Skip to main content Accessibility help
×
Hostname: page-component-788cddb947-r7bls Total loading time: 0 Render date: 2024-10-15T04:54:24.876Z Has data issue: false hasContentIssue false

3 - Lipid-mediated transport and carrier-mediated transport of small molecules

Published online by Cambridge University Press:  08 January 2010

William M. Pardridge
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

Central nervous system (CNS) drug development is derived from CNS drug discovery (Chapter 1), and CNS drug discovery is based on structure–activity relationships (SAR), which determine the affinity of the drug for its cognate receptor. However, the typical CNS drug discovery program leads to a drug candidate that is highly active in vitro with very favorable SAR, but has little biologic activity in the brain in vivo, because of poor transport through the blood–brain barrier (BBB). The drug discovery program is then terminated. Since >98% of all drug candidates that emanate from a high-throughput screening drug discovery program do not cross the BBB (Pardridge, 1998a), the inherent efficiency of the CNS drug development program is low. This efficiency could be increased by incorporating structure–transport relationships (STR) early in the drug discovery phase in parallel with SAR (Figure 3.1). The STR are derived from CNS drug-targeting principles.

The STR factors controlling small molecule transport through the BBB are shown in Figure 3.2. The STR of a given drug will allow for prediction of the BBB permeability–surface area (PS) product. The in vivo CNS pharmacologic effect of a drug is proportional to the brain uptake of the drug, expressed as a percentage of injected dose per gram brain (%ID/g). The %ID/g is an equal function of both the BBB PS product and the plasma area under the drug ncentration curve (AUC), as shown in Figure 3.2. While the BBB PS product is directly proportional to the membrane permeation of the drug, the plasma AUC is inversely related to the membrane permeation of the drug.

Type
Chapter
Information
Brain Drug Targeting
The Future of Brain Drug Development
, pp. 36 - 81
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×