Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: October 2013

Chapter 38 - Sepsis-associated encephalopathy

from Section 6 - Clinical Encephalopathy Syndromes

References

1. EidelmanLA, PuttermanD, PuttermanC, SprungCL. The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 1996;275:470–3.
2. SprungCL, PeduzziPN, ShatneyCH, et al. Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Crit Care Med 1990;18:801–6.
3. BleckTP, SmithMC, Pierre-LouisSJ, et al. Neurologic complications of critical medical illnesses. Crit Care Med 1993;21:98–103.
4. ElyEW, ShintaniA, TrumanB, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 2004;291:1753–62.
5. MorandiA, PandharipandeP, TrabucchiM, et al. Understanding international differences in terminology for delirium and other types of acute brain dysfunction in critically ill patients. Intensive Care Med 2008;34:1907–15.
6. TraceyKJ. The inflammatory reflex. Nature 2002;420:853–9.
7. SharsharT, AnnaneD. Endocrine effects of vasopressin in critically ill patients. Best Pract Res Clin Anesthesiol 2008;22:265–73.
8. SemmlerA, HermannS, MormannF, et al. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflamm 2008;5:38.
9. van GoolWA, van de BeekD, EikelenboomP. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet 2010;375:773–5.
10. HenryCJ, HuangY, WynneAM, GodboutJP. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain, Behav Immun 2009;23:309–17.
11. HannestadJ, GallezotJD, SchafbauerT, et al. Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates. NeuroImage 2012;63(1):232–9.
12. SemmlerA, OkullaT, SastreM, Dumitrescu-OzimekL, HenekaMT. Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. J Chem Neuroanatomy 2005;30:144–57.
13. SemmlerA, FrischC, DebeirT, et al. Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol 2007;204:733–40.
14. WeberpalsM, HermesM, HermannS, et al. NOS2 gene deficiency protects from sepsis-induced long-term cognitive deficits. J Neuroscience 2009;29:14177–84.
15. HandaO, StephenJ, CepinskasG. Role of endothelial nitric oxide synthase-derived nitric oxide in activation and dysfunction of cerebrovascular endothelial cells during early onsets of sepsis. Am J Physiol Heart Circ Physiol 2008;295:H1712–19.
16. AlexanderJJ, JacobA, CunninghamP, HensleyL, QuiggRJ. TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1. Neurochemistry Int 2008;52:447–56.
17. SharsharT, CarlierR, BernardF, et al. Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Med 2007;33:798–806.
18. FugateJE, ClaassenDO, CloftHJ, et al. Posterior reversible encephalopathy syndrome: associated clinical and radiologic findings. Mayo Clin Proc 2010;85:427–32.
19. KadoiY, SaitoS. An alteration in the gamma-aminobutyric acid receptor system in experimentally induced septic shock in rats. Crit Care Med 1996;24:298–305.
20. PavlovVA, OchaniM, Gallowitsch-PuertaM, et al. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci USA 2006;103:5219–23.
21. BaslerT, Meier-HellmannA, BredleD, ReinhartK. Amino acid imbalance early in septic encephalopathy. Intensive Care Med 2002;28:293–8.
22. HshiehTT, FongTG, MarcantonioER, InouyeSK. Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence. J Gerontol A Biol Sci Med Sci 2008;63:764–72.
23. FieldRH, GossenA, CunninghamC. Prior pathology in the basal forebrain cholinergic system predisposes to inflammation-induced working memory deficits: reconciling inflammatory and cholinergic hypotheses of delirium. J Neurosci 2012;32:6288–94.
24. van EijkMM, RoesKC, HoningML, et al. Effect of rivastigmine as an adjunct to usual care with haloperidol on duration of delirium and mortality in critically ill patients: a multicentre, double-blind, placebo-controlled randomised trial. Lancet 2010;376:1829–37.
25. PandharipandeP, ShintaniA, PetersonJ, et al. Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology 2006;104:21–6.
26. PandharipandeP, SandersRD, GirardTD, et al. Effect of dexmedetomidine versus lorazepam on outcome in patients with sepsis: an a priori-designed analysis of the MENDS randomized controlled trial. Crit Care 2010;14:R38.
27. PandharipandePP, PunBT, HerrDL, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA 2007;298:2644–53.
28. SharsharT, AnnaneD, de la GrandmaisonGL, et al. The neuropathology of septic shock. Brain Pathol 2004;14:21–33.
29. SharsharT, GrayF, Lorin de la GrandmaisonG, et al. Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet 2003;362:1799–805.
30. PfisterD, SiegemundM, Dell-KusterS, et al. Cerebral perfusion in sepsis-associated delirium. Crit Care 2008;12:R63.
31. SharsharT, AnnaneD, de la GrandmaisonGL, et al. The neuropathology of septic shock. Brain Pathol 2004;14:21–33.
32. BarichelloT, FortunatoJJ, VitaliAM, et al. Oxidative variables in the rat brain after sepsis induced by cecal ligation and perforation. Crit Care Med 2006;34:886–9.
33. BarichelloT, MachadoRA, ConstantinoL, et al. Antioxidant treatment prevented late memory impairment in an animal model of sepsis. Crit Care Med 2007;35:2186–90.
34. PolitoA, BroulandJP, PorcherR, et al. Hyperglycaemia and apoptosis of microglial cells in human septic shock. Crit Care 2011;15:R131.
35. ElyEW, InouyeSK, BernardGR, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA 2001;286:2703–10.
36. BergeronN, DuboisMJ, DumontM, et al. Intensive care delirium screening checklist: evaluation of a new screening tool. Intensive Care Med 2001;27:859–64.
37. De JongheB, Bastuji-GarinS, FangioP, et al. Sedation algorithm in critically ill patients without acute brain injury. Crit Care Med 2005;33:120–7.
38. SharsharT, PorcherR, SiamiS, et al. Brainstem responses can predict death and delirium in sedated patients in intensive care unit. Crit Care Med 2011;39:1960–7.
39. OddoM, CarreraE, ClaassenJ, MayerSA, HirschLJ. Continuous electroencephalography in the medical intensive care unit. Crit Care Med 2009;37:2051–6.
40. WatsonPL, ShintaniAK, TysonR, et al. Presence of electroencephalogram burst suppression in sedated, critically ill patients is associated with increased mortality. Crit Care Med 2008;36:3171–7.
41. PiazzaO, RussoE, CotenaS, EspositoG, TufanoR. Elevated S100B levels do not correlate with the severity of encephalopathy during sepsis. Br J Anaesth 2007;99:518–21.
42. NguyenDN, SpapenH, SuF, et al. Elevated serum levels of S-100beta protein and neuron-specific enolase are associated with brain injury in patients with severe sepsis and septic shock. Crit Care Med 2006;34:1967–74.
43. LucidarmeO, SeguinA, DaubinC, et al. Nicotine withdrawal and agitation in ventilated critically ill patients. Crit Care 2010;14:R58.
44. SechiG, SerraA. Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol 2007;6:442–55.
45. SonnevilleR, MirabelM, HajageD, et al. Neurologic complications and outcomes of infective endocarditis in critically ill patients: the ENDOcardite en REAnimation prospective multicenter study. Crit Care Med 2011;39:1474–81.
46. PisaniMA, KongSY, KaslSV, et al. Days of delirium are associated with 1-year mortality in an older intensive care unit population. Am J Respir Crit Care Med 2009;180:1092–7.
47. YoungGB, BoltonCF, ArchibaldYM, AustinTW, WellsGA. The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiol 1992;9:145–52.
48. HopkinsRO, HerridgeMS. Quality of life, emotional abnormalities, and cognitive dysfunction in survivors of acute lung injury/acute respiratory distress syndrome. Clin Chest Med 2006;27:679–89.
49. HopkinsRO, JacksonJC. Assessing neurocognitive outcomes after critical illness: are delirium and long-term cognitive impairments related?Curr Opin Crit Care 2006;12:388–94.
50. HopkinsRO, JacksonJC. Short- and long-term cognitive outcomes in intensive care unit survivors. Clin Chest Med 2009;30:143–53, ix.
51. van den BoogaardM, KoxM, QuinnKL, et al. Biomarkers associated with delirium in critically ill patients and their relation with long-term subjective cognitive dysfunction; indications for different pathways governing delirium in inflamed and noninflamed patients. Crit Care 2011;15:R297.
52. BoerKR, van RulerO, van EmmerikAA, et al. Factors associated with posttraumatic stress symptoms in a prospective cohort of patients after abdominal sepsis: a nomogram. Intensive Care Med 2008;34:664–74.
53. IwashynaTJ, ElyEW, SmithDM, LangaKM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 2010;304:1787–94.
54. GirardTD, JacksonJC, PandharipandePP, et al. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med 2010;38:1513–20.
55. IwashynaTJ, CookeCR, WunschH, KahnJM. Population burden of long-term survivorship after severe sepsis in older Americans. J Am Geriatr Soc 2012;60:1070–7.
56. GirardTD, PandharipandePP, ElyEW. Delirium in the intensive care unit. Crit Care 2008;12(Suppl 3):S3.
57. SpapenH, NguyenDN, TroubleynJ, HuyghensL, SchiettecatteJ. Drotrecogin alfa (activated) may attenuate severe sepsis-associated encephalopathy in clinical septic shock. Crit Care 2010;14:R54.
58. SchellingG, RoozendaalB, KrauseneckT, et al. Efficacy of hydrocortisone in preventing posttraumatic stress disorder following critical illness and major surgery. Ann N Y Acad Sci 2006;1071:46–53.
59. SonnevilleR, den HertogHM, GuizaF, et al. Impact of hyperglycemia on neuropathological alterations during critical illness. J Clin Endocrinol Metab 2012;97:2113–23.
60. KadoiY, GotoF. Selective inducible nitric oxide inhibition can restore hemodynamics, but does not improve neurological dysfunction in experimentally-induced septic shock in rats. Anesth Analg 2004;99:212–20.
61. EsenF, ErdemT, AktanD, et al. Effect of magnesium sulfate administration on blood-brain barrier in a rat model of intraperitoneal sepsis: a randomized controlled experimental study. Crit Care 2005;9:R18–23.
62. TokluHZ, UysalMK, KabasakalL, et al. The effects of riluzole on neurological, brain biochemical, and histological changes in early and late term of sepsis in rats. J Surg Res 2009;152:238–48.
63. AvtanSM, KayaM, OrhanN, et al. The effects of hyperbaric oxygen therapy on blood-brain barrier permeability in septic rats. Brain Res 2011;1412:63–72.
64. WrattenML. Therapeutic approaches to reduce systemic inflammation in septic-associated neurologic complications. Eur J Anaesthesiol Suppl 2008;42:1–7.
65. EsenF, SenturkE, OzcanPE, et al. Intravenous immunoglobulins prevent the breakdown of the blood–brain barrier in experimentally induced sepsis. Crit Care Med 2012;40:1214–20.
66. BozzaFA, GarteiserP, OliveiraMF, et al. Sepsis-associated encephalopathy: a magnetic resonance imaging and spectroscopy study. J Cereb Blood Flow Metab 2010;30:440–8.
67. BartynskiWS, BoardmanJF, ZeiglerZR, ShadduckRK, ListerJ. Posterior reversible encephalopathy syndrome in infection, sepsis, and shock. AJNR Am J Neuroradiol 2006;27:2179–90.
68. MorandiA, RogersBP, GuntherML, et al. The relationship between delirium duration, white matter integrity, and cognitive impairment in intensive care unit survivors as determined by diffusion tensor imaging: the VISIONS prospective cohort magnetic resonance imaging study. Crit Care Med 2012;40:2182–9.
69. GuntherML, MorandiA, KrauskopfE, et al.; VISIONS Investigation, VISualizing ICU SurvivOrs Neuroradiological Sequelae. The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: the VISIONS cohort magnetic resonance imaging study. Crit Care Med 2012;40(7):2022–32.