Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-26T09:28:17.820Z Has data issue: false hasContentIssue false

5 - Seasonal and Interannual Variability of Light and UV Acclimation in Mosses

Published online by Cambridge University Press:  05 October 2012

Niina M. Lappalainen
Affiliation:
University of Oulu, Finland
Anna Hyyryläinen
Affiliation:
University of Oulu, Finland
Satu Huttunen
Affiliation:
University of Oulu, Finland
Nancy G. Slack
Affiliation:
Sage Colleges, New York
Lloyd R. Stark
Affiliation:
University of Nevada, Las Vegas
Get access

Summary

Introduction

Anthropogenic ozone depletion in the stratosphere causes enhanced ultraviolet-B (UV-B) radiation on the Earth's surface (Taalas et al. 2000; ACIA 2005). Ozone layer thickness and ozone depletion vary with season and latitude. At present, the ozone layer has had measurable reductions at mid-latitudes, and is most vulnerable near the poles. The ozone hole over Antarctica has occurred consistently since the early 1980s; over the years, it has varied in depth and size. Harmful UV-B radiation is partly absorbed by the stratospheric ozone layer, but the ozone layer has no attenuating effect on UV-A radiation.

The intensity of solar UV radiation incident on organisms and ecosystems is influenced by a range of factors, making it a highly dynamic component of the environment. Solar elevation contributes to latitudinal, seasonal, and diurnal variations in UV; these variations are more pronounced for UV-B than for UV-A. The increase in UV-A penetration with altitude might be little more than that for total irradiance, but penetration of UV-B is higher (Paul & Gwynn-Jones 2003). Clouds, albedo, and aerosols also influence the diurnal, seasonal, and interannual variation of UV radiation (Taalas et al. 2000). The largest relative increase in UV-B caused by ozone depletion has occurred at high latitudes. In the Northern Hemisphere, Arctic areas of Scandinavia are expected to be affected by the largest UV changes and steepest ozone depletion (Björn et al. 1998; Taalas et al. 2000). The greatest increase in UV-B radiation at high latitudes occurs in the spring.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

,ACIA (2005). Arctic Climate Impact Assessment. Cambridge: Cambridge University Press.
Albert, A., Ernst, D., Heller, W.et al. (2007). Biological dose functions of plants in the UV-B and UV-A range determined from experiments in a sun simulator. Proceedings of the UV Conference “One Century of UV Radiation Research”, 18–20 September, Davos, Switzerland.
Aro, E.-M. & Karunen, P. (1979). Fatty acid composition of polar lipids in Ceratodon purpureus and Pleurozium schreberi. Physiologia Plantarum 45: 265–9.Google Scholar
Barsig, M., Schneider, K. & Gehrke, C. (1998). Effects of UV-B radiation on fine structure, carbohydrates, and pigments in Polytrichum commune. Bryologist 101: 357–65.Google Scholar
Basile, A., Giordano, S., López-Sáez, J. A. & Cobianchi, R. C. (1999). Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry 52: 1479–82.Google Scholar
Björn, L. O., Callaghan, T. V., Gehrke, C.et al. (1998). The problem of ozone depletion in Northern Europe. Ambio 27: 275–9.Google Scholar
Boelen, P., Boer, M. K., Bakker, N. V. J. & Rozema, J. (2006). Outdoor studies on the effects of solar UV-B on bryophytes: overview and methodology. Plant Ecology 182: 137–52.Google Scholar
Bornman, J. F. & Teramura, A. H. (1993). Effects of ultraviolet-B radiation on terrestrial plants. In Environmental UV Photobiology, ed. Young, A. R., Björn, L. O., Moan, J. & Nultsch, W., pp. 427–70. New York: Plenum Press.CrossRef
Buck, W. R. & Goffinet, B. (2000). Morphology and classification of mosses. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 71–123. Cambridge: Cambridge University Press.CrossRef
Caldwell, M. M., Robberecht, R. & Billings, W. D. (1980). A steep latitudinal gradient of solar ultraviolet-B radiation in the arctic-alpine life zone. Ecology 61: 600–11.Google Scholar
Callaghan, T. V., Carlsson, B. Å., Sonesson, M. & Temesváry, A. (1997). Between-year variation in climate-related growth of circumarctic polulations of the moss Hylocomium splendens. Functional Ecology 11: 157–65.Google Scholar
Callaghan, T. V., Collins, N. J. & Callaghan, C. H. (1978). Photosynthesis, growth and reproduction of Hylocomium splendens and Polytrichum commune in Swedish Lapland. Oikos 31: 73–88.Google Scholar
Clarke, L. J. & Robinson, S. A. (2008). Cell wall-bound ultraviolet-screening compounds explain the high ultraviolet tolerance of the Antarctic moss, Ceratodon purpureus. New Phytologist 179: 776–83.Google Scholar
Cornelissen, J. H. C., Lang, S. I., Soudzilovskaia, N. A. & During, H. J. (2007). Comparative cryptogam ecology: a review of bryophyte and lichen traits that drive biogeochemistry. Annals of Botany 99: 987–1001.Google Scholar
Csintalan, Z., Takács, Z., Proctor, M. C. F., Nagy, Z. & Tuba, Z. (2000). Early morning photosynthesis of the moss Tortula ruralis following summer dew fall in a Hungarian temperate dry sandy grassland. Plant Ecology 151: 51–4.Google Scholar
Csintalan, Z., Tuba, Z., Takács, Z. & Laitat, E. (2001). Responses of nine bryophyte and one lichen species from different microhabitats to elevated UV-B radiation. Photosynthetica 39: 317–20.Google Scholar
Davey, M. C. & Rothery, P. (1996). Seasonal variation in respiratory and photosynthetic parameters in three mosses from the maritime Antarctic. Annals of Botany 78: 719–28.Google Scholar
Day, T. A., Ruhland, C. T., Grobe, C. W. & Xiong, F. (1999). Growth and reproduction of Antarctic vascular plants in response to warming and UV radiation reductions in the field. Oecologia 119: 24–35.Google Scholar
Dunn, J. L. & Robinson, S. A. (2006). Ultraviolet B screening potential is higher in two cosmopolitan moss species than in a co-occurring Antarctic endemic moss: implications of continuing ozone depletion. Global Change Biology 12: 2282–96.Google Scholar
Gehrke, C. (1999). Impacts of enhanced ultraviolet-B radiation on mosses in a subarctic heath ecosystem. Ecology 80: 1844–51.Google Scholar
Gehrke, C. (1998). Effects of enhanced UV-B radiation on production-related properties of a Sphagnum fuscum dominated subarctic bog. Functional Ecology 12: 940–7.Google Scholar
Gehrke, C., Johanson, U., Gwynn-Jones, D.et al. (1996). Effects of enhanced ultraviolet-B radiation on terrestrial subarctic ecosystems and implications for interactions with increased atmospheric CO2. Ecological Bulletins 45: 192–203.Google Scholar
Grace, S. C. (2005). Phenolics as antioxidants. In Antioxidants and Reactive Oxygen Species in Plants, ed. Smirnoff, N., pp. 141–168. Oxford: Blackwell Publishing Ltd.CrossRef
Green, T. G. A., Kulle, D., Pannewitz, S., Sancho, L. G. & Schroeter, B. (2005). UV-A protection in mosses growing in continental Antarctica. Polar Biology 28: 822–7.Google Scholar
Huiskes, A. H. L., Lud, D. & Moerdijk-Poortvliet, T. C. W. (2001). Field research on the effects of UV-B filters on terrestrial Antarctic vegetation. Plant Ecology 154: 77–86.Google Scholar
Huttunen, S., Karhu, M. & Kallio, S. (1981). The effect of air pollution on transplanted mosses. Silva Fennica 15: 495–504.Google Scholar
Huttunen, S. & Virtanen, V. (2004). Wax and UV-B-absorbing compounds of Polytrichastrum alpinum from different climatic regions. In Proceedings of the IUFRO meeting, Forests under Changing Climate, Enhanced UV and Air Pollution, pp. 17–21, August 25–30, Oulu, Finland.
Huttunen, S., Lappalainen, N. M. & Turunen, J. (2005a). UV-absorbing compounds in subarctic herbarium bryophytes. Environmental Pollution 133: 303–14.Google Scholar
Huttunen, S., Taipale, T., Lappalainen, N. M.et al. (2005b). Environmental specimen bank samples of Pleurozium schreberi and Hylocomium splendens as indicators of the radiation environment at the surface. Environmental Pollution 133: 315–26.Google Scholar
Johanson, U., Gehrke, C., Björn, L. O., Callaghan, T. V. & Sonesson, M. (1995). The effects of enhanced UV-B radiation on a subarctic heath ecosystem. Ambio 24: 106–11.Google Scholar
Kellomäki, S., Hari, P. & Koponen, T. (1977). Ecology of photosynthesis in Dicranum and its taxonomic significance. Congres International der Bryologie Bordeaux 21–28 Novembre 1977. Bryophytorum Bibliotheca 13: 485–507.Google Scholar
Korn, M., Peterek, S., Mock, H.-P., Heyer, A. G. & Hincha, D. K. (2008). Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant, Cell and Environment 31: 813–27.Google Scholar
Lappalainen, N. M. (2010). The responses of ectohydric and endohydric mosses under ambient and enhanced ultraviolet radiation. Acta Universitatis Ouluensis, doctoral thesis (A558). Tampere, Finland: Juvenes Print.
Lappalainen, N. M., Huttunen, S. & Suokanerva, H. (2007). Red-stemmed feather moss Pleurozium schreberi (Britt.) Mitt. – a bioindicator of UV radiation? Proceedings of the ISEST Conference, November 13–16, Beijing, China, pp. 14–18.
Lappalainen, N. M., Huttunen, S. & Suokanerva, H. (2008a). Acclimation of a pleurocarpous moss Pleurozium schreberi (Britt.) Mitt. to enhanced ultraviolet radiation in situ. Global Change Biology 14: 321–33.Google Scholar
Lappalainen, N. M., Huttunen, S. & Suokanerva, H. (2008b). The ectohydric moss Pleurozium schreberi (Britt.) Mitt. after 5 years of enhanced UV-B radiation in situ. In Proceedings of the Moss meeting, August 15–18, 2008, Tampere, Finland. Physiologia Plantarum133: P04–024.
Lappalainen, N. M., Huttunen, S., Suokanerva, H. & Lakkala, K. (2008c). Acclimation of an endohydric moss Polytrichum juniperinum Hedw. to light and ultraviolet radiation. In Proceedings of the 23rd IUFRO Conference, September 7–12, 2008, Murten, Switzerland, p. 126.
Lappalainen, N. M., Huttunen, S., Suokanerva, H. & Lakkala, K. (2010). Seasonal acclimation of the moss Polytrichum juniperinum Hedw. to natural and enhanced ultraviolet radiation. Environmental Pollution 158: 891–900.Google Scholar
Lomax, B. H., Fraser, W. T., Sephton, M. A.et al. (2008). Plant spore walls as a record of long-term changes in ultraviolet-B radiation. Nature Geoscience 1: 592–6.Google Scholar
Lud, D., Moerdijk, T. C. W., Poll, W. H., Buma, A. G. J. & Huiskes, A. H. L. (2002). DNA damage and photosynthesis in Antarctic and Arctic Sanionia uncinata (Hedw.) Loeske under ambient and enhanced levels of UV-B radiation. Plant, Cell and Environment 25: 1579–89.Google Scholar
Lud, D., Schlensog, M., Schroeter, B. & Huiskes, A. H. L. (2003). The influence of UV-B radiation on light-dependent photosynthetic performance in Sanionia uncinata (Hedw.) Loeske in Antarctica. Polar Biology 26: 225–32.Google Scholar
Markham, K. R., Franke, A., Given, D. R. & Brownsey, P. (1990). Historical Antarctic ozone level trends from herbarium specimen flavonoids. Bulletin de Liaison Groupe de Polyphenols 15: 230–5.Google Scholar
Marschall, M. & Proctor, M. C. F. (2004). Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. Annals of Botany 94: 593–603.Google Scholar
Martínez-Abaigar, J., Núñez-Olivera, E., Beaucourt, N.et al. (2003). Different physiological responses of two aquatic bryophytes to enhanced ultraviolet-B radiation. Journal of Bryology 25: 17–30.Google Scholar
Mikami, K. & Hartmann, E. (2004). Lipid metabolism in mosses. In New Frontiers in Bryology: Physiology, Molecular Biology and Functional Genomics, ed. Wood, A. J., Oliver, M. J. & Cove, D. J., pp. 133–155. Dordrecht: Kluwer Academic Publishers.CrossRef
Mishler, B. D. & Oliver, M. J. (1991). Gametophytic phenology of Tortula ruralis, a desiccation-tolerant moss, in the Organ Mountains of southern New Mexico. Bryologist 94: 143–53.Google Scholar
Mues, R. (2000). Chemical constituents and biochemistry. In Bryophyte Biology, ed. Shaw, A. J. & Goffinet, B., pp. 150–81. Cambridge: Cambridge University Press.CrossRef
Newsham, K. K. (2003). UV-B radiation arising from stratospheric ozone depletion influences the pigmentation of the Antarctic moss Andreaea regularis. Oecologia 135: 327–31.Google Scholar
Newsham, K. K., Hodgson, D. A., Murray, A. W. A., Peat, H. J. & Lewis Smith, R. I. (2002). Response of two Antarctic bryophytes to stratospheric ozone depletion. Global Change Biology 8: 972–83.Google Scholar
Newsham, K. K. & Robinson, S. A. (2009). Responses of plants in polar regions to UVB exposure: a meta-analysis. Global Change Biology 15: 2574–89.Google Scholar
Niemi, R., Martikainen, P. J., Silvola, J.et al. (2002a). Responses of two Sphagnum moss species and Eriophorum vaginatum to enhanced UV-B in a summer of low UV intensity. New Phytologist 156: 509–15.Google Scholar
Niemi, R., Martikainen, P. J., Silvola, J.et al. (2002b). Elevated UV-B radiation alters fluxes of methane and carbon dioxide in peatland microcosms. Global Change Biology 8: 361–71.Google Scholar
Núñez-Olivera, E., Martínez-Abaigar, J., Tomás, R., Beaucourt, N. & Arróniz-Crespo, M. (2004). Influence of temperature on the effects of artificially enhanced UV-B radiation on aquatic bryophytes under laboratory conditions. Photosynthetica 42: 201–12.Google Scholar
Núñez-Olivera, E., Arróniz-Crespo, M., Martínez-Abaigar, J., Tomás, R. & Beaucourt, N. (2005). Assessing the UV-B tolerance of sun and shade samples of two aquatic bryophytes using short-term tests. Bryologist 108: 435–48.Google Scholar
Oechel, W. C. & Cleve, K. (1986). The role of bryophytes in nutrient cycling in the taiga. In Forest Ecosystems in the Alaskan Taiga, ed. Cleve, K., Chapin, F. S., Flanagan, P. W., Viereck, L. A. & Dyrness, C. T., pp. 121–137. Berlin: Springer-Verlag.CrossRef
Ollila, F., Halling, K., Vuorela, P., Vuorela, H. & Slotte, J. P. (2002). Characterization of flavonoid biomembrane interactions. Archives of Biochemistry and Biophysics 399: 103–8.Google Scholar
Otero Labarta, S. (2008). Ecophysiological bases for the use of aquatic bryophytes as bioindicators of ultraviolet radiation. Doctoral Thesis. Universidad de la Rioja, Departament de Agricultura y alimentacion, pp. 147–76.
Otero, S., Núñez-Olivera, E., Martínez-Abaigar, J., Tomás, R. & Huttunen, S. (2009). Retrospective bioindication of total ozone and ultraviolet radiation using hydroxycinnamic acid derivatives of herbarium samples of an aquatic liverwort. Environmental Pollution 157: 2335–44.Google Scholar
Paul, N. D. & Gwynn-Jones, D. (2003). Ecological roles of solar UV radiation: towards an integrated approach. Trends in Ecology and Evolution 18: 48–55.Google Scholar
Phoenix, G. K., Gwynn-Jones, D., Callaghan, T. V., Sleep, D. & Lee, J. A. (2001). Effects of global change on a sub-Arctic heath: effects of enhanced UV-B radiation and increased summer precipitation. Journal of Ecology 89: 256–67.Google Scholar
Proctor, M. C. F. (1982). Physiological ecology: water relations, light and temperature responses, carbon balance. In Bryophyte Ecology, ed. Smith, A. J. E., pp. 333–81. London: Chapman and Hall.CrossRef
Proctor, M. C. F., Ligrone, R. & Duckett, J. G. (2007). Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Annals of Botany 99: 75–93.Google Scholar
Rincon, E. & Grime, J. P. (1989). An analysis of seasonal patterns of bryophyte growth in a natural habitat. Journal of Ecology 77: 447–55.Google Scholar
Robberecht, R., Caldwell, M. M. & Billings, W. D. (1980). Leaf ultraviolet optical properties along a latitudinal gradient in the arctic-alpine life zone. Ecology 61: 612–19.Google Scholar
Robinson, S. A., Turnbull, J. D. & Lovelock, C. E. (2005). Impact of changes in natural ultraviolet radiation on pigment composition, physiological and morphological characteristics of the Antarctic moss, Grimmia antarctici. Global Change Biology 11: 476–89.Google Scholar
Rozema, J., Boelen, P., Solheim, B., et al. (2006). Stratospheric ozone depletion: high arctic tundra plant growth on Svalbard is not affected by enhanced UV-B after 7 years of UV-B supplementation in the field. Plant Ecology 182: 121–35.Google Scholar
Rozema, J., Noordijk, A. J., Broekman, R. A., et al. (2001). (Poly)phenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B. Plant Ecology 154: 11–26.Google Scholar
Searles, P. S., Flint, S. D., Díaz, S. B.et al. (1999). Solar ultraviolet-B radiation influence on Sphagnum bog and Carex fen ecosystems: first field season findings in Tierra del Fuego, Argentina. Global Change Biology 5: 225–34.Google Scholar
Seo, C., Choi, Y.-H., Sohn, J. H.et al. (2008). Ohioensins F and G: protein tyrosine phosphatase 1B inhibitory benzonaphthoxanthenones from the Antarctic moss Polytrichastrum alpinum. Bioorganic and Medicinal Chemistry Letters 18: 772–5.Google Scholar
Skre, O. & Oechel, W. C. (1981). Moss functioning in different taiga ecosystems in interior Alaska. I. Seasonal, phenotypic, and drought effects on photosynthesis and response patterns. Oecologia 48: 50–9.Google Scholar
Sonesson, M., Carlsson, B. Å., Callaghan, T. V.et al. (2002). Growth of two peat-forming mosses in subarctic mires: species interactions and effects of simulated climate change. Oikos 99: 151–60.Google Scholar
Taalas, P., Kaurola, J., Kylling, A.et al. (2000). The impact of greenhouse gases and halogenated species on future solar UV radiation doses. Geophysical Research Letters 27: 1127–30.Google Scholar
Taipale, T. & Huttunen, S. (2002). Moss flavonoids and their ultrastructural localization under enhanced UV-B radiation. Polar Record 38: 211–18.Google Scholar
Takács, Z., Csintalan, Z., Sass, L.et al. (1999). UV-B tolerance of bryophyte species with different degrees of desiccation tolerance. Journal of Photochemistry and Photobiology B: Biology 48: 210–15.Google Scholar
Valanne, N. (1984). Photosynthesis and photosynthetic products in mosses. In Experimental Biology of Bryophytes, ed. Dyer, A. F. & Duckett, J. G., pp. 257–73. London: Academic Press.
Vitt, D. H. (1990). Growth and production dynamics of boreal mosses over climatic, chemical and topographic gradients. Botanical Journal of the Linnean Society 104: 35–59.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×