Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-19T03:44:46.067Z Has data issue: false hasContentIssue false

Chapter 3 - Histology

Published online by Cambridge University Press:  22 February 2018

David L. Clark
Affiliation:
Ohio State University
Nash N. Boutros
Affiliation:
University of Missouri, Kansas City
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 14 - 32
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Select Bibliography

Bohlen, O., and Halbach, R. D. (2002). Neurotransmitters and Neuromodulators: Handbook of Receptors and Biological Effects. New York, NY: John Wiley and Sons, Ltd.Google Scholar
Cowan, M. W., Südhof, T. C., and Stevens, C. F. (Eds.). (2001). Synapses. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Ettinger, R. H. (2011). Psychopharmacology. Upper Saddle River, NJ, Prentice Hall.Google Scholar
Morgan, J. R., and Bloom, O. (2005). Cells of the Nervous System. Philadelphia, PA: Chelsea House Publishers.Google Scholar
Stanton, P. K., Bramham, C., and Scharfman, H. E. (Eds.). (2005). Synaptic Plasticity and Transsynaptic Signaling. New York, NY: Springer.CrossRefGoogle Scholar
Webster, R. A. (Ed.). (2001). Neurotransmitters, Drugs and Brain Function. New York, NY: John Wiley and Sons, Ltd.CrossRefGoogle Scholar

References

Abi-Dargham, A., and Moore, H. (2003). Prefrontal DA transmission at D1 receptors and the pathology of schizophrenia. Neuroscientist, 9, 404416. doi:10.1177/1073858403252674CrossRefGoogle ScholarPubMed
Andreasen, N. C., Nopoulos, P., O’Leary, D. S., Miller, D. D., Wassink, T., and Flaum, M. (1999). Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol. Psychiatry, 46, 908920. doi:10.1016/S0006-3223Google Scholar
Aroniadou-Anderjaska, V., Qashu, F., and Braga, M. F. M. (2007). Mechanisms regulating GABAergic inhibitory transmission in the basolateral amygdala: implications for epilepsy and anxiety disorders. Amino Acids, 32, 305315. doi:10.1007/s00726-006–0415-xCrossRefGoogle ScholarPubMed
Aston-Jones, G., and Cohen, J. D. (2005). An integrative theory of coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu. Rev. Neurosci. 28, 403450. doi:10.1146/annurev.neuro.28.061604.135709CrossRefGoogle ScholarPubMed
Bartus, R. T., Dean, R. L., Beer, B., and Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science, 21, 408417. doi:10.1126/science.7046051CrossRefGoogle Scholar
Bedlack, R. S., Traynor, B. J., and Cudkowicz, M. E. (2007). Emerging disease-modifying therapies for the treatment of motor neuron disease/amyotrophic lateral sclerosis. Expert Opin. Emerg. Drugs., 12, 229252. doi:10.1517/14728214.12.2.229CrossRefGoogle Scholar
Ben-Ari, Y. (2002). Excitatory actions of GABA during development: The nature of the nurture. Nature Rev. Neurosci., 3, 728739. doi:10.1038/nrn920CrossRefGoogle ScholarPubMed
Berger-Sweeney, J. (2003). The cholinergic basal forebrain system during development and its influence on cognitive processes: important questions and potential answers. Neurosci. Behav. Rev., 27, 401411. doi:10.1016/S0149-7634(03)00070–8CrossRefGoogle ScholarPubMed
Bergman, O., Åhs, F., Furmark, T., Appel, L., Linnman, C., Faria, V.,… Eriksson, E. (2014). Association between amygdala reactivity and a dopamine transporter gene polymorphism. Translational Psychiatry, 4, e420. doi:10.1038/tp.2014.50CrossRefGoogle Scholar
Beveridge, T. J. R., Smith, H. R., Nader, M. A., and Porrino, L. J. (2009). Abstinence from chronic cocaine self-administration alters striatal dopamine systems in Rhesus monkeys. Neuropsychopharcol. 34 (5). doi:10.1038/npp.2008.135Google ScholarPubMed
Bjorntorp, P. (1995). Neuroendocrine abnormalities in human obesity. Metabolism, 44 (Suppl.#2), 3841. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/7532780CrossRefGoogle ScholarPubMed
Bobb, A. J., Castellanos, F. X., Addington, A. M., and Rapoport, J. L. (2005). Molecular genetic studies of ADHD: 1991 to 2004. Am. J. Med. Genetics Part B (Neuropsychiatric Genetics), 132 B, 109125. doi:10.1002/ajmg.b.30086Google Scholar
Bohnen, N. I., Kaufer, K. I, Ivanco, L. S., Lopresti, B., Koeppe, R. A., Davis, J. G.,… DeKosky, S. T. (2003). Cortical cholinergic function is more severely affected in Parkinsonian dementia than in Alzheimer’s disease: an in vivo positron tomography study. Arch. Neurol., 60, 17451748. doi:10.1001/archneur.60.12.1745CrossRefGoogle Scholar
Boksa, P. (2012). Abnormal synaptic pruning in schizophrenia: Urban myth or reality? J. Psychiatry Neurosci., 37, 7577. doi:10.1503/jpn.120007Google Scholar
Bradford, A. (2009). The dopamine and glutamate theories of schizophrenia: A short review. Curr. Anaesthesia & Critical Care, 20, 240241. doi:10.1016/j.cacc.2009.07.008CrossRefGoogle Scholar
Brambilla, P., Perez, J., Barale, F., Schettini, G., and Soares, J. C. (2003). GABAergic dysfunction in mood disorders. Mol. Psychiatry, 8(8), 721737. doi:10.1038/sj.mp.4001362CrossRefGoogle ScholarPubMed
Brewerton, T. D. (1995). Toward a unified theory of serotonin disturbances in eating and related disorders. Psychoneuroendocrinology, 20, 561590. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/8584599CrossRefGoogle Scholar
Burbaeva, G. S., Boksha, I. S., Turisheneva, M. S., Vorobyeva, E. A., Savushkina, O. K., and Tereshkina, E. B. (2003). Glutamine synthetase and glutamate dehydrogenase in the prefrontal cortex of patients with schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 27, 675680. doi:10.1016/S0278-5846(03)00078–2CrossRefGoogle ScholarPubMed
Carbonell, T., and Rama, R. (2007). Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr. Med. Chem., 14, 857874. doi:10.2174/092986707780363014CrossRefGoogle ScholarPubMed
Cardon, G., Campbell, J., and Sharma, A. (2012). Plasticity in the developing auditory cortex: evidence from children with sensorineural hearing loss and auditory neuropathy spectrum disorder. J. Am. Acad. Audiol., 23, 396495. doi:10.3766/jaaa.23.6.3Google ScholarPubMed
Clem, R. L., Cilikel, T., and Barth, A. L. (2008). Ongoing in vivo experience triggers synaptic metaplasticity in the neocortex. Science 319, 101104. doi:10.1126/science.1143808Google Scholar
Cook, E. H. J., and Leventhal, B. (1996). The serotonin system in autism. Curr. Opin. Pediatr., 8, 348354.CrossRefGoogle ScholarPubMed
Cortese, B. M., and Phan, K. L. (2005). The role of glutamate in anxiety and related disorders. CNS Spectrums 10, 820830. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/16400245CrossRefGoogle ScholarPubMed
Coyle, J. T., and Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689695. doi:10.1126/science.7901908CrossRefGoogle ScholarPubMed
Dammann, O., and O’Shea, T. M. (2008). Cytokines and perinatal brain damage. Clin Perinatol., 35, 643663. doi:10.1016/j.clp.2008.07.011CrossRefGoogle ScholarPubMed
Desai, P., Roy, M., Roy, A., Brown, S., and Smelson, D. (1997). Impaired color vision in cocaine-withdrawn patients. Arch. Gen. Psychiatry, 54, 696699. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/9283503Google Scholar
Di Cristo, G. (2007). Development of cortical GABAergic circuits and its implications for neurodevelopmental disorders. Clin. Genet., 72, 18. doi:10.1111/j.1399–0004.2007.00822.xCrossRefGoogle ScholarPubMed
Duman, R. S. (2004). Depression: A case of neuronal life and death? Biol. Psychiatry, 56, 140145. doi:10.1016/j.biopsych.2004.02.033CrossRefGoogle ScholarPubMed
Dunn, A. J., Swiergiel, A. H., and Palamarchouk, V. (2004). Brain circuits involved in corticotrophin-releasing factor – norepinephrine interactions during stress. Ann. N.Y. Acad Sci., 1018, 2534. doi:10.1016/S0031-9384(03)00161–6CrossRefGoogle ScholarPubMed
Ekonomou, A., Pagonopoulou, O., and Angleatau, F. (2000). Age-dependent changes in adenosine A1 receptor and uptake site binding in the mouse brain: An autoradiographic study. J. Neurosci. Res. 60, 257265. doi:10.1002/(SICI)1097–4547(20000415)60:23.0.CO;2-U3.0.CO;2-U>CrossRefGoogle Scholar
El Mansari, M., and Blier, P. (2006). Mechanisms of action of current and potential pharmacotherapies of obsessive-compulsive disorder. Prog. Neuro-Psychopharmacol. & Biol. Psychiatry, 30, 362373. doi:10.1016/j.pnpbp.2005.11.005CrossRefGoogle ScholarPubMed
Frye, M. A., Tsai, G. E., Gouchuan, E. T., Huggins, T., Coyle, J. T., and Post, R. M. (2007). Low cerebrospinal fluid glutamate and glycine in refractory affective disorder. Biol. Psychiatry, 61, 162166. doi:10.1016/j.biopsych.2006.01.024CrossRefGoogle ScholarPubMed
Gagné, A-M., Gagné, P., and Hébert, M. (2007). Impact of light therapy on rod and cone functions in healthy subjects. Psychiatry Resh., 151, 259263. doi:10.1016/j.psychres.2006.09.004CrossRefGoogle ScholarPubMed
Gamkrelidze, G., Yun, S. H., and Trommer, B. L. (2005). Amyloid-β as a biologically active peptide in CNS. In Stanton, P. K., Bramham, C., and Scharfman, H. E. (Eds.) Synaptic Plasticity and Transsynaptic Signaling. (pp. 529538). New York, NY: Springer.Google Scholar
Gao, Z. G., and Jacobson, K. A. (2007). Emerging adenosine receptor agonists. Exp. Opin. Emerg. Drugs, 12, 479492. doi:10.1517/14728214.2011.644786Google Scholar
Garg, R., Ramachandran, R., and Sharma, P. (2008). Anaesthetic implications of hyperekplexia – ‘startle disease’. Anaesth. Intensive Care, 36, 254256. doi:10.1016/j.jocn.2013.03.025CrossRefGoogle ScholarPubMed
Gehrmann, J., Banati, R. B., and Kreutzberg, G. W. (1993). Microglia in the immune surveillance of the brain: human microglia constitutively express HLA-DR molecules. J Neuroimmunol., 48, 189198. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/8227316CrossRefGoogle ScholarPubMed
Gonsette, R. E. (2008). Oxidative stress and excitotoxicity: a therapeutic issue in multiple sclerosis? Multiple Sclerosis, 14, 2234. doi:10.1177/1352458507080111Google Scholar
Gornick, M. C., Addington, A., Shaw, P., Bobb, A. J., Sharp, W., Greenstein, D.,… Rapoport, J. L. (2007). Association of the dopamine receptor D4 (DRD4) gene 7-repeat allele with children with attention-deficit/hyperactivity disorder (ADHD): An update. Am. J. Med. Genetics Part B (Neuropsychiatric Genetics), 144 B, 379382. doi:10.1002/ajmg.b.30460CrossRefGoogle Scholar
Grachev, I. D., and Apkarian, A. V. 2000. Chemical mapping of anxiety in the brain of healthy human: an in-vivo 1H-MRS study on the effects of sex, age, and brain region. Hum. Brain Mapp., 11, 261272. doi:10.1002/1097–0193(200012)11:43.0.CO;2–6Google Scholar
Guardia, J., Catagau, A. M., Batile, F., Martin, J. C., Segura, L., Gonzalvo, B.,… Casas, M. (2000). Striatal dopaminergic D(2) receptor density measured by [(123)I]iodobenzamide SPECT in the prediction of treatment outcome of alcohol-dependent patients. Am. J. Psychiatry, 157, 127129. doi:10.1176/ajp.157.1.127CrossRefGoogle Scholar
Guidotti, A., Auta, J., Davis, J. M., Dong, E., Grayson, D. R., Veldic, M.,… Costa, E. (2005). GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacol., 180, 191205. doi:10.1016/j.schres.2010.02.164CrossRefGoogle ScholarPubMed
Gurevich, E. V., and Joyce, J. N. (1997). Alterations in the cortical serotonergic system in schizophrenia: A postmortem study. Biol. Psychiatry, 42, 529545. Retrieved from: http://europepmc.org/abstract/med/9376449Google Scholar
Haass, C., and Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β–peptide. Nat. Rev. Mole. Cell Biol., 8, 101312. doi:10.1038/nrm2101CrossRefGoogle ScholarPubMed
Hammond, J., Shan, D., Meador-Woodruff, J., and McCullumsmith, R. E. (2014). Evidence of glutamatergic dysfunction in the pathophysiology of schizophrenia. In: Popol, M., Diamond, D., and Sanacora, G. (Eds.) Synaptic Stress and Pathogenesis of Neuropsychiatric Disorders. (pp. 265294). New York, NY: Springer.CrossRefGoogle Scholar
Hanson, S. M. and Czajkowski, C. (2008). Structural mechanisms underlying benzodiazepine modulation of the GABAA receptor. J. Neurosci., 28, 34903499. doi:10.1523/JNEUROSCI.5727–07.2008Google Scholar
Hardy, J., and Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science, 297, 353356. doi:10.1126/science.1072994CrossRefGoogle ScholarPubMed
Heinz, A., Higley, J. D., Gorey, J. G., Saunders, R. C., Jones, D. W., Hommer, D.,… Linnoila, M. (1998). In vivo association between alcohol intoxication, aggression, and serotonin transporter availability in nonhuman primates. Am. J. Psychiatry, 155, 10231028. Retrieved from: http://ajp.psychiatryonline.org/doi/pdf/10.1176/ajp.155.8.1023Google Scholar
Hensch, T. K., and Stryker, M. P. (2004). Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science, 303, 16781681. doi:10.1126/science.1091031CrossRefGoogle ScholarPubMed
Heresco-Levy, U., and Javitt, D. C. (2004). Comparative effects of glycine and D-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophr. Res., 66, 8996. doi:10.1016/s0920-9964(03)00129–4CrossRefGoogle ScholarPubMed
Hoek, R. M., Ruuls, S. R., Murphy, C. A., Wright, G. J., Goddard, R., Zurawski, S. M.,… Sedgwick, J. D. (2000). Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science, 290, 17681771. doi:10.1126 /science.290.5497.1768Google Scholar
Hoekstra, R., Fekkes, D., Loonen, A. J. M., Pepplinkhuizen, L., Tuineier, S., and Verhoeven, W. M. A. (2006). Bipolar mania and plasma amino acids: increased levels of glycine. Eur. Neuropsychopharmacol, 16, 7177. doi:10.1016/j.euroneuro.2005.06.003CrossRefGoogle ScholarPubMed
Howes, O., McCutcheon, R., and Stone, J. (2015). Glutamate and dopamine in schizophrenia: An update for the 21st century. J. Psychopharm. 29, 97115. doi:10.1177/0269881114563634Google Scholar
Jacobson, K. A., and Gao, Z. G. (2006). Adenosine receptors as therapeutic targets. Nature Reviews. Drug Discovery, 5, 247264. doi:10.1007/978–3-540–89615-9_1CrossRefGoogle Scholar
Jeng, J-M., and Sensi, S. L. (2005). Zinc dyshomeostasis in neuronal injury. In Stanton, P. K., Bramham, C., and Scharfman, H. E. (Eds.), Synaptic Plasticity and Transsynaptic Signaling. (pp. 139157). New York, NY: Springer.Google Scholar
Kamenetz, R., Tomita, T., Hsieh, H., Seabrook, G., Borchelt, D., Iwatsubo, T.,… Malinow, R. (2003). APP processing and synaptic function. Neuron, 37, 925937. doi:10.1016/S0896-6273(03)00124–7CrossRefGoogle ScholarPubMed
Kaul, M., Garden, G. A., and Lipton, S. A. (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature, 410, 988994. doi:10.1038/35073667CrossRefGoogle ScholarPubMed
Kim, W. G., Mohney, R. P., Wilson, B., Jeohn, G. H., Liu, B., and Hong, J. S. (2000). Regional difference in susceptibility to lipopolysacchride-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci., 20, 63096316. doi:10.1007/s10571-009–9477-0CrossRefGoogle Scholar
Kim, Y. S., and Joh, T. H. (2006). Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp. and Mol. Med., 38, 333347. doi:10.1016/j.pneurobio.2009.08.001CrossRefGoogle ScholarPubMed
Kim, Y. S., Kim, S. S., Cho, J. J., Choi, D. H., Hwang, O., Shin, D. H.,… Joh, T. H. (2005). Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia. J. Neurosci., 25, 37013711. doi:10.1523/JNEUROSCI.4346–04.2005CrossRefGoogle ScholarPubMed
Kronfol, Z., and Remick, D. G. (2000). Cytokines and the brain: Implications for clinical psychiatry. Am. J. Psychiatry, 157, 683694. doi:10.1176/appi.ajp.157.5.683CrossRefGoogle ScholarPubMed
Krystal, J. H., Sanacora, G., Blumberg, H., Anand, A., Charney, D. S., Marek, G.,… Mason, G. F. (2002). Glutamate and GABA systems as targets for novel antidepressant and mood stabilizing treatments. Mol. Psychiatry, 7, S71S80. doi:10.1038/sj.mp.4001021CrossRefGoogle ScholarPubMed
Krystal, J. H., Staley, J., Mason, G., Petrakis, I. L., Kaufman, J., Harris, R. A.,… Lappalainen, J. (2006). γ-Aminobutyric acid type A receptors and alcoholism. Arch. Gen. Psychiatry, 63, 957968. doi:10.1001/archpsyc.63.9.957CrossRefGoogle ScholarPubMed
Kugaya, A., and Sanacora, G. (2005). Beyond monoamines: glutamatergic function in mood disorders. CNS Spectrums, 10, 808819. doi:10.1017/S1092852900010403CrossRefGoogle ScholarPubMed
Lane, J. H., Sasseville, V. G., Smith, M. O., Vogel, P., Pauley, D. R., Heyes, M. P., and Lackner, A. A. (1996). Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation. J. Neurovirol., 2, 423432.Google Scholar
Lee, M. G., Hassani, O. K., Alonso, A., and Jones, B. E. (2005). Cholinergic basal forebrain neuron burst with theta during waking and paradoxical sleep. J. Neurosci., 25, 43654369. doi:10.1523/JNEUROSCI.0178–05.2005Google Scholar
Leri, F., Flores, J., Rodaros, D., and Stewart, J. (2002). Blockade of stress-induced but not cocaine-induced reinstatement by infusion of noradrenergic antagonists into the bed nucleus of the stria terminalis or the central nucleus of the amygdala. J. Neurosci., 22, 57135718. doi:10.3410/f.1008203.119312CrossRefGoogle ScholarPubMed
Lewerenz, J., and Maher, P. (2015). Chronic Glutamate Toxicity in Neurodegenerative Diseases. What is the Evidence? Front. Neurosci., 9, 469. doi:10.3389/fnins.2015.00469Google Scholar
Liu, B., Gaom, H. M., Wangm, J. Y., Jeohnm, G. H., Cooperm, C. L., and Hong, J. S. (2002). Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. N. Y. Acad. Sci., 962, 318331. doi:10.1111/j.1749–6632.2002.tb04077.xCrossRefGoogle ScholarPubMed
Lucas-Meunier, E., Fossier, P., Baux, G., and Amar, M. (2003). Cholinergic modulation of the cortical neuronal network. Plugers Arch., 446, 1729. doi:10.1007/s00424-002–0999-2Google Scholar
Machado-Vieira, R., Henter, I. D., and Zarate, C. A. Jr. (2015). New targets for rapid antidepressant action. Prog. Neurobiol., online Dec. 23, S0301-0082(15)30038–1. doi:10.1016/j.pneurobio.2015.12.001Google Scholar
Maron, E., and Shlik, J. (2006). Serotonin function in panic disorder: important, but why? Neuropsychopharmacol., 31, 111. doi:10.1038/sj.npp.1300880CrossRefGoogle ScholarPubMed
Marrone, D. F. (2007). Ultrastructural plasticity associated with hippocampal-dependent learning: a meta-analysis. Neurobiol. Learn. Mem., 87, 361371. doi:10.1016/j.nlm.2006.10.001Google Scholar
Meltzer, C. C., Smith, G., DeKosky, S. T., Pollock, B. G., Mathis, C. A., Moore, R. Y.,… Reynolds, C. F. 3rd (1998). Serotonin in aging, late-life depression, and Alzheimer’s disease: The emerging role of functional imaging. Neuropsychopharmacol., 18, 407430. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/9571651CrossRefGoogle ScholarPubMed
Menza, M. A., Golve, L. I., Cody, R. A., and Forman, N. E. (1993). Dopamine-related personality traits in Parkinson’s disease. Neurology, 43, 505508. doi:10.1212/WNL.43.3_Part_1.505CrossRefGoogle ScholarPubMed
Moore, R. Y., and Bloom, F. E., 1979. Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Ann. Rev. Neurosci., 2, 113168. doi:10.1146/annurev.ne.02.030179.000553CrossRefGoogle ScholarPubMed
Nagatsu, T., and Sawada, M. (2005). Inflammatory process in Parkinson’s disease: role for cytokines. Cur. Pharma. Design, 11, 9991016. doi:10.2174/1381612053381620CrossRefGoogle ScholarPubMed
New, A. S., and Siever, L. J. (2003). Biochemical endophenotypes in personality disorders. Methods Mol. Med., 77, 199213. doi:10.1385/1–59259-348–8:199Google ScholarPubMed
Niizato, K., Iritani, S., Ikeda, K., and Arai, H. (2001). Astroglial function of schizophrenic brain: a study using lobotomized brain. Clin. Neurosci. Neuropathol., 12, 14571460. doi:10.1097/00001756–200105250-00032Google Scholar
Nudmamud-Thanoi, S., and Reynolds, G. P. (2004). The NR1 subunit of the glutamate/NMDA receptor in the superior temporal cortex in schizophrenia and affective disorders. Neurosci. Let., 372, 173177. doi:10.1016/j.neulet.2004.09.035CrossRefGoogle ScholarPubMed
Nutt, D. (2006). GABAA receptors: subtypes, regional distribution, and function. J. Clin. Sleep Med., 2, S7S11. doi:10.1016/j.neuropharm.2008.07.045CrossRefGoogle ScholarPubMed
Olanow, C. W. (2007). The pathogenesis of cell death in Parkinson’s disease – 2007. Movement Disorders 22, S17, S335342. doi:10.1002/mds.21675Google Scholar
Olney, J. W., and Farber, N. B. (1995). Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiat., 52, 9981007. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/7492260Google Scholar
Partonen, T. (1996). Dopamine and circadian rhythms in seasonal affective disorder. Med. Hypotheses, 47, 191192. doi:10.1016/S0306-9877(96)90079–1CrossRefGoogle ScholarPubMed
Perlov, E., Philipsen, A., Hesslinger, B., Buechert, M., Ahrendts, J., Feige, B.,… van Elst, L. (2007). Reduced cingulate glutamate/glutamine-to-creatine ratios in adult patients with attention deficit/hyperactivity disorder – a magnet resonance spectroscopy study. J. Psychiatric Res., 41, 934941. doi:10.3109/15622970801958331CrossRefGoogle ScholarPubMed
Phan, K. L, Fitzgerald, D. A., Cortese, B. M., Seraji-Bozorgzad, N., Tancer, M. E., and Moore, G. J. (2005). Anterior cingulate neurochemistry in social anxiety disorder: 1H-MRS at 4 Tesla. Neuroreport, 16, 183186. doi:10.1097/00001756–200502080-00024Google Scholar
Plant, L. D., Boyle, J. P., Smith, I. F., Peers, C., and Pearson, H. A. (2003). The production of amyloid beta peptide is a critical requirement for the viability of central neurons. J. Neurosci., 23, 55315535. doi:10.1016/j.neulet.2009.12.035Google Scholar
Pliszka, S. R. (2005). The neuropsychopharmacology of attention-deficit/hyperactivity disorder. Biol. Psychiatry, 57, 13851390. doi:10.1038/npp.2009.120Google Scholar
Quiroz, J. A., Singh, J., Gould, T. D., Denicoff, K. D., Zarate, C. A., and Manji, H. K. (2004). Emerging experimental therapeutics for bipolar disorder: clues from the molecular pathophysiology. Mol. Psychiatry, 9, 756776. doi:10.1038/sj.mp.4001521Google Scholar
Raedler, T. J., Bymaster, F. P, Tandon, R., Copolov, D., and Dean, B. (2007). Towards a muscarinic hypothesis of schizophrenia. Mol. Psychiatry, 12, 232246. doi:10.1017/S1461145706006584Google Scholar
Raine, C. S. (1994). Multiple sclerosis: immune system molecule expression in the central nervous system. J. Neuropathol. Exp. Neurol., 53, 328337. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/8021705CrossRefGoogle ScholarPubMed
Réus, G. Z., Fries, G. R., Stertz, L., Baawy, M., Passos, I. C., Barichello, T., Kapczinski, F., and Quevedo, J. (2015). The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neurosci., 300, 141154. doi:10.1016/j.neuroscience.2015.05.018CrossRefGoogle Scholar
Rocchettia, J., Isingrinia, E., Dal Boa, G., Saghebya, S., Menegauxa, A., Troncheb, F.,… Girosa, B. (2014) Presynaptic D2 dopamine receptors control long-term depression and memory processes in the temporal hippocampus. Biol. Psychiatry, 77, 513525. doi:10.1016/j.biopsych.2014.03.013CrossRefGoogle Scholar
Rossner, S., Schultz, I., Zeitschel, U., Schliebs, R., Bigl, V., and Denmuth, H. V. (2005). Brain propyl endopeptidase expression in aging, APP transgenic mice and Alzheimer’s disease. Neurochem. Res., 30, 695702. doi:10.1007/s11064-005–6863-yGoogle Scholar
Rothman, D. L., Behar, K. L., Hyder, F., and Shulman, R. G. (2003). In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu. Rev. Physiol., 65, 401427. doi:10.1146/annurev.physiol.65.092101.142131CrossRefGoogle ScholarPubMed
Sakae, D. Y., Marti, F., Lecca, S., Vorspan, F., Martin-Garcia, E., Morel, L. J.,… El Mestikaway, S. (2015). The absence of VGLUT3 predisposes to cocaine abuse by increasing dopamine and glutamate signaling in the nucleus accumbens. Mol. Psychiatry, 20, 14481459. doi:10.1038/mp.2015.104CrossRefGoogle ScholarPubMed
Salmond, C. H., Chatfield, D. A., Menon, D. K., Pickard, J. D., and Sahakian, B. J. (2005). Cognitive sequelae of head injury: involvement of basal forebrain and associated structures. Brain, 128, 189200. doi:10.1093/brain/awh352Google Scholar
Sanacora, G., Zarate, C. A., Krystal, J. H., and Manji, H. K. (2008). Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat. Rev. Drug Discov., 7, 426437. doi:10.1038/nrd2462Google Scholar
Sarika, Arora, A. (2006) Role of neuropeptides in appetite regulation and obesity – A review. Neuropeptides, 40(6), 375401. doi:10.1016/j.npep.2006.07.001Google Scholar
Sato, A., Sato, Y., and Uchida, S. (2004). Activation of the intracerebral cholinergic nerve fibers originating in the basal forebrain increases regional cerebral blood flow in the rat’s cortex and hippocampus. Neurosci. Let., 361, 9093. doi:10.1016/j.neulet.2004.01.004Google Scholar
Schildkraut, J. J. (1965). The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am. J. Psychiatry, 122, 509522. Retrieved from: http://ajp.psychiatryonline.org/doi/abs/10.1176/ajp.122.5.509Google Scholar
Schliebs, R., and Arendt, T. (2006). The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J. Neural. Transm., 113, 16251644. doi:10.1016/j.bbr.2010.11.058CrossRefGoogle ScholarPubMed
Schmidt, M. (2008). GABA(C) receptors in retina and brain. Results and Problems in Cell Differentiation, 44, 4967. doi:10.1007/400_2007_031CrossRefGoogle ScholarPubMed
Sebat, J., Lakshmi, B., Malhotra, D., Troge, J., Lese-Martin, C., Walsh, T.,… Wigler, M. 2007. Strong association of de novo copy number mutations with autism. Science, 316, 445449. doi:10.1126/science.1138659Google Scholar
Segal, M., and Bloom, F. E. (1976). The action of norepinephrine in the rat hippocampus. IV. The effects of locus coeruleus stimulation on evoked hippocampal unit activity. Brain Res., 107, 513525.CrossRefGoogle ScholarPubMed
Sekier, I., Sensi, S. L., Hershfinkel, M., and Silverman, W. F. (2007). Mechanism and regulation of cellular zinc transport. Mol. Medicine, 13, 337343. doi:10.2119/2007–00037Google Scholar
Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298, 789791. doi:10.1126/science.1074069Google Scholar
Shigeri, Y., Seal, R. P., and Shimamoto, K. (2004). Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Resh. Rev., 45, 250265. doi:10.1016/j.brainresrev.2004.04.004CrossRefGoogle ScholarPubMed
Shim, S. S., Hammonds, M. D., and Kee, B. S. (2008). Potentiation of the NMDA receptor in the treatment of schizophrenia: focused on the glycine site. Eur. Arch. Psychiatry Clin. Neurosci., 258, 1627. doi:10.1113/jphysiol.2009.168757CrossRefGoogle ScholarPubMed
Siciliano, C. A., Ferris, M. J., and Jones, S. R. (2015). Cocaine self-administration disrupts mesolimbic dopamine circuit function and attenuates dopaminergic responsiveness to cocaine. Eur. J. Neurosci., 42, 20912096. doi:10.1111/ejn.12970Google Scholar
Spencer, K. M., Nestor, P. G., Perlmutter, R., Niznikiewicz, M. A., Klump, M. C., Frumin, M.,… McCarley, R. W. (2004). Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc. Natl. Acad. Sci. U.S.A., 101, 17288170293. doi:10.1073/pnas.0406074101Google Scholar
Stahl, S. M. (2007). Beyond the dopamine hypothesis to the NMDA glutamate hypofunction hypothesis of schizophrenia. CNS Spectrums, 12, 265268. doi:10.3389/fphar.2012.00195CrossRefGoogle Scholar
Steiger, H., Koerner, N., Engelberg, M. J., Israel, M., Ng Ying Kin, N. M., and Young, S. N. (2001). Self-destructiveness and serotonin function in bulimia nervosa. Psychiatry Res., 103, 1526. doi:10.1016/S0165-1781(01)00264–5CrossRefGoogle ScholarPubMed
Streeter, C. E., Jensen, J. E., Perlmutter, R. M., Cabral, H. J., Tian, H., Terhune, D. B.,… Renshaw, P. F. (2007). Yoga asana sessions increase brain GABA levels: a pilot study. J. Altern. Complement. Med., 13, 419426. doi:10.1089/acm.2007.6338Google Scholar
Terry, R. D. and Buccafusco, J. J. (2003). The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther., 306, 821827. doi:10.1124/jpet.102.041616Google Scholar
Toledano, A., and Alvarez, M. I. (2004). Lesions and dysfunctions of the nucleus basalis as Alzheimer’s disease models: general and critical overview and analysis of the long-term changes in several excitotoxic models. Curr. Alzheimer Resh., 1, 189214. doi:10.2174/1567205043332117CrossRefGoogle ScholarPubMed
Ullian, E. M., Sapperstein, S. K., Christopherson, K. S., and Barres, B. A. (2001). Control of synapse number by glia. Science, 291, 657661. doi:10.1126/science.291.5504.657Google Scholar
Unis, A. S., Cook, E. H., Vincent, J. G., Gjerde, D. K., Perry, B. D., Mason, C., and Mitchell, J. (1997). Platelet serotonin measures in adolescents with conduct disorder. Biol. Psychiatry, 42, 553559. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/9376451Google Scholar
Volkow, N. D., and Wise, R. A. (2005). How can drug addiction help us understand obesity? Nat. Neurosci., 8, 555560. doi:10.1038/nn1452CrossRefGoogle ScholarPubMed
Whitton, P. S. (2007). Inflammation as a causative factor in the aetiology of Parkinson’s disease. Brit. J. Pharmacology, 150, 963976. doi:10.1038/sj.bjp.0707167CrossRefGoogle ScholarPubMed
Yamagata, M., Sanes, J. R., and Weiner, J. A. (2003). Synaptic adhesion molecules. Curr. Opinion in Cell Biol., 15, 621632. doi:10.1007/978–3-7091–0932-8_5Google Scholar
Yan, Q. S., Zheng, S. Z., and Yan, S. E. (2004). Involvement of 5-HT1B receptors within the ventral tegmental area in regulation of mesolimbic dopaminergic neuronal activity via GABA mechanisms: a study with dual-probe microdialysis. Brain Res., 1021(1), 8291. doi:10.1016/j.neuroscience.2011.05.068CrossRefGoogle ScholarPubMed
Yanai, K., and Tashiro, M. (2007). The physiological and pathophysiological roles of neuronal histamine: an insight from human positron emission tomography studies. Pharmacology & Therapeutics, 113, 115. doi:10.1152/physrev.00043.2007CrossRefGoogle ScholarPubMed
Yang, Y., Ge, W., Chen, Y., Zhang, Z., Shen, W., Wu, C.,… Duan, S. (2003). Contribution of astrocytes to hippocampal long-term potentiation through release of D-serine. Proc. Nat. Acad. Sci. U.S.A., 100, 1519415199. doi:10.1073/pnas.2431073100CrossRefGoogle ScholarPubMed
Yoder, K. K., Kareken, D. A., Seyoum, R. A., O’Connor, S. J., Wang, C., Zheng, Q-H.,… Morris, E. D. (2005). Dopamine D2 receptor availability is associated with subjective responses to alcohol. Alcohol Clin. Exp. Res., 29, 965970. doi:10.1097/01.ALC.0000171041.32716.42Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Histology
  • David L. Clark, Ohio State University, Nash N. Boutros, University of Missouri, Kansas City, Mario F. Mendez, University of California, Los Angeles
  • Book: The Brain and Behavior
  • Online publication: 22 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781108164320.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Histology
  • David L. Clark, Ohio State University, Nash N. Boutros, University of Missouri, Kansas City, Mario F. Mendez, University of California, Los Angeles
  • Book: The Brain and Behavior
  • Online publication: 22 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781108164320.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Histology
  • David L. Clark, Ohio State University, Nash N. Boutros, University of Missouri, Kansas City, Mario F. Mendez, University of California, Los Angeles
  • Book: The Brain and Behavior
  • Online publication: 22 February 2018
  • Chapter DOI: https://doi.org/10.1017/9781108164320.004
Available formats
×