Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T02:19:38.468Z Has data issue: false hasContentIssue false

33 - The Role of Nutrition in Cognitive Decline

from Part V - Later Life and Interventions

Published online by Cambridge University Press:  28 May 2020

Ayanna K. Thomas
Affiliation:
Tufts University, Massachusetts
Angela Gutchess
Affiliation:
Brandeis University, Massachusetts
Get access

Summary

Strong evidence suggests that older adults at risk of cognitive decline benefit from healthy lifestyle strategies to prevent or delay cognitive disorders. In particular, nutrition has been shown to preserve cognitive functions. Nutritional interventions, whether with single nutrients or following dietary patterns, have all shown protective effects against cognitive decline. In particular, higher levels of vitamins C, D, E, K, and the B family were associated with a better cognitive status. Likewise, fruit and vegetable consumption and omega-3 intake were protective against declined cognition. Regarding dietary patterns, the Mediterranean-type diet, DASH, and MIND diets are all positively associated with slower rates of cognitive decline and decreased risk of incident Alzheimer’s disease and dementia. Nevertheless, intervention trials with vitamins or omega-3 supplements have not demonstrated conclusive evidence for preventing cognitive decline in healthy older adults, or for preventing loss or restoring function in patients with mild to moderate decline. Nutritional recommendations for older adults should emphasize dietary intakes of nutrients and food groups following those recommendations, as well as adoption of the Mediterranean, DASH, or MIND diets, in order to decrease risk of cognitive decline.

Type
Chapter
Information
The Cambridge Handbook of Cognitive Aging
A Life Course Perspective
, pp. 612 - 627
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnew-Blais, J. C., Wassertheil-Smoller, S., Kang, J. H., et al. (2015). Folate, vitamin B-6, and vitamin B-12 intake and mild cognitive impairment and probable dementia in the Women’s Health Initiative Memory Study. Journal of the Academy of Nutrition and Dietetics, 115(2), 231241. doi: 10.1016/j.jand.2014.07.006Google Scholar
Allès, B., Samieri, C., Feart, C., et al. (2012). Dietary patterns: A novel approach to examine the link between nutrition and cognitive function in older individuals. Nutrition Research Reviews, 25(2), 207222. doi: 10.1017/S0954422412000133Google Scholar
Amadieu, C., Lefèvre-Arbogast, S., Delcourt, C., et al. (2017). Nutrient biomarker patterns and long-term risk of dementia in older adults. Alzheimer’s and Dementia, 13(10), 11251132. doi: 10.1016/j.jalz.2017.01.025Google Scholar
Andrieu, S., Guyonnet, S., Coley, N., et al. (2017). Effect of long-term omega 3 polyunsaturated fatty acid supplementation with or without multidomain intervention on cognitive function in elderly adults with memory complaints (MAPT): A randomised, placebo-controlled trial. Lancet Neurology, 16(5), 377389. doi: 10.1016/S1474-4422(17)30040-6Google Scholar
Annweiler, C., Montero-Odasso, M., Llewellyn, D. J., et al. (2013). Meta-analysis of memory and executive dysfunctions in relation to vitamin D. Journal of Alzheimer’s Disease, 37(1), 147171. doi: 10.3233/JAD-130452Google Scholar
Atallah, N., Adjibade, M., Lelong, H., et al. (2018). How healthy lifestyle factors at midlife relate to healthy aging. Nutrients, 10(7), 854. doi: 10.3390/nu10070854Google Scholar
Berendsen, A. A., Kang, J. H., van de Rest, O., et al. (2017). The Dietary Approaches to Stop Hypertension diet, cognitive function, and cognitive decline in American older women. Journal of the American Medical Directors Association, 18(5), 427432. doi: 10.1016/j.jamda.2016.11.026CrossRefGoogle ScholarPubMed
Boespflug, E. L., McNamara, R. K., Eliassen, J. C., Schidler, M. D., & Krikorian, R. (2016). Fish oil supplementation increases event-related posterior cingulate activation in older adults with subjective memory impairment. Journal of Nutrition, Health and Aging, 20(2), 161169. doi: 10.1007/s12603-015-0609-6Google Scholar
Brangier, A., Ferland, G., Rolland, Y., et al. (2018). Vitamin K antagonists and cognitive decline in older adults: A 24-month follow-up. Nutrients, 10(6), 666. doi: 10.3390/nu10060666CrossRefGoogle Scholar
Bredesen, D. E. (2014). Reversal of cognitive decline: A novel therapeutic program. Aging (Albany NY), 6(9), 707717. doi: 10.18632/aging.100690Google Scholar
Bredesen, D. E. (2017). The end of Alzheimer’s: The first program to prevent and reverse cognitive decline. New York: Penguin Random House.Google Scholar
Bredesen, D. E., Amos, E. C., Canick, J., et al. (2016). Reversal of cognitive decline in Alzheimer’s disease. Aging (Albany NY), 8(6), 12501258. doi: 10.18632/aging.100981Google Scholar
Burckhardt, M., Herke, M., Wustmann, T., et al. (2016). Omega‐3 fatty acids for the treatment of dementia. Cochrane Database of Systematic Reviews, 4, CD009002. doi: 10.1002/14651858.CD009002.pub3Google Scholar
Butler, M., Nelson, V. A., Davila, H., et al. (2018). Over-the-counter supplement interventions to prevent cognitive decline, mild cognitive impairment, and clinical Alzheimer-type dementia: A systematic review. Annals of Internal Medicine, 168(1), 5262. doi: 10.7326/M17-1530CrossRefGoogle ScholarPubMed
Cao, L., Tan, L., Wang, H. F., et al. (2016). Dietary patterns and risk of dementia: A systematic review and meta-analysis of cohort studies. Molecular Neurobiology, 53(9), 61446154. doi: 10.1007/s12035-015-9516-4CrossRefGoogle ScholarPubMed
Cardoso, B. R., Cominetti, C., & Cozzolino, S. M. F. (2013). Importance and management of micronutrient deficiencies in patients with Alzheimer’s disease. Clinical Interventions in Aging, 8, 531542. doi: 10.2147/CIA.S27983Google Scholar
Chhetri, J. K., de Souto Barreto, P., Cantet, C., et al. (2018). Effects of a 3-year multi-domain intervention with or without Omega-3 supplementation on cognitive function in older subjects with increased CAIDE dementia scores. Journal of Alzheimer’s Disease, 64(1), 7178. doi: 10.3233/JAD-180209Google Scholar
Chiu, C. C., Su, K. P., Cheng, T. C., et al. (2008). The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: A preliminary randomized double-blind placebo-controlled study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 32(6), 15381544. doi: 10.1016/j.pnpbp.2008.05.015Google Scholar
Chouet, J., Ferland, G., Féart, C., et al. (2015). Dietary vitamin K intake is associated with cognition and behaviour among geriatric patients: The CLIP study. Nutrients, 7(8), 67396750. doi: 10.3390/nu7085306Google Scholar
Commenges, D., Scotet, V., Renaud, S., et al. (2000). Intake of flavonoids and risk of dementia. European Journal of Epidemiology, 16(4), 357363. doi: 10.1023/a:1007614613771Google Scholar
da Silva, S. L., Vellas, B., Elemans, S., et al. (2014). Plasma nutrient status of patients with Alzheimer’s disease: Systematic review and meta-analysis. Alzheimer’s and Dementia, 10(4), 485502. doi: 10.1016/j.jalz.2013.05.1771CrossRefGoogle Scholar
Devore, E. E., Grodstein, F., van Rooij, F. J., et al. (2010). Dietary antioxidants and long-term risk of dementia. Archives of Neurology, 67(7), 819825. doi: 10.1001/archneurol.2010.144CrossRefGoogle ScholarPubMed
Douaud, G., Refsum, H., de Jager, C. A., et al. (2013). Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proceedings of the National Academy of Sciences USA, 110(23), 95239528. doi: 10.1073/pnas.1301816110Google Scholar
Engelborghs, S., Gilles, C., Ivanoiu, A., & Vandewoude, M. (2014). Rationale and clinical data supporting nutritional intervention in Alzheimer’s disease. Acta Clinica Belgica, 69(1), 1724.Google Scholar
Engelhart, M. J., Geerlings, M. I., Ruitenberg, A., et al. (2002). Dietary intake of antioxidants and risk of Alzheimer disease. JAMA, 287(24), 32233229. doi: 10.1179/0001551213Z.0000000006Google Scholar
Farina, N., Llewellyn, D., Isaac, M. G., & Tabet, N. (2017). Vitamin E for Alzheimer’s dementia and mild cognitive impairment. Cochrane Database of Systematic Reviews, 1, CD002854. doi: 10.1002/14651858.CD002854.pub4Google ScholarPubMed
Feart, C., Helmer, C., Merle, B., et al. (2017). Associations of lower vitamin D concentrations with cognitive decline and long-term risk of dementia and Alzheimer’s disease in older adults. Alzheimer’s and Dementia,13(11),12071216. doi: 10.1016/j.jalz.2017.03.003Google Scholar
Feart, C., Letenneur, L., Helmer, C., et al. (2016). Plasma carotenoids are inversely associated with dementia risk in an elderly French cohort. Journals of Gerontology, Series A: Biomedical Sciences and Medical Sciences, 71(5), 683688. doi: 10.1093/gerona/glv135Google Scholar
Feart, C., Samieri, C., & Barberger-Gateau, P. (2015). Mediterranean diet and cognitive health: An update of available knowledge. Current Opinion in Clinical Nutrition and Metabolic Care, 18(1), 5162. doi: 10.1097/MCO.0000000000000131CrossRefGoogle ScholarPubMed
Feart, C., Samieri, C., Rondeau, V., et al. (2009). Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA, 302(6), 638648. doi: 10.1001/jama.2009.1146CrossRefGoogle ScholarPubMed
Fenech, M. F. (2010). Nutriomes and nutrient arrays – the key to personalised nutrition for DNA damage prevention and cancer growth control. Genome Integrity, 1(1), 11. doi: 10.1186/2041-9414-1-11Google Scholar
Fenech, M. (2017). Vitamins associated with brain aging, mild cognitive impairment, and Alzheimer disease: Biomarkers, epidemiological and experimental evidence, plausible mechanisms, and knowledge gaps. Advances in Nutrition, 8(6), 958970. doi: 10.3945/an.117.015610Google Scholar
Ferrand, C., Féart, C., Martinent, G., et al. (2017). Dietary patterns in French home-living older adults: Results from the PRAUSE study. Archives of Gerontology and Geriatrics, 74, 8893. doi: 10.1016/j.archger.2017.01.015Google Scholar
Freund-Levi, Y., Eriksdotter-Jönhagen, M., Cederholm, T., et al. (2006). ω-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: A randomized double-blind trial. Archives of Neurology, 63(10), 14021408. doi: 10.1001/archneur.63.10.1402Google Scholar
Goodwill, A. M., & Szoeke, C. (2017). A systematic review and meta‐analysis of the effect of low vitamin D on cognition. Journal of the American Geriatrics Society, 65(10), 21612168. doi: 10.1111/jgs.15012Google Scholar
Hu, F. B. (2002). Dietary pattern analysis: A new direction in nutritional epidemiology. Current Opinion in Lipidology, 13(1), 39. doi: 10.1097/00041433-200202000-00002Google Scholar
Hughes, C. F., Ward, M., Tracey, F., et al. (2017). B-vitamin intake and biomarker status in relation to cognitive decline in healthy older adults in a 4-year follow-up study. Nutrients, 9(1), 53. doi: 10.3390/nu9010053CrossRefGoogle Scholar
Jiang, X., Huang, J., Song, D., et al. (2017). Increased consumption of fruit and vegetables is related to a reduced risk of cognitive impairment and dementia: Meta-analysis. Frontiers in Aging Neuroscience, 9, 18. doi: 10.3389/fnagi.2017.00018CrossRefGoogle Scholar
Kado, D. M., Karlamangla, A. S., Huang, M. H., et al. (2005). Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur Studies of Successful Aging. American Journal of Medicine, 118(2), 161167. doi: 10.1016/j.amjmed.2004.08.01Google Scholar
Kim, H., Kim, G., Jang, W., Kim, S. Y., & Chang, N. (2014). Association between intake of B vitamins and cognitive function in elderly Koreans with cognitive impairment. Nutrition Journal, 13(1), 118. doi: 10.1186/1475-2891-13-118Google Scholar
Lamport, D. J., Saunders, C., Butler, L. T., & Spencer, J. P. (2014). Fruits, vegetables, 100% juices, and cognitive function. Nutrition Reviews, 72(12), 774789. doi: 10.1111/nure.12149Google Scholar
Lee, A. T., Richards, M., Chan, W. C., et al. (2017). Lower risk of incident dementia among Chinese older adults having three servings of vegetables and two servings of fruits a day. Age and Ageing, 46(5), 773779. doi: 10.1093/ageing/afx018Google Scholar
Lee, L. K., Shahar, S., Chin, A. V., & Yusoff, N. A. M. (2013). Docosahexaenoic acid-concentrated fish oil supplementation in subjects with mild cognitive impairment (MCI): A 12-month randomised, double-blind, placebo-controlled trial. Psychopharmacology, 225(3), 605612. doi: 10.1007/s00213-012-2848-0Google Scholar
Lefèvre-Arbogast, S., Féart, C., Dartigues, J. F., et al. (2016). Dietary B vitamins and a 10-year risk of dementia in older persons. Nutrients, 8(12), 761. doi: 10.3390/nu8120761Google Scholar
Lourida, I., Soni, M., Thompson-Coon, J., et al. (2013). Mediterranean diet, cognitive function, and dementia: A systematic review. Epidemiology, 24(4), 479489. doi: 10.1097/EDE.0b013e3182944410Google Scholar
Lu, Y., An, Y., Guo, J., et al. (2016). Dietary intake of nutrients and lifestyle affect the risk of mild cognitive impairment in the Chinese elderly population: A cross-sectional study. Frontiers in Behavioral Neuroscience, 10, 229. doi: 10.3389/fnbeh.2016.00229CrossRefGoogle ScholarPubMed
Masana, M. F., Koyanagi, A., Haro, J. M., & Tyrovolas, S. (2017). n-3 Fatty acids, Mediterranean diet and cognitive function in normal aging: A systematic review. Experimental Gerontology, 91, 3950. doi: 10.1016/j.exger.2017.02.008Google Scholar
Mattson, M. P., & Shea, T. B. (2003). Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends in Neurosciences, 26(3), 137146. doi: 10.1016/S0166-2236(03)00032-8CrossRefGoogle ScholarPubMed
McCleery, J., Abraham, R. P., Denton, D. A., et al. (2018). Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database of Systematic Reviews, 11, CD011905. doi.org/10.1002/14651858.CD011905.pub2Google Scholar
Merrill, D. A., Siddarth, P., Raji, C. A., et al. (2016). Modifiable risk factors and brain positron emission tomography measures of amyloid and tau in nondemented adults with memory complaints. American Journal of Geriatric Psychiatry, 24(9), 729737. doi: 10.1016/j.jagp.2016.05.007Google Scholar
Merrill, D. A., & Small, G. W. (2011). Prevention in psychiatry: Effects of healthy lifestyle on cognition. Psychiatric Clinics, 34(1), 249261. doi: 10.1016/j.psc.2010.11.009Google Scholar
Miller, J. W., Harvey, D. J., Beckett, L. A., et al. (2015). Vitamin D status and rates of cognitive decline in a multiethnic cohort of older adults. JAMA Neurology, 72(11), 12951303. doi: 10.1001/jamaneurol.2015.2115CrossRefGoogle Scholar
Miller, M. G., Thangthaeng, N., Poulose, S. M., & Shukitt-Hale, B. (2017). Role of fruits, nuts, and vegetables in maintaining cognitive health. Experimental Gerontology, 94, 2428. doi: 10.1016/j.exger.2016.12.014Google Scholar
Mokry, L. E., Ross, S., Morris, J. A., et al. (2016). Genetically decreased vitamin D and risk of Alzheimer disease. Neurology, 87(24), 25672574. doi: 10.1212/WNL.0000000000003430CrossRefGoogle ScholarPubMed
Moore, E. M., Ames, D., Mander, A. G., et al. (2014). Among vitamin B12 deficient older people, high folate levels are associated with worse cognitive function: Combined data from three cohorts. Journal of Alzheimer’s Disease, 39(3), 661668. doi: 10.3233/JAD-131265Google Scholar
Morris, M. C., Evans, D. A., Tangney, C. C., et al. (2005). Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change. American Journal of Clinical Nutrition, 81(2), 508514. doi: 10.1093/ajcn.81.2.508Google Scholar
Morris, M. C., Tangney, C. C., Wang, Y., et al. (2015a). MIND diet slows cognitive decline with aging. Alzheimer’s and Dementia, 11(9), 10151022. doi: 10.1016/j.jalz.2015.04.011Google Scholar
Morris, M. C., Tangney, C. C., Wang, Y., et al. (2015b). MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s and Dementia, 11(9), 10071014. doi: 10.1016/j.jalz.2014.11.009CrossRefGoogle ScholarPubMed
Morris, M. S., Jacques, P. F., Rosenberg, I. H., & Selhub, J. (2007). Folate and vitamin B-12 status in relation to anemia, macrocytosis, and cognitive impairment in older Americans in the age of folic acid fortification. American Journal of Clinical Nutrition, 85(1), 193200. doi: 10.1093/ajcn/85.1.193Google Scholar
Ngandu, T., Lehtisalo, J., Solomon, A., et al. (2015). A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet, 385(9984), 22552263. doi: 10.1016/S0140-6736(15)60461-5Google Scholar
Nooyens, A. C., Milder, I. E., Van Gelder, B. M., et al. (2015). Diet and cognitive decline at middle age: The role of antioxidants. British Journal of Nutrition, 113(9), 14101417. doi: 10.1017/S0007114515000720CrossRefGoogle ScholarPubMed
Norton, S., Matthews, F. E., Barnes, D. E., Yaffe, K., & Brayne, C. (2014). Potential for primary prevention of Alzheimer’s disease: An analysis of population-based data. Lancet Neurology, 13(8), 788794. doi: 10.1016/S1474-4422(14)70136-XCrossRefGoogle ScholarPubMed
Otaegui-Arrazola, A., Amiano, P., Elbusto, A., Urdaneta, E., & Martínez-Lage, P. (2014). Diet, cognition, and Alzheimer’s disease: Food for thought. European Journal of Nutrition, 53(1), 123. doi: 10.1007/s00394-013-0561-3CrossRefGoogle ScholarPubMed
Pelletier, A., Barul, C., Féart, C., et al. (2015). Mediterranean diet and preserved brain structural connectivity in older subjects. Alzheimer’s and Dementia, 11(9), 10231031. doi: 10.1016/j.jalz.2015.06.1888Google Scholar
Péneau, S., Galan, P., Jeandel, C., et al. (2011). Fruit and vegetable intake and cognitive function in the SU. VI. MAX 2 prospective study. American Journal of Clinical Nutrition, 94(5), 12951303. doi: 10.3945/ajcn.111.014712Google Scholar
Petersson, S. D., & Philippou, E. (2016). Mediterranean diet, cognitive function, and dementia: A systematic review of the evidence. Advances in Nutrition, 7(5), 889904. doi: 10.3945/an.116.012138Google Scholar
Presse, N., Belleville, S., Gaudreau, P., et al. (2013). Vitamin K status and cognitive function in healthy older adults. Neurobiology of Aging, 34(12), 27772783. doi: 10.1016/j.neurobiolaging.2013.05.031CrossRefGoogle ScholarPubMed
Presse, N., Shatenstein, B., Kergoat, M. J., & Ferland, G. (2008). Low vitamin K intakes in community-dwelling elders at an early stage of Alzheimer’s disease. Journal of the American Dietetic Association, 108(12), 20952099. doi: 10.1016/j.jada.2008.09.013Google Scholar
Raji, C. A., Erickson, K. I., Lopez, O. L., et al. (2014). Regular fish consumption and age-related brain gray matter loss. American Journal of Preventive Medicine, 47(4), 444451. doi: 10.1016/j.amepre.2014.05.037Google Scholar
Ramos, M. I., Allen, L. H., Mungas, D. M., et al. (2005). Low folate status is associated with impaired cognitive function and dementia in the Sacramento Area Latino Study on Aging. American Journal of Clinical Nutrition, 82(6), 13461352. doi: 10.1093/ajcn/82.6.1346CrossRefGoogle Scholar
Samieri, C., Maillard, P., Crivello, F., et al. (2012). Plasma long-chain omega-3 fatty acids and atrophy of the medial temporal lobe. Neurology, 79(7), 642650. doi: 10.1212/WNL.0b013e318264e394Google Scholar
Scarmeas, N., Luchsinger, J. A., Schupf, N., et al. (2009). Physical activity, diet, and risk of Alzheimer disease. JAMA, 302(6), 627637. doi: 10.1001/jama.2009.1144Google Scholar
Scarmeas, N., Stern, Y., Tang, M. X., Mayeux, R., & Luchsinger, J. A. (2006). Mediterranean diet and risk for Alzheimer’s disease. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 59(6), 912921. doi: 10.1002/ana.20854Google Scholar
Shakersain, B., Santoni, G., Larsson, S. C., et al. (2016). Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimer’s and Dementia, 12(2), 100109. doi: 10.1016/j.jalz.2015.08.002Google Scholar
Shatenstein, B., Kergoat, M. J., & Reid, I. (2007). Poor nutrient intakes during 1-year follow-up with community-dwelling older adults with early-stage Alzheimer dementia compared to cognitively intact matched controls. Journal of the American Dietetic Association, 107(12), 20912099. doi: 10.1016/j.jada.2007.09.008Google Scholar
Siervo, M., Arnold, R., Wells, J. C. K., et al. (2011). Intentional weight loss in overweight and obese individuals and cognitive function: A systematic review and meta‐analysis. Obesity Reviews, 12(11), 968983. doi: 10.1111/j.1467-789X.2011.00903.xGoogle Scholar
Smith, P. J., & Blumenthal, J. A. (2016). Dietary factors and cognitive decline. Journal of Prevention of Alzheimer’s Disease, 3(1), 5364. doi: 10.14283/jpad.2015.71Google Scholar
Sofi, F., Abbate, R., Gensini, G. F., & Casini, A. (2010). Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. American Journal of Clinical Nutrition, 92(5), 11891196. doi: 10.3945/ajcn.2010.29673Google Scholar
Solfrizzi, V., Custodero, C., Lozupone, M., et al. (2017). Relationships of dietary patterns, foods, and micro-and macronutrients with Alzheimer’s disease and late-life cognitive disorders: A systematic review. Journal of Alzheimer’s Disease, 59(3), 815849. doi: 10.3233/JAD-170248Google Scholar
Soutif-Veillon, A., Ferland, G., Rolland, Y., et al. (2016). Increased dietary vitamin K intake is associated with less severe subjective memory complaint among older adults. Maturitas, 93, 131136. doi: 10.1016/j.maturitas.2016.02.004Google Scholar
Tangney, C. C., Li, H., Wang, Y., et al. (2014). Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology, 83(16), 14101416. doi: 10.1212/WNL.0000000000000884Google Scholar
Tussing-Humphreys, L., Lamar, M., Blumenthal, J. A., et al. (2017). Building research in diet and cognition: The BRIDGE randomized controlled trial. Contemporary Clinical Trials, 59, 8797. doi: 10.1016/j.cct.2017.06.003Google Scholar
Van Dyk, K., & Sano, M. (2007). The impact of nutrition on cognition in the elderly. Neurochemical Research, 32(4–5), 893904. doi: 10.1007/s11064-006-9241-5Google Scholar
Vogiatzoglou, A., Refsum, H., Johnston, C., et al. (2008). Vitamin B12 status and rate of brain volume loss in community-dwelling elderly. Neurology, 71(11), 826832. doi: 10.1212/01.wnl.0000325581Google Scholar
Willett, W. C., Sacks, F., Trichopoulou, A., et al. (1995). Mediterranean diet pyramid: A cultural model for healthy eating. American Journal of Clinical Nutrition, 61(6), 1402S1406S. doi: 10.1093/ajcn/61.6.1402SGoogle Scholar
Witte, A. V., Fobker, M., Gellner, R., Knecht, S., & Flöel, A. (2009). Caloric restriction improves memory in elderly humans. Proceedings of the National Academy of Sciences USA, 106(4), 12551260. doi: 10.1073/pnas.0808587106Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×