Trubner & Co.Google Scholar
Pietraszewski, D., & German, T. C. (2013). Coalitional psychology on the playground: Reasoning about indirect social consequences in preschoolers and adults. Cognition, 126, 352363.CrossRefGoogle ScholarPubMed
Plötner, M., Over, H., Carpenter, M., & Tomasello, M. (2015). The effects of collaboration and minimal-group membership on children’s prosocial behavior, liking, affiliation, and trust. Journal of Experimental Child Psychology, 139, 161173.CrossRefGoogle ScholarPubMed
Powell, L. J., & Spelke, E. S. (2013). Preverbal infants expect members of social groups to act alike. Proceedings of the National Academy of Sciences (USA), 23, E3965E3972.Google Scholar
Powell, L. J., & Spelke, E. S. (2018). Human infants’ understanding of social imitation: Inferences of affiliation from third party observations. Cognition, 170, 3148.CrossRefGoogle ScholarPubMed
Premack, D., & Premack, A. (1997). Infants attribute value ± to the goal-directed actions of self-propelled objects. Journal of Cognitive Neuroscience, 9, 848856.CrossRefGoogle Scholar
Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behavioral and Brain Sciences, 1, 515526.CrossRefGoogle Scholar
Reid, V. M., Dunn, K., Young, R. J., Amu, J., Donovan, T., & Reissland, N. (2017). The human fetus preferentially engages with face-like visual stimuli. Current Biology, 27, 18251828.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169192.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3, 131141.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2, 661670.CrossRefGoogle ScholarPubMed
Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature Reviews Neuroscience, 11, 264274.CrossRefGoogle ScholarPubMed
Rosander, K., & von Hofsten, C. (2011). Predictive gaze shifts elicited during observed and performed actions in 10-month-old infants and adults. Neuropsychologia, 49, 29112917.CrossRefGoogle ScholarPubMed
Royzman, E., Kim, K., & Leeman, R. (2015). The curious tale of Julie and Mark: Unraveling the moral dumfounding effect. Judgment and Decision Making, 10, 296313.CrossRefGoogle Scholar
Salvadori, E., Blazsekova, T., Volein, A., Karap, Z., Tatone, D., Mascaro, O., & Csibra, G. (2015). Probing the strength of infants’ preference for helpers over hinderers: Two replication attempts of Hamlin and Wynn (2011). PLoS ONE, 10, e0140570.CrossRefGoogle ScholarPubMed
Scott-Phillips, T. C. (2014). Speaking Our Minds. London: Palgrave MacMillan.Google Scholar
Senju, A., & Csibra, G. (2008). Gaze following in human infants depends on communicative signals. Current Biology, 18, 668671.CrossRefGoogle ScholarPubMed
Sheshkin, M., Bloom, P., & Wynn, K. (2014). Anti-equality: Social comparison in young children. Cognition, 130, 152156.CrossRefGoogle Scholar
Sheshkin, M., Chevallier, C., Lambert, S., & Baumard, N. (2014). Life-history theory explains childhood moral development. Trends in Cognitive Sciences, 18, 613615.CrossRefGoogle Scholar
Shutts, K., Kinzler, K. D., McKee, C. B., & Spelke, E. S. (2009). Social information guides infants' selection of foods. Journal of Cognition and Development, 10, 117.CrossRefGoogle ScholarPubMed
Simion, F., Regolin, L., & Bulf, H. (2008). A predisposition for biological motion in the newborn baby. Proceedings of the National Academy of Sciences (USA), 105, 809813.CrossRefGoogle ScholarPubMed
Skerry, A. E., Carey, S. E., & Spelke, E. S. (2013). First-person action experience reveals sensitivity to action efficiency in prereaching infants. Proceedings of the National Academy of Sciences (USA), 110, 1872818733.CrossRefGoogle ScholarPubMed
Sloane, S., Baillargeon, R., & Premack, D. (2012). Do infants have a sense of fairness? Psychological Science, 23, 196204.CrossRefGoogle ScholarPubMed
Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions. Cognition, 96, B1B11.CrossRefGoogle ScholarPubMed
Southgate, V. (2020). Are infants altercentric? The other and the self in early social cognition. Psychological Review, 127, 505523.CrossRefGoogle ScholarPubMed
Southgate, V., Johnson, M. H., & Csibra, G. (2008). Infants attribute goals even to biomechanically impossible actions. Cognition, 107, 10591069.CrossRefGoogle ScholarPubMed
Southgate, V., Johnson, M. H., Osborne, T., & Csibra, G. (2009). Predictive motor activation during action observation in human infants. Biology Letters, 5, 769772.CrossRefGoogle ScholarPubMed
Southgate, V., & Vernetti, A. (2014). Belief-based action prediction in preverbal infants. Cognition, 130, 110.CrossRefGoogle ScholarPubMed
Tajfel, H., Billig, M. G., Bundy, R. P., & Flament, C. (1971). Social categorization and intergroup behavior. European Journal of Social Psychology, 1, 149177.CrossRefGoogle Scholar
Tomasello, M. (2008). Origins of Human Communication. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Tomasello, M. (2014). A Natural History of Human Thinking, Cambridge MA: Harvard University Press.CrossRefGoogle Scholar
Tomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28, 675691.CrossRefGoogle ScholarPubMed
Tooby, J., & Cosmides, L. (2010). Groups in mind: The coalitional roots of war and morality. In Høgh-Olesen, H. (ed.), Human Morality & Sociality: Evolutionary & Comparative Perspectives (pp. 191234). New York: Palgrave MacMillan.CrossRefGoogle Scholar
Troje, N. F., & Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a “life detector”? Current Biology, 16, 821824.CrossRefGoogle ScholarPubMed
Turiel, E. (1983). The Development of Social Knowledge: Morality and Convention. Cambridge: Cambridge University Press.Google Scholar
Turiel, E., Killen, M., & Helwig, C. C. (1987). Morality: Its structure, function, and vagaries. In Kagan, J., & Lamb, S. (eds.), The Emergence of Morality in Young Children (pp. 155243). Chicago, IL: University of Chicago Press.Google Scholar
Umiltà, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., & Rizzolatti, G. (2001). “I know what you are doing”: A neurophysiological study. Neuron, 32, 91101.Google Scholar
Valenza, E., Simion, F., Cassia, V. M., & Umiltà, C. (1996). Face preference at birth. Journal of Experimental Psychology: Human Perception and Performance, 22, 892.Google ScholarPubMed
Vallortigara, G., Regolin, L., & Marconato, F. (2005). Visually inexperienced chicks exhibit spontaneous preference for biological motion. PLoS Biology, 3, e208.CrossRefGoogle ScholarPubMed
Vouloumanos, A., & Werker, J. F. (2007). Listening to language at birth: Evidence for a bias for speech in neonates. Developmental Science, 10, 159164.CrossRefGoogle ScholarPubMed
Warnecken, F., & Tomasello, M. (2006). Altruistic helping in human infants and young chimpanzees. Science, 311, 13011302.CrossRefGoogle Scholar
Warnecken, F., & Tomasello, M. (2007). Helping and cooperation at 14 months of age. Infancy, 11, 271294.CrossRefGoogle Scholar
Warnecken, F., & Tomasello, M. (2009). Varieties of altruism in children and chimpanzees. Trends in Cognitive Sciences, 13, 397402.CrossRefGoogle Scholar
Wellman, H. M., Cross, D., & Watson, J. (2001). Meta-analysis of theory-of-mind development: The truth about false belief. Child Development, 72, 655684.CrossRefGoogle ScholarPubMed
Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13, 103128.CrossRefGoogle ScholarPubMed
Woodward, A. L. (1998). Infants selectively encode the goal object of an actor’s reach. Cognition, 69, 134.CrossRefGoogle ScholarPubMed
Woodward, A. L. (1999). Infants’ ability to distinguish between purposeful and non-purposeful behaviors. Infant Behavior and Development, 22, 145160.CrossRefGoogle Scholar
Woodward, A. L., Sommerville, J. A., Gerson, S., Henderson, A. M. E., & Buresh, J. (2009). The emergence of intention attribution in infancy. In Ross, B. (ed.), Psychology of Learning and Motivation (Vol. 51, pp. 187222). New York: Academic Press.CrossRefGoogle Scholar
Xu, F., & Carey, S. (1996). Infants’ metaphysics: The case of numerical identity. Cognitive Psychology, 30, 111153.CrossRefGoogle ScholarPubMed
Yoon, J. M. D., Johnson, M. H., & Csibra, G. (2008). Communication-induced memory biases in preverbal infants. Proceedings of the National Academy of Sciences (USA), 105, 1369013695.CrossRefGoogle ScholarPubMed
Yu, C., & Smith, L. B. (2013). Joint attention without gaze following: Human infants and their parents coordinate visual attention to objects through eye–hand coordination. PLoS ONE, 8, e79659.CrossRefGoogle ScholarPubMed

References

Arend, R., Gove, F. L., & Sroufe, L. A. (1979). Continuity of individual adaptation from infancy to kindergarten: A predictive study of ego-resiliency and curiosity in preschoolers. Child Development, 50, 950959.CrossRefGoogle ScholarPubMed
Astington, J. W., Harris, P. L., & Olson, D. R. (eds.) (1988). Developing Theories of Mind. Cambridge: Cambridge University Press.Google Scholar
Baillargeon, R. (1987). Object permanence in 3½- and 4½-month-old infants. Developmental Psychology, 23, 655664.CrossRefGoogle Scholar
Baillargeon, R. (1998). Infants' understanding of the physical world. In Sabourin, M., Craik, F., & Robert, M. (eds.), Advances in Psychological Science, Vol. 2. Biological and Cognitive Aspects (pp. 503529). Hove: Psychology Press.Google Scholar
Beck, S. R., & Riggs, K. J. (2013). Counterfactuals and reality. In Taylor, M. (ed.), The Oxford Handbook of the Development of Imagination (pp. 325341). New York: Oxford University Press.Google Scholar
Beck, S. R., Robinson, E. J., Carroll, D. J., & Apperly, I. A. (2006). Children’s thinking about counterfactuals and future hypotheticals as possibilities. Child Development, 77, 413426.CrossRefGoogle ScholarPubMed
Bonawitz, E., Denison, S., Gopnik, A., & Griffiths, T. L. (2014a). Win-stay, lose-sample: A simple sequential algorithm for approximating Bayesian inference. Cognitive Psychology, 74, 3565.CrossRefGoogle ScholarPubMed
Bonawitz, E., Denison, S., Griffiths, T. L., & Gopnik, A. (2014b). Probabilistic models, learning algorithms, and response variability: Sampling in cognitive development. Trends in Cognitive Sciences, 18, 497500.CrossRefGoogle ScholarPubMed
Bonawitz, E. B., Ferranti, D., Saxe, R., Gopnik, A., Meltzoff, A. N., Woodward, J., & Schulz, L. E. (2010). Just do it? Investigating the gap between prediction and action in toddlers’ causal inferences. Cognition, 115, 104117.CrossRefGoogle Scholar
Bonawitz, E. B., & Lombrozo, T. (2012). Occam’s rattle: Children’s use of simplicity and probability to constrain inference. Developmental Psychology, 48, 1156.CrossRefGoogle ScholarPubMed
Butler, L. P. (2020). The empirical child? A framework for investigating the development of scientific habits of mind. Child Development Perspectives, 14, 3440.CrossRefGoogle Scholar
Carey, S. (1985). Conceptual Change in Childhood. Cambridge, MA: MIT Press.Google Scholar
Carey, S. (2009) The Origin of Concepts. New York: Oxford University Press.CrossRefGoogle Scholar
Cesana-Arlotti, N., Martín, A., Téglás, E., Vorobyova, L., Cetnarski, R., & Bonatti, L. L. (2018). Precursors of logical reasoning in preverbal human infants. Science, 359, 12631266.CrossRefGoogle ScholarPubMed
Cimpian, A., & Steinberg, O. D. (2014). The inherence heuristic across development: Systematic differences between children’s and adults’ explanations for everyday facts. Cognitive Psychology, 75, 130154.CrossRefGoogle ScholarPubMed
Christie, S., & Gentner, D. (2010). Where hypotheses come from: Learning new relations by structural alignment. Journal of Cognition and Development, 11, 356373.CrossRefGoogle Scholar
Christie, S. & Gentner, D. (2014). Language helps children succeed on a classic analogy task. Cognitive Science, 38, 383397.CrossRefGoogle ScholarPubMed
Cook, C., Goodman, N. D., & Schulz, L. E. (2011). Where science starts: Spontaneous experiments in preschoolers’ exploratory play. Cognition, 120, 341349.CrossRefGoogle ScholarPubMed
Denison, S., Bonawitz, E., Gopnik, A., & Griffiths, T. L. (2013). Rational variability in children’s causal inferences: The sampling hypothesis. Cognition, 126, 285300.CrossRefGoogle ScholarPubMed
Flavell, J. H. (1963). The Developmental Psychology of Jean Piaget. New York: Van Nostrand Reinhold Company.CrossRefGoogle Scholar
Gelman, S. A. (2003). The Essential Child. New York: Oxford University PressCrossRefGoogle Scholar
Gelman, S. A., Coley, J. D., & Gottfried, G. M. (1994). Essentialist beliefs in children: The acquisition of concepts and theories. In Hirschfeld, L. A., & Gelman, S. A. (eds.), Mapping the Mind: Domain Specificity in Cognition and Culture (pp. 341365). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Gelman, S. A., & Markman, E. M. (1986). Categories and induction in young children. Cognition, 23, 183209.CrossRefGoogle ScholarPubMed
Gentner, D., Brem, S., Ferguson, R. W., Markman, A. B., Levidow, B. B., Wolff, P., & Forbus, K. D. (1997). Analogical reasoning and conceptual change: A case study of Johannes Kepler. The Journal of the Learning Sciences, 6, 340.CrossRefGoogle Scholar
Giles, J. W., Gopnik, A., & Heyman, G. D. (2002). Source monitoring reduces the suggestibility of preschool children. Psychological Science, 13, 288291.CrossRefGoogle ScholarPubMed
Goddu, M. K., & Gopnik, A. (2020). Learning what to change: Young children use “difference-making” to identify causally relevant variables. Developmental Psychology, 56, 275.CrossRefGoogle ScholarPubMed
Goddu, M. K., Lombrozo, T., & Gopnik, A. (2020). Transformations and transfer: Preschool children understand abstract relations and reason analogically in a causal task. Child Development, 91, 18981915.CrossRefGoogle Scholar
Goddu, M., K. & Walker, C. M. (2018). Toddlers and adults simultaneously track multiple hypotheses in a causal learning task. Cognitive Science. Available from https://cogsci.mindmodeling.org/2018/papers/0330/index.html. Last accessed July 30, 2021.Google Scholar
Gopnik, A. (1984). Conceptual and semantic change in scientists and children: Why there are no semantic universals. Lingusitics, 21.Google Scholar
Gopnik, A. (1998). Explanation as orgasm. Minds and Machines, 8, 101118.CrossRefGoogle Scholar
Gopnik, A. (2012). Scientific thinking in young children: Theoretical advances, empirical research, and policy implications. Science, 337, 16231627.CrossRefGoogle ScholarPubMed
Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T., & Danks, D. (2004). A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review, 111, 3.CrossRefGoogle ScholarPubMed
Gopnik, A., & Meltzoff, A. N. (1997). Words, Thoughts, & Theories. Cambridge, MA: MIT Press.Google Scholar
Gopnik, A., & Sobel, D.M. (2000). Detecting Blickets: How young children use information about novel causal powers in categorization and induction. Child Development, 71, 12051222.CrossRefGoogle ScholarPubMed
Gopnik, A., Sobel, D. M., Schulz, L. E., & Glymour, C. (2001). Causal learning mechanisms in very young children: Two-, three-, and four-year-olds infer causal relations from patterns of variation and covariation. Developmental Psychology, 37, 620.CrossRefGoogle ScholarPubMed
Gopnik, A., & Wellman, H. M. (2012). Reconstructing constructivism: Causal models, Bayesian learning mechanisms, and the theory theory. Psychological Bulletin, 138, 1085.CrossRefGoogle ScholarPubMed
Gottlieb, J., Oudeyer, P. Y., Lopes, M., & Baranes, A. (2013). Information-seeking, curiosity, and attention: Computational and neural mechanisms. Trends in Cognitive Sciences, 17, 585593.CrossRefGoogle ScholarPubMed
Gottlieb, S., Keltner, D., & Lombrozo, T. (2018). Awe as a scientific emotion. Cognitive Science, 42, 20812094.CrossRefGoogle Scholar
Greco, C., Hayne, H., & Rovee-Collier, C. (1990). Roles of function, reminding, and variability in categorization by 3-month-old infants. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 617.Google ScholarPubMed
Gweon, H., & Schulz, L. (2011). 16-month-olds rationally infer causes of failed actions. Science, 332, 1524.CrossRefGoogle ScholarPubMed
Inagaki, K. (1990). The effects of raising animals on children’s biological knowledge. British Journal of Developmental Psychology, 8, 119129.CrossRefGoogle Scholar
Johnston, A. M., Johnson, S. G., Koven, M. L., & Keil, F. C. (2017). Little Bayesians or little Einsteins? Probability and explanatory virtue in children’s inferences. Developmental Science, 20, e12483.CrossRefGoogle ScholarPubMed
Kalish, C. (1998). Reasons and causes: Children’s understanding of conformity to social rules and physical laws. Child Development, 69, 706720.CrossRefGoogle Scholar
Karmiloff-Smith, A., & Inhelder, B. (1974). If you want to get ahead, get a theory. Cognition, 3, 195212.CrossRefGoogle Scholar
Keil, F. C. (1989). Concepts, Kinds, and Cognitive Development. Cambridge, MA: MIT Press.Google Scholar
Keil, F. C. (2006). Explanation and understanding. Annual Review of Psychology, 57, 227254.CrossRefGoogle ScholarPubMed
Keil, F. C. (2012). Running on empty? How folk science gets by with less. Current Directions in Psychological Science, 21, 329334.CrossRefGoogle Scholar
Keil, F. C., Lockhart, K. L., & Schlegel, E. (2010). A bump on a bump? Emerging intuitions concerning the relative difficulty of the sciences. Journal of Experimental Psychology: General, 139, 1.Google ScholarPubMed
Kelemen, D. (1999a). The scope of teleological thinking in preschool children. Cognition, 70, 241272.CrossRefGoogle ScholarPubMed
Kelemen, D. (1999b). Why are rocks pointy? Children’s preference for teleological explanations of the natural world. Developmental Psychology, 35, 1440.CrossRefGoogle ScholarPubMed
Kelemen, D., & DiYanni, C. (2005). Intuitions about origins: Purpose and intelligent design in children’s reasoning about nature. Journal of Cognition and Development, 6, 331.CrossRefGoogle Scholar
Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning overhypotheses with hierarchical Bayesian models. Developmental Science, 10, 307321.CrossRefGoogle ScholarPubMed
Kidd, C., & Hayden, B. Y. (2015). The psychology and neuroscience of curiosity. Neuron, 88, 449460.CrossRefGoogle ScholarPubMed
Kuhn, T. (1962) The Structure of Scientific Revolutions. Chicago, IL: The University of Chicago Press.Google Scholar
Kuhn, D. (2002). What is scientific thinking and how does it develop? In Goswami, U. (ed.), Blackwell Handbook of Childhood Cognitive Development (pp. 371393). Oxford: Blackwell Publishing.CrossRefGoogle Scholar
Kushnir, T., & Gopnik, A. (2007). Conditional probability versus spatial contiguity in causal learning: Preschoolers use new contingency evidence to overcome prior spatial assumptions. Developmental Psychology, 43, 186.CrossRefGoogle ScholarPubMed
Lapidow, E., & Walker, C. M. (2020). Informative experimentation in intuitive science: Children select and learn from their own causal interventions. Cognition, 201, 104315.CrossRefGoogle ScholarPubMed
Leahy, B. P.,& Carey, S. E. (2020). The acquisition of modal concepts. Trends in Cognitive Science, 24, 6578.CrossRefGoogle ScholarPubMed
Legare, C. H. (2012). Exploring explanation: Explaining inconsistent evidence informs exploratory, hypothesis‐testing behavior in young children. Child Development, 83, 173185.CrossRefGoogle ScholarPubMed
Legare, C. H. (2014). The contributions of explanation and exploration to children’s scientific reasoning. Child Development Perspectives, 8, 101106.CrossRefGoogle Scholar
Legare, C. H., Gelman, S. A., & Wellman, H. M. (2010). Inconsistency with prior knowledge triggers children’s causal explanatory reasoning. Child Development, 81, 929944.CrossRefGoogle ScholarPubMed
Lockhart, K. L., Goddu, M. K., & Keil, F. C. (2017). Overoptimism about future knowledge: Early arrogance? The Journal of Positive Psychology, 12, 3646.CrossRefGoogle Scholar
Lockhart, K. L., Goddu, M. K., Smith, E. D., & Keil, F. C. (2016). What could you really learn on your own?: Understanding the epistemic limitations of knowledge acquisition. Child Development, 87, 477493.CrossRefGoogle ScholarPubMed
Loewenstein, G. (1994). The psychology of curiosity: A review and reinterpretation. Psychological Bulletin, 116, 7598.CrossRefGoogle Scholar
Lucas, C. G., Bridgers, S., Griffiths, T. L., & Gopnik, A. (2014). When children are better (or at least more open-minded) learners than adults: Developmental differences in learning the forms of causal relationships. Cognition, 131, 284299.CrossRefGoogle ScholarPubMed
Magid, R. W., Sheskin, M., & Schulz, L. E. (2015). Imagination and the generation of new ideas. Cognitive Development, 34, 99110.CrossRefGoogle Scholar
Mikulincer, M. (1997). Adult attachment style and information processing: Individual differences in curiosity and cognitive closure. Journal of Personality and Social Psychology, 72, 1217.CrossRefGoogle ScholarPubMed
Mills, C. M., & Keil, F. C. (2004). Knowing the limits of one’s understanding: The development of an awareness of an illusion of explanatory depth. Journal of Experimental Child Psychology, 87, 132.CrossRefGoogle ScholarPubMed
Mills, C. M., Legare, C. H., Bills, M., & Mejias, C. (2010). Preschoolers use questions as a tool to acquire knowledge from different sources. Journal of Cognition and Development, 11, 533560.CrossRefGoogle Scholar
Mody, S., & Carey, S. (2016). The emergence of reasoning by the disjunctive syllogism in early childhood. Cognition, 154, 4048.CrossRefGoogle ScholarPubMed
Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In Magnani, L., Nersessian, N. J., & Thagard, P. (eds.), Model-Based Reasoning in Scientific Discovery (pp. 522). Boston, MA: Springer.CrossRefGoogle Scholar
Newman, G. E., Herrmann, P., Wynn, K., & Keil, F. C. (2008). Biases towards internal features in infants’ reasoning about objects. Cognition, 107, 420432.CrossRefGoogle ScholarPubMed
O’Neill, D. K., & Gopnik, A. (1991). Young children’s ability to identify the sources of their beliefs. Developmental Psychology, 27, 390.CrossRefGoogle Scholar
Pearl, J. (2000). Causality: Models, Reasoning, and Inference. New York: Cambridge University Press.Google Scholar
Pearl, J. (2009). Causality. New York: Cambridge University Press.CrossRefGoogle Scholar
Pearl, J., & Mackenzie, D. (2018). The Book of Why: The New Science of Cause and Effect. New York: Basic Books.Google Scholar
Piaget, J. (1929). The Child’s Conception of the World. London: Kegan Paul.Google Scholar
Quine, W. V. O. (1960). Word and Object (Studies in Communication). New York: Technology Press of MIT.Google Scholar
Rafetseder, E., Cristi‐Vargas, R., & Perner, J. (2010). Counterfactual reasoning: Developing a sense of “nearest possible world.” Child Development, 81, 376389.CrossRefGoogle Scholar
Redshaw, J., & Suddendorf, T. (2016). Children’s and apes’ preparatory responses to two mutually exclusive possibilities. Current Biology, 26, 17581762.CrossRefGoogle ScholarPubMed
Redshaw, J., & Suddendorf, T. (2020). Temporal junctures in the mind. Trends in Cognitive Sciences, 24, 5264.CrossRefGoogle ScholarPubMed
Repacholi, B. M., & Gopnik, A. (1997). Early reasoning about desires: Evidence from 14-and 18-month-olds. Developmental Psychology, 33, 12.CrossRefGoogle Scholar
Ronfard, S., Zambrana, I. M., Hermansen, T. K., & Kelemen, D. (2018). Question-asking in childhood: A review of the literature and a framework for understanding its development. Developmental Review, 49, 101120.CrossRefGoogle Scholar
Ross, N., Medin, D., Coley, J. D., & Atran, S. (2003). Cultural and experiential differences in the development of folk biological induction. Cognitive Development, 18, 2547.CrossRefGoogle Scholar
Ruchlis, H. (1963). Discovering Scientific Method. New York: Harper & Row.Google Scholar
Ruggeri, A., & Lombrozo, T. (2015). Children adapt their questions to achieve efficient search. Cognition, 143, 203216.CrossRefGoogle ScholarPubMed
Ruggeri, A., Sim, Z. L., & Xu, F. (2017). “Why is Toma late to school again?” Preschoolers identify the most informative questions. Developmental Psychology, 53, 16201632.CrossRefGoogle ScholarPubMed
Salmon, W. C. (1984). Scientific Explanation and the Causal Structure of the World. Princeton, NJ: Princeton University Press.Google Scholar
Saxe, R., Tenenbaum, J. B., & Carey, S. (2005). Secret agents: Inferences about hidden causes by 10-and 12-month-old infants. Psychological Science, 16, 9951001.CrossRefGoogle Scholar
Schulz, L. E., Bonawitz, E. B., & Griffiths, T. L. (2007a). Can being scared give you a tummy ache? Naive theories, ambiguous evidence and preschoolers’ causal inferences. Developmental Psychology, 43, 11241139.CrossRefGoogle Scholar
Schulz, L. E., Goodman, N. D., Tenenbaum, J. B., & Jenkins, A. C. (2008). Going beyond the evidence: Abstract laws and preschoolers’ responses to anomalous data. Cognition, 109, 211223.CrossRefGoogle ScholarPubMed
Schulz, L. E., & Gopnik, A. (2004). Causal learning across domains. Developmental Psychology, 40, 162.CrossRefGoogle ScholarPubMed
Schulz, L. E., & Somerville, J. (2006). God does not play dice: Causal determinism and preschoolers’ causal inferences. Child Development, 77, 427442.CrossRefGoogle Scholar
Shtulman, A., & Carey, S. (2007). Improbable or impossible? How children reason about the possibility of extraordinary events. Child Development, 78, 10151032.CrossRefGoogle ScholarPubMed
Shtulman, A., & Phillips, J. (2018). Differentiating “could” from “should”: Developmental changes in modal cognition. Journal of Experimental Child Psychology, 165, 161182.CrossRefGoogle Scholar
Silvia, P. J. (2008). Interest – The curious emotion. Current Directions in Psychological Science, 17, 5760.CrossRefGoogle Scholar
Simons, D. J., & Keil, F. C. (1995). An abstract to concrete shift in the development of biological thought: The insides story. Cognition, 56, 129163.CrossRefGoogle ScholarPubMed
Sobel, D. M., & Kushnir, T. (2006). The importance of decision making in causal learning from interventions. Memory & Cognition, 34, 411419.CrossRefGoogle ScholarPubMed
Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. (1993). Causation, Prediction, and Search. Cambridge, MA: MIT press.CrossRefGoogle Scholar
Stahl, A. E., & Feigenson, L. (2015). Observing the unexpected enhances infants’ learning and exploration. Science, 348, 9194.CrossRefGoogle ScholarPubMed
Taylor, M., Esbensen, B. M., & Bennett, R. T. (1994). Children’s understanding of knowledge acquisition: The tendency for children to report that they have always known what they have just learned. Child Development, 65, 15811604.CrossRefGoogle ScholarPubMed
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331, 12791285.CrossRefGoogle Scholar
Valdesolo, P., Shtulman, A., & Baron, A. S. (2017). Science is awe-some: The emotional antecedents of science learning. Emotion Review, 9, 215221.CrossRefGoogle Scholar
Walker, C. M., Bonawitz, E., & Lombrozo, T. (2017). Effects of explaining on children’s preference for simpler hypotheses. Psychonomic Bulletin & Review, 24, 15381547.CrossRefGoogle ScholarPubMed
Walker, C. M., Bridgers, S., & Gopnik, A. (2016). The early emergence and puzzling decline of relational reasoning: Effects of knowledge and search on inferring abstract concepts. Cognition, 156, 3040.CrossRefGoogle ScholarPubMed
Walker, C. M., & Gopnik, A. (2013). Causality and imagination. In Taylor, M. (ed.), The Oxford Handbook of the Development of Imagination (pp. 342358). Oxford: Oxford University Press.Google Scholar
Walker, C. M., & Gopnik, A. (2014). Toddlers infer higher-order relational principles in causal learning. Psychological Science, 25, 161169.CrossRefGoogle ScholarPubMed
Walker, C. M., Lombrozo, T., Legare, C. H., & Gopnik, A. (2014). Explaining prompts children to privilege inductively rich properties. Cognition, 133, 343357.CrossRefGoogle ScholarPubMed
Wang, S. H., & Baillargeon, R. (2008). Can infants be “taught” to attend to a new physical variable in an event category? The case of height in covering events. Cognitive Psychology, 56, 284326.CrossRefGoogle Scholar
Weisberg, D. S., & Gopnik, A. (2013). Pretense, counterfactuals, and Bayesian causal models: Why what is not real really matters. Cognitive Science, 37, 13681381.CrossRefGoogle Scholar
Wellman, H. M. (1992). The Child’s Theory of Mind. Cambridge, MA: The MIT Press.Google Scholar
Wellman, H. M., & Gelman, S. A. (1998). Knowledge acquisition in foundational domains. In Damon, W. (ed.), Handbook of Child Psychology: Vol. 2. Cognition, Perception, and Language (pp. 523573). Hoboken, NJ: John Wiley & Sons Inc.Google Scholar
Wellman, H. M., & Woolley, J. D. (1990). From simple desires to ordinary beliefs: The early development of everyday psychology. Cognition, 35, 245275.CrossRefGoogle ScholarPubMed
Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition, 13, 103128.CrossRefGoogle ScholarPubMed
Woodward, A. L. (1999). Infants’ ability to distinguish between purposeful and non-purposeful behaviors. Infant Behavior and Development, 22, 145160.CrossRefGoogle Scholar
Woodward, J. (2003). Making Things Happen: A Theory of Causal Explanation. New York: Oxford University Press.Google Scholar
Xu, F., Dewar, K., & Perfors, A. (2009). Induction, overhypotheses, and the shape bias: Some arguments and evidence for rational constructivism. In Hood, B. M., & Santos, L. (eds.), The Origins of Object Knowledge (pp. 263284). New York: Oxford University Press.CrossRefGoogle Scholar
Xu, F., & Kushnir, T. (2013). Infants are rational constructivist learners. Current Directions in Psychological Science, 22, 2832.CrossRefGoogle Scholar

References

Aslin, R. N., Saffran, J. R., & Newport, E. L. (1998). Computation of conditional probability statistics by 8 month old infants. Psychological Science, 9, 321324.CrossRefGoogle Scholar
Baluja, S., & Fahlman, S. E. (1994). Reducing network depth in the cascade-correlation learning architecture. Technical Report CMU-CS-94-209, Carnegie Mellon University.CrossRefGoogle Scholar
Berthiaume, V. G., Shultz, T. R., & Onishi, K. H. (2013). A constructivist connectionist model of transitions on false-belief tasks. Cognition, 126, 441458.CrossRefGoogle ScholarPubMed
Bonawitz, E., Denison, S., Gopnik, A., & Griffiths, T. L. (2014). Win-Stay, Lose-Sample: A simple sequential algorithm for approximating Bayesian inference. Cognitive Psychology, 74, 3565.CrossRefGoogle ScholarPubMed
Bonawitz, E., & Shafto, P. (2016). Computational models of development, social influences. Current Opinion in Behavioral Sciences, 7, 95100.CrossRefGoogle Scholar
Bonawitz, E., Shafto, P., Gweon, H., Goodman, N. D., Spelke, E., & Schulz, L. (2011). The double-edged sword of pedagogy: Instruction limits spontaneous exploration and discovery. Cognition, 120, 322330.CrossRefGoogle ScholarPubMed
Boom, J., Hoijtink, H., & Kunnen, S. (2001). Rules in the balance: Classes, strategies, or rules for the Balance Scale Task? Cognitive Development, 16, 717735.CrossRefGoogle Scholar
Boom, J., & ter Laak, J. (2007). Classes in the balance: Latent class analysis and the balance scale task. Developmental Review, 27, 127149.CrossRefGoogle Scholar
Buchsbaum, D., Gopnik, A., Griffiths, T. L., & Shafto, P. (2011). Children’s imitation of causal action sequences is influenced by statistical and pedagogical evidence. Cognition, 120, 331340.CrossRefGoogle ScholarPubMed
Bulf, H., Johnson, S. P., & Valenza, E. (2011). Visual statistical learning in the newborn infant. Cognition, 121, 127132.CrossRefGoogle ScholarPubMed
Cassidy, K. W. (1998). Three- and four-year-old children’s ability to use desire- and belief- based reasoning. Cognition, 66, B1.CrossRefGoogle ScholarPubMed
Dandurand, F., & Shultz, T. R. (2010). Automatic detection and quantification of growth spurts. Behavior Research Methods, 42, 809823.CrossRefGoogle ScholarPubMed
Dandurand, F., & Shultz, T. R. (2014). A comprehensive model of development on the balance-scale task. Cognitive Systems Research, 31–32, 125.CrossRefGoogle Scholar
Denison, S., Reed, C., & Xu, F. (2013). The emergence of probabilistic reasoning in very young infants: Evidence from 4.5- and 6-month-olds. Developmental Psychology, 49, 243249.CrossRefGoogle ScholarPubMed
Denison, S., & Xu, F. (2014). The origins of probabilistic inference in human infants. Cognition, 130, 335347.CrossRefGoogle ScholarPubMed
Elman, J. L. (1996). Rethinking Innateness: A Connectionist Perspective on Development. Cambridge, MA: MIT Press.Google Scholar
Elman, J. L. (2005). Connectionist models of cognitive development: Where next? Trends in Cognitive Sciences, 9, 111117.CrossRefGoogle ScholarPubMed
Fahlman, S. E. (1988). An empirical study of learning speed in back-propagation networks. Neural Networks, 6, 119.Google Scholar
Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In Touretzky, D. S. (ed.), Advances in Neural Information Processing Systems (pp. 524532). Los Altos, CA: Morgan Kaufmann.Google Scholar
Ferretti, R. P., & Butterfield, E. C. (1986). Are children’s rule-assessment classifications invariant across instances of problem types? Child Development, 57, 14191428.CrossRefGoogle ScholarPubMed
French, R. M., Mermillod, M., Mareschal, D., & Quinn, P. C. (2004). The role of bottom-up processing in perceptual categorization by 3- to 4-month-old infants: Simulations and data. Journal of Experimental Psychology: General, 133, 382397.CrossRefGoogle ScholarPubMed
Friedman, O., & Leslie, A. M. (2005). Processing demands in belief-desire reasoning: Inhibition or general difficulty? Developmental Science, 8, 218225.CrossRefGoogle ScholarPubMed
Gershman, S., & Beck, J. (2017). Complex probabilistic inference: from cognition to neural computation. In Moustafa, A. (ed.), Computational Models of Brain and Behavior (p. 453). Hoboken, NJ: Wiley-Blackwell.CrossRefGoogle Scholar
Goodman, N. D., Baker, C. L., Bonawitz, E. B., Mansinghka, V. K., Gopnik, A., & Wellman, H. M. (2006). Intuitive theories of mind: A rational approach to false belief. In Proceedings of the 28th Annual Conference of the Cognitive Science Society (pp. 13821387). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Goodman, N. D., Ullman, T. D., & Tenenbaum, J. B. (2011). Learning a theory of causality. Psychological Review, 118, 110.CrossRefGoogle ScholarPubMed
Gopnik, A., & Bonawitz, E. (2015). Bayesian models of child development. Wiley Interdisciplinary Reviews: Cognitive Science, 6, 7586.Google ScholarPubMed
Gopnik, A., Glymour, C., Sobel, D., Schulz, L., Kushnir, T., & Danks, D. (2004). A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review, 111, 131.CrossRefGoogle ScholarPubMed
Griffiths, T. L., Chater, N., Norris, D., & Pouget, A. (2012). How the Bayesians got their beliefs (and what those beliefs actually are): Comment on Bowers and Davis. Psychological Bulletin, 138, 415422.CrossRefGoogle ScholarPubMed
Hamlin, K., Ullman, T., Tenenbaum, J., Goodman, N., & Baker, C. (2013). The mentalistic basis of core social cognition: Experiments in preverbal infants and a computational model. Developmental Science, 16, 209226.CrossRefGoogle Scholar
Kemp, C., Perfors, A., & Tenenbaum, J. B. (2007). Learning overhypotheses with hierarchical Bayesian models. Developmental Science, 10, 307321.CrossRefGoogle ScholarPubMed
Kirkham, N. Z., Slemmer, J. A., & Johnson, S. P. (2002). Visual statistical learning in infancy: Evidence for a domain general learning mechanism. Cognition, 83, 45.CrossRefGoogle ScholarPubMed
Klahr, D., Langley, P., & Neches, R. (1987). Production System Models of Learning and Development. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Klahr, D., & Wallace, J. G. (1976). Cognitive Development: An Information Processing View. Hillsdale; NJ: Erlbaum.Google Scholar
Lochmann, T., & Deneve, S. (2011). Neural processing as causal inference. Current Opinion in Neurobiology, 21, 774781.CrossRefGoogle ScholarPubMed
Mareschal, D., & French, R. (2017). Tracx2: A connectionist autoencoder using graded chunks to model infant visual statistical learning. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160057.CrossRefGoogle ScholarPubMed
Marr, D. (2010). Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Mayor, J., & Plunkett, K. (2010). A neurocomputational account of taxonomic responding and fast mapping in early word learning. Psychological Review, 117, 131.CrossRefGoogle ScholarPubMed
Munakata, Y., & McClelland, J. L. (2003). Connectionist models of development. Developmental Science, 6, 413429.CrossRefGoogle Scholar
Nobandegani, A., & Shultz, T. (2018). Example generation under constraints using cascade correlation neural nets. CogSci. Available from https://cogsci.mindmodeling.org/2018/papers/0456/index.html. Last accessed August 23, 2021.Google Scholar
O’Loughlin, C., & Thagard, P. (2000). Autism and coherence: A computational model. Mind and Language, 15, 375392.CrossRefGoogle Scholar
Onishi, K., & Baillargeon, R. (2005). Do 15-month-old infants understand false beliefs? Science, 308, 255258.CrossRefGoogle ScholarPubMed
Pearl, J. (2000). Causality: Models, Reasoning and Inference. Cambridge, MA: MIT Press.Google Scholar
Perfors, A., Tenenbaum, J., Griffiths, T., & Xu, F. (2011a). A tutorial introduction to Bayesian models of cognitive development. Cognition, 120, 302321.CrossRefGoogle ScholarPubMed
Perfors, A., Tenenbaum, J., & Regier, T. (2011b). The learnability of abstract syntactic principles. Cognition, 118, 306338.CrossRefGoogle ScholarPubMed
Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. (2012). Bootstrapping in a language of thought: A formal model of numerical concept learning. Cognition, 123, 199217.CrossRefGoogle Scholar
Quinlan, P. T., van der Maas, H. L. J., Jansen, B. R. J., Booij, O., & Rendell, M. (2007). Re-thinking stages of cognitive development: An appraisal of connectionist models of the balance scale task. Cognition, 103, 413459.CrossRefGoogle ScholarPubMed
Restle, F. (1962). The selection of strategies in cue learning. Psychological Review, 69, 329343.CrossRefGoogle ScholarPubMed
Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-old infants. Science, 274, 19261928.CrossRefGoogle ScholarPubMed
Schapiro, A. C., & McClelland, J. L. (2009). A connectionist model of a continuous developmental transition in the balance scale task. Cognition, 110, 395411.CrossRefGoogle ScholarPubMed
Schmidt, W., & Ling, C. (1996). A decision-tree model of balance scale development. Machine Learning, 24, 203229.CrossRefGoogle Scholar
Schulz, L. E., Bonawitz, E., & Griffiths, T. L. (2007). Can being scared cause tummy aches? Naive theories, ambiguous evidence, and preschoolers’ causal inferences. Developmental Psychology, 43, 11241139.CrossRefGoogle ScholarPubMed
Shafto, P., Goodman, N. D., & Frank, M. C. (2012). Learning from others: The consequences of psychological reasoning for human learning. Perspectives on Psychological Science, 7, 341351.CrossRefGoogle ScholarPubMed
Shultz, T. R. (2003). Computational Developmental Psychology. Cambridge, MA: MIT Press.Google Scholar
Shultz, T. R. (2007). The Bayesian revolution approaches psychological development. Developmental Science, 10, 357364.CrossRefGoogle ScholarPubMed
Shultz, T. R. (2010). Computational modeling of infant concept learning: The developmental shift from features to correlations. In Oakes, L. M., Cashon, C. H., Casasola, M., & Rakison, D. H. (eds.), Infant Perception and Cognition: Recent Advances, Emerging Theories, and Future Directions (pp. 125152). New York: Oxford University Press.CrossRefGoogle Scholar
Shultz, T. R. (2012). A constructive neural-network approach to modeling psychological development. Cognitive Development, 27, 383400.CrossRefGoogle Scholar
Shultz, T. R. (2013). Computational models in developmental psychology. In Zelazo, P. D. (ed.), Oxford Handbook of Developmental Psychology, Vol. 1: Body and Mind (pp. 477504). New York: Oxford University Press.Google Scholar
Shultz, T. R. (2017). Constructive artificial neural-network models for cognitive development. In Budwig, N., Turiel, E., & Zelazo, P. D. (eds.), New Perspectives on Human Development (pp. 1326). Cambridge: Cambridge University Press.Google Scholar
Shultz, T. R., & Bale, A. C. (2006). Neural networks discover a near-identity relation to distinguish simple syntactic forms. Minds and Machines, 16, 107139.CrossRefGoogle Scholar
Shultz, T. R., & Cohen, L. B. (2004). Modeling age differences in infant category learning. Infancy, 5, 153171.CrossRefGoogle ScholarPubMed
Shultz, T. R., & Doty, E. (2014). Knowing when to quit on unlearnable problems: Another step towards autonomous learning. In Mayor, J., & Gomez, P. (ed.), Computational Models of Cognitive Processes (pp. 211221). London: World Scientific.CrossRefGoogle Scholar
Shultz, T. R., & Fahlman, S. E. (2010). Cascade-correlation. In Sammut, C., & Webb, G. (eds.), Encyclopedia of Machine Learning Part 4/C (pp. 139147). Heidelberg, Germany: Elsevier.Google Scholar
Shultz, T. R., Mareschal, D., & Schmidt, W. C. (1994). Modeling cognitive development on balance scale phenomena. Machine Learning, 16, 5786.CrossRefGoogle Scholar
Shultz, T. R., Mysore, S. P., & Quartz, S. R. (2012). Why let networks grow? In Mareschal, D., Sirois, S., Westermann, G., & Johnson, M. H. (eds.), Neuroconstructivism: Perspectives and Prospects (Vol. 2, pp. 6598). Oxford: Oxford University Press.Google Scholar
Shultz, T. R., & Nobandegani, A. S. (2020). Probability without counting and dividing: A fresh computational perspective. In Denison, S., Mack, M., Xu, Y., & Armstrong, B. (eds.), Proceedings of the 42nd Annual Conference of the Cognitive Science Society (pp. 17). Toronto ON: Cognitive Science Society.Google Scholar
Shultz, T. R., & Rivest, F. (2001). Knowledge-based cascade-correlation: Using knowledge to speed learning. Connection Science, 13, 4372.CrossRefGoogle Scholar
Shultz, T. R., Rivest, F., Egri, L., Thivierge, J.-P., & Dandurand, F. (2007). Could knowledge-based neural learning be useful in developmental robotics? The case of KBCC. International Journal of Humanoid Robotics, 4, 245279.CrossRefGoogle Scholar
Shultz, T. R., & Sirois, S. (2008). Computational models of developmental psychology. In Sun, R. (ed.), The Cambridge Handbook of Computational Psychology (pp. 451476). New York: Cambridge University Press.Google Scholar
Siegler, R. S. (1976). Three aspects of cognitive development. Cognitive Psychology, 8, 481520.CrossRefGoogle Scholar
Siegler, R. S. (1996). Emerging Minds: The Process of Change in Children’s Thinking. New York: Oxford University Press.CrossRefGoogle Scholar
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331, 12791285.CrossRefGoogle Scholar
Thomas, M. S. C., & Karmiloff-Smith, A. (2003). Connectionist models of development, developmental disorders and individual differences. In Sternberg, R. J., Lautrey, J., & Lubart, T. (eds.), Models of Intelligence: International Perspectives (pp. 133150). Washington, DC: American Psychological Association.Google Scholar
Thompson, V. A., Prowse Turner, J. A., & Pennycook, G. (2011). Intuition, reason, and metacognition. Cognitive Psychology, 63, 107140.CrossRefGoogle ScholarPubMed
Triona, L. M., Masnick, A. M., & Morris, B. J. (2019). What does it take to pass the false belief task? An ACT-R model. CogSci. Available from https://escholarship.org/uc/item/49c346x1. Last accessed August 23, 2021.Google Scholar
Tummeltshammer, K., Amso, D., French, R. M., & Kirkham, N. Z. (2017). Across space and time: Infants learn from backward and forward visual statistics. Developmental Science, 20, e12474.CrossRefGoogle ScholarPubMed
Ullman, T. D., Goodman, N. D., & Tenenbaum, J. B. (2012). Theory learning as stochastic search in the language of thought. Cognitive Development, 27, 455480.CrossRefGoogle Scholar
Wellman, H. M., Cross, D., & Watson, J. (2001). Meta-analysis of theory-of-mind development: The truth about false belief. Child Development, 72, 655684.CrossRefGoogle ScholarPubMed
Westermann, G., Sirois, S., Shultz, T. R., & Mareschal, D. (2006). Modeling developmental cognitive neuroscience. Trends in Cognitive Sciences, 10, 227232.CrossRefGoogle ScholarPubMed
Xu, F., & Tenenbaum, J. B. (2007). Word learning as Bayesian inference. Psychological Review, 114, 245272.CrossRefGoogle ScholarPubMed
Younger, B. A., & Cohen, L. B. (1986). Developmental change in infants’ perception of correlations among attributes. Child Development, 57, 803815.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×