Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: May 2018

Bibliography

[1] J. L., Alperin, Sylow intersections and fusion, J. Algebra 6 (1967), 222–241.
[2] J. L., Alperin, The Green correspondence and normal subgroups, J. Algebra 104 (1986), 74–77.
[3] J. L., Alperin, Weights for finite groups, Proc. Symp. Pure Math. 47 (1987), 369–379.
[4] J. L., Alperin, Local representation theory, Cambridge Studies in Advanced Mathematics 11, Cambridge University Press (1986).
[5] J. L., Alperin and M., Broué, Local methods in block theory, Ann. Math. 110 (1979), 143–157.
[6] J. L., Alperin and P., Fong, Weights for symmetric and general linear groups, J. Algebra 131 (1990), 2–22.
[7] J. L., Alperin, M., Linckelmann, and R., Rouquier, Source algebras and source modules, J. Algebra 239 (2001), 262–271.
[8] J., An, 2-Weights for general linear groups, J. Algebra 149 (1992), 500–527.
[9] J., An, Uno's invariant conjecture for the general linear and unitary groups in nondefining characteristics, J. Algebra 284 (2005), 462–479.
[10] M., Aschbacher, R., Kessar, and B., Oliver, Fusion systems in algebra and topology, London Math. Soc. Lecture Notes Series 391, Cambridge University Press (2011).
[11] L., Barker, On p-soluble groups and the number of simple modules associated with a given Brauer pair, Quart. J. Math. Oxford 48 (1997), 133–160.
[12] L., Barker, On contractibility of the orbit space of a G-poset of Brauer pairs. J. Algebra 212 (1999), 460–465.
[13] V. A., Bašev, Representations of the group Z2 × Z2 in a field of characteristic 2 (Russian). Dokl. Akad. Nauk. SSSR 141 (1961), 1015–1018.
[14] D. J., Benson, Representations and cohomology, Vol. I: Cohomology of groups and modules, Cambridge studies in advanced mathematics 30, Cambridge University Press (1991).
[15] D. J., Benson, Representations and cohomology, Vol. II: Cohomology of groups and modules, Cambridge studies in advanced mathematics 31, Cambridge University Press (1991).
[16] D. J., Benson and R., Kessar, Blocks inequivalent to their Frobenius twists. J. Algebra 315 (2007), 588–599.
[17] T. R., Berger, Irreducible modules of solvable groups are algebraic, Proc. Conf. Finite Groups, Utah (1976), 541–553.
[18] T. R., Berger, Solvable groups and algebraic modules, J. Algebra 57 (1979), 387–406.
[19] R., Boltje, Alperin's weight conjecture and chain complexes, J. London Math. Soc. 68 (2003) 83–101.
[20] R., Boltje, R., Kessar, and M., Linckelmann, On Morita equivalences with endopermutation source. Preprint (2017).
[21] R., Boltje and B., Külshammer, The ring of modules with endo-permutation source, Manuscripta Math. 120 (2006), 359–376.
[22] R., Boltje and B., Xu, On p-permutation equivalences: between Rickard equivalences and isotypies, Trans. Amer. Math. Soc. 360 (2008), 5067–5087.
[23] S., Bouc, Modules de Möbius. C. R. Acad. Sci. Paris Sér. I, 299 (1984), 49–52.
[24] S., Bouc, The Dade group of a p-group, Invent. Math., 164 (2006), 189–231.
[25] R., Brauer, Investigations on group characters, Ann. Math. 42 (1941), 936–958.
[26] R., Brauer, Number theoretical investigations on groups of finite order, Proceedings of the international symposium on algebraic number theory, Tokyo and Nikko, Science Council of Japan, Tokyo (1995), 55–62.
[27] R., Brauer, On blocks and sections in finite groups II, Amer. J. Math. 90 (1968), 895–925.
[28] R., Brauer, Some applications of the theory of blocks of characters of finite groups IV, J. Algebra 17 (1971), 489–521.
[29] R., Brauer, On 2-blocks with dihedral defect groups, Symp. Math.XIII, Academic Press (1974), 367–393.
[30] R., Brauer, Notes on representations of finite groups, I, J. London Math. Soc. (2), 13 (1976), 162–166.
[31] R., Brauer and W., Feit, On the number of irreducible characters of finite groups in a given block, Nat. Acad. Sci. USA 45 (1959), 361–365.
[32] R., Brauer and C. J., Nesbitt, On the modular characters of groups. Ann. Math. 42 (1941), 556–590.
[33] C., Broto, R., Levi, and B., Oliver, The homotopy theory of fusion systems, J. Amer. Math. Soc. 16 (2003), 779–856.
[34] C., Broto, N., Castellana, J. Grodal, R., Levi, and B., Oliver, Subgroup families controlling p-local finite groups, Proc. London Math. Soc. (3) 91 (2005), 325– 354.
[35] M., Broué, Projectivité relative, blocs, groupes de défaut. These de Doctorat d'Etat es-sciences, Université Paris VII (1975).
[36] M., Broué, Radical, hauteurs, p-sections et blocs, Ann. Math. 107 (1978), 89–107.
[37] M., Broué, Brauer coefficients of p-subgroups associated with a p-block of a finite group, J. Algebra 56 (1979), 365–383.
[38] M., Broué, Isométries parfaites, types de blocs, catégories dérivées, Astérisque 181–182 (1990), 61–92.
[39] M., Broué, Equivalences of blocks of group algebras, in: Finite dimensional algebras and related topics, Kluwer (1994), 1–26.
[40] M., Broué and L., Puig, Characters and local structure in G-algebras, J. Algebra 63 (1980), 306–317.
[41] M., Broué and L., Puig, A Frobenius theorem for blocks, Invent. Math. 56 (1980), 117–128.
[42] K. S., Brown, Cohomology of groups. Graduate Texts in Math. 87 (1982), Springer, New York.
[43] M., Cabanes, Extensions of p-groups and construction of characters, Comm. Algebra 15 (1987), 1297–1311.
[44] M., Cabanes, Brauer morphism between modular Hecke algebras, J. Algebra 115 (1988), 1–31.
[45] J. F., Carlson, A characterization of endotrivial modules over p-groups, Manuscripta Math. 97 (1998), 303–307.
[46] J. F., Carlson, N., Mazza, and J., Thévenaz, Endotrivial modules for p-solvable groups, Trans. Amer.Math. Soc. 363 (2011), 4979–4996.
[47] J., Chuang and R., Kessar, Symmetric groups, wreath products, Morita equivalences, and Broué's Abelian Defect Group Conjecture, Bull. London Math. Soc. 34 (2002), 174–185.
[48] J., Chuang and R., Rouquier, Derived equivalences for symmetric groups and sl2- categorification, Ann. Math. 167 (2008), 245–298.
[49] G., Cliff, W., Plesken, and A., Weiss, Order-theoretic properties of the center of a block, in: The Arcata Conference on Representations of Finite Groups (editor: P. Fong), Proc. Sympos. PureMath. 47, Amer. Math. Soc, Providence RI (1987), 413–420.
[50] D. A., Craven, The theory of fusion Systems, Cambridge Studies in Advanced Mathematics 131, Cambridge University Press (2011).
[51] D., Craven, C., Eaton, R., Kessar, and M., Linckelmann, The structure of blocks with a Klein four defect group, Math. Z. 208 (2011), 441–476.
[52] C. W., Curtis and I., Reiner, Methods of representation theory Vol. II, John Wiley and Sons, New York, London, Sydney (1987).
[53] E. C., Dade, Blocks with cyclic defect groups, Ann. Math. 84 (1966), 20–48.
[54] E. C., Dade, Block extensions, Illinois J. Math. 17 (1973), 198–272.
[55] E. C., Dade, Endo-permutation modules over p-groups, I, II, Ann. Math. 107 (1978), 459–494, 108 (1978), 317–346.
[56] E. C., Dade, A correspondence of characters, Proc. Symp. Pure Math. 37 (1980), 401–404.
[57] E. C., Dade, Extending endo-permutation modules. Preprint (1982).
[58] E. C., Dade, Counting characters in blocks, I, Invent. Math. 109 (1992), 187–210.
[59] E. C., Dade, Counting characters in blocks, II, J. Reine Angew. Math. 448 (1994), 97–190.
[60] J., Dieudonné, Sur la réduction canonique des couples de matrices. Bull. Soc. Math. France 74 (1946), 130–146.
[61] O., Düvel, On Donovan's conjecture, J. Algebra 272 (2004), 1–16.
[62] C. W., Eaton, The equivalence of some conjectures of Dade and Robinson, J. Algebra 271 (2004), 638–651.
[63] C., Eaton, R., Kessar, B., Külshammer, and B., Sambale, 2-blocks with abelian defect groups, Adv. Math. 254 (2014), 706–735.
[64] C., Eaton and A., Moretó, Extending Brauer's height zero conjecture to blocks with nonabelian defect groups, Int. Math. Res. Not. 2014 (2014), 5581–5601.
[65] K., Erdmann, Blocks and simple modules with cyclic vertices, Bull. London Math. Soc. 9 (1977), 216–218.
[66] K., Erdmann, Blocks whose defect groups are Klein four groups: a correction, J. Algebra 76 (1982), 505–518.
[67] K., Erdmann, Blocks of tame representation type and related algebras, Lecture Notes Math. 1428, Springer Verlag, Berlin Heidelberg (1990).
[68] Y., Fan and L., Puig, On blocks with nilpotent coefficient extensions, Alg. Repr. Theory 2 (1999).
[69] W., Feit, Irreducible modules of p-solvable groups, Proc. Symp. Pure Math. 37 (1980), 405–412.
[70] W., Feit, Possible Brauer trees, Illinois J. Math. 28 (1984), 43–56.
[71] W., Feit and J. G., Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775–1029.
[72] P., Fong, On the characters of p-solvable groups, Trans. Amer. Math. Soc. 98 (1961), 263–284.
[73] P., Gabriel and Ch. Riedtmann, Group representations without groups, Comment. Math. Helvet. 54 (1979), 240–287.
[74] D., Gluck and T. R., Wolf, Brauer's height zero conjecture for p-solvable groups. Trans. Amer. Math. Soc. 282 (1984), 137–152.
[75] D. M., Goldschmidt, A conjugation family for finite groups, J. Algebra 16 (1970), 138–142.
[76] D., Gorenstein, Finite groups, Chelsea Publishing Company, New York (1980).
[77] J. A., Green, Walking around the Brauer tree, J. Austr. Math. Soc. 17 (1974), 197–213.
[78] J., Grodal, Higher limits via subgroup complexes. Annals of Math. 55 (2002), 405–457.
[79] M. E., Harris, On the p-deficiency class of a finite group, J. Algebra 94 (1985), 411–424.
[80] M. E., Harris and R., Knörr, Brauer correspondences for covering blocks of finite groups, Comm. Algebra 13 (1985), 1213–1218.
[81] M. E., Harris and M., Linckelmann, Splendid derived equivalences for blocks of finite p-solvable groups, J. London Math. Soc. (2) 62 (2000), 85–96.
[82] M. E., Harris and M., Linckelmann, On the Glauberman and Watanabe correspondences for blocks of finite p-solvable groups, Trans. Amer.Math. Soc. 354 (2002), 3435–3453.
[83] A., Heller and I., Reiner, Indecomposable representations. Ill. J. Math. 5 (1961), 314–323.
[84] L., Héthelyi, B., Külshammer, and B., Sambale, A note on Olsson's Conjecture, J. Algebra 398 (2014), 364–385.
[85] G., Higman, Units in group rings, D. Phil. Thesis, Oxford Univ. (1939).
[86] G., Hiss, Morita equivalences between blocks of finite Chevalley groups, Proc. Representation Theory of Finite and Algebraic Groups, eds: N., Kawanaka, G., Michler, and K., Uno, Osaka University, Osaka (2000), 128–136.
[87] G., Hiss and R.Kessar, Scopes reduction and Morita equivalence classes of blocks in finite classical groups, J. Algebra 230 (2000), 378–423.
[88] G., Hiss and R.Kessar, Scopes reduction and Morita equivalence classes of blocks in finite classical groups II, J. Algebra 283 (2005), 522–563.
[89] G., Hiss and K., Lux, Brauer trees of sporadic simple groups, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1989).
[90] I. M., Isaacs and G., Navarro, New refinements of the McKay conjecture for arbitrary finite groups, Ann. Math. 156 (2002), 333–344.
[91] G., Janusz, Indecomposable modules for finite groups, Ann. Math. 89 (1969), 209–241.
[92] D. L., Johnson, Indecomposable representations of the group (p, p) of fields of characteristic p, J. London Math. Soc. 1 (1969) 43–50.
[93] T., Jost, Morita equivalences for blocks of finite general linear groups, Manuscripta Math. 91 (1996), 121–144.
[94] R., Kessar, A remark on Donovan's conjecture, Archiv Math. (Basel) 82 (2004), 391–394.
[95] R., Kessar, On isotypies between Galois conjugate blocks. Buildings, finite geometries and groups, Springer Proc. Math. 10, 153–162 (2012), Springer, New York.
[96] R., Kessar and M., Linckelmann, On blocks with Frobenius inertial quotient, J. Algebra 249 (2002), 127–146.
[97] R., Kessar and M., Linckelmann, Fusion systems with one weight I, unpublished notes (2007).
[98] R., Kessar and M., Linckelmann, ZJ-theorems for fusion systems, Trans. Amer. Math. Soc. 360 (2008), 3093–3106.
[99] R., Kessar and M., Linckelmann, On stable equivalences and blocks with one simple module, J. Algebra 323 (2010), 1607–1621.
[100] R., Kessar and M., Linckelmann, Bounds for Hochschild cohomology of block algebras, J. Algebra 337 (2011), 318–322.
[101] R., Kessar, M., Linckelmann, and G., Navarro, A characterisation of nilpotent blocks. Proc. Amer. Math. Soc. 143 (2015), 5129–5138.
[102] R., Kessar and G., Malle, Quasi-isolated blocks and Brauer's height zero conjecture, Ann. Math. 178 (2013), 321–386.
[103] R., Kessar and R., Stancu, A reduction theorem for fusion systems of blocks, J. Algebra 319 (2008), 806–823.
[104] R., Knörr, On the vertices of irreducible modules, Ann. Math. 110 (1979), 487–499.
[105] R., Knörr, A remark on covering blocks, J. Algebra 103 (1986), 208–210.
[106] R., Knörr and G. R., Robinson, Some remarks on a conjecture of Alperin, J. London Math. Soc. 39 (1989), 48–60.
[107] S., Koshitani, Conjectures of Donovan and Puig for principal 3-blocks with abelian defect groups. Comm. Algebra 31 (2003), 2229–2243.
[108] S., Koshitani and B., Külshammer, A splitting theorem for blocks. Osaka J. Math. 33 (1996), 343–346.
[109] S., Koshitani and M., Linckelmann, The indecomposability of a certain bimodule given by the Brauer construction, J. Algebra 285 (2005), 726–729.
[110] B., Külshammer, On p-blocks of p-solvable groups, Comm. Algebra 9 (1981), 1763–1785.
[111] B., Külshammer, Symmetric local algebras and small blocks of finite groups, J. Algebra 88 (1984), 190–195.
[112] B., Külshammer, Crossed products and blocks with normal defect groups, Comm. Algebra 13 (1985), 147–168.
[113] B., Külshammer, A remark on conjectures in modular representation theory, Arch. Math. 49 (1987), 396–399.
[114] B., Külshammer, Roots of simple modules, Canad. Math. Bull. 49 (1) (2006), 96–107.
[115] B., Külshammer and L., Puig, Extensions of nilpotent blocks, Invent. Math. 102 (1990), 17–71.
[116] B., Külshammer and G. R., Robinson, An alternating sum for Hochschild cohomology of a block. J. Algebra 249 (2002), 220–225.
[117] H., Kupisch, Unzerlegbare Moduln endlicher Gruppen mit zyklischer p-Sylow Gruppe, Math. Z. 108 (1969), 77–104.
[118] R., Levi and B., Oliver, Construction of 2-local finite groups of a type studied by Solomon and Benson, Geom. Topol. 6 (2002), 917–990 (electronic).
[119] R., Levi and B., Oliver, Correction to: Construction of 2-local finite groups of a type studied by Solomon and Benson, Geom. Topol. 9 (2005), 2395–2415 (electronic).
[120] A., Libman, The gluing problem does not follow from homological properties of _p(G), Homology, Homotopy Appl. 12 (2010), 1–10.
[121] A., Libman, The gluing problem in the fusion systems of the symmetric, alternating and linear groups, J. Algebra 341 (2011), 209–245.
[122] M., Linckelmann, Le centre d'un bloc à groupes de défaut cycliques, C.R.A.S. 306, série I (1988), 727–730.
[123] M., Linckelmann, Variations sur les blocs à groupes de défaut cycliques, These, Univ. Paris VII (1988).
[124] M., Linckelmann, Modules in the sources of Green's exact sequences for cyclic blocks, Invent. Math. 97, 129–140.
[125] M., Linckelmann, Derived equivalence for cyclic blocks over a p-adic ring, Math. Z. 207 (1991), 293–304.
[126] M., Linckelmann, The source algebras of blocks with a Klein four defect group, J. Algebra 167 (1994), 821–854.
[127] M., Linckelmann, The isomorphism problem for cyclic blocks and their source algebras, Invent. Math. 125, (1996), 265–283.
[128] M., Linckelmann, Stable equivalences of Morita type for self-injective algebras and p-groups, Math. Z. 223 (1996) 87–100.
[129] M., Linckelmann, On derived equivalences and local structure of blocks of finite groups, Turkish J. Math. 22 (1998), 93–107.
[130] M., Linckelmann, Transfer in Hochschild cohomology of blocks of finite groups, Algebras Representation Theory 2 (1999), 107–135.
[131] M., Linckelmann, On splendid derived and stable equivalences between blocks of finite groups, J. Algebra 242 (2001), 819–843.
[132] M., Linckelmann, Fusion category algebras, J. Algebra 277 (2004), 222–235.
[133] M., Linckelmann, Alperin's weight conjecture in terms of equivariant Bredon cohomology, Math. Z. 250 (2005), 495–513.
[134] M., Linckelmann, Introduction to fusion systems, in: (eds.M., Geck, D., Testerman, and J., Thévenaz) Group representation theory, EPFL Press, Lausanne (2007), 79–113.
[135] M., Linckelmann, Blocks of minimal dimension, Arch. Math. 89 (2007), 311–314.
[136] M., Linckelmann, Trivial source bimodule rings for blocks and p-permutation equivalences, Trans. Amer. Math. Soc. 361 (2009), 1279–1316.
[137] M., Linckelmann, The orbit space of a fusion system is contractible, Proc. London Math. Soc. 98 (2009), 191–216.
[138] M., Linckelmann, On H2(C; k×) for fusion systems, Homotopy, Homology and Applications 11 (2009), 203–218.
[139] M., Linckelmann, On dimensions of block algebras, Math. Res. Lett. 16 (2009), 1011–1014.
[140] M., Linckelmann, On automorphisms and focal subgroups of blocks. Proc. Edinburgh Math. Soc., to appear.
[141] M., Linckelmann and N., Mazza, The Dade group of a fusion system, J. Group Theory 12 (2009), 55–74.
[142] M., Linckelmann, On stable equivalences with endopermutation source, J. Algebra 434 (2015), 27–45.
[143] M., Linckelmann and L., Puig, Structure des p -extensions des blocs nilpotents, C. R. Acad. Sc. Paris 304, Série I (1987), 181–184.
[144] W., Lück, Transformation groups and algebraic K-theory. Springer Lecture Notes in Mathematics, Springer Verlag 1408 (1989).
[145] G., Malle and G., Navarro, Blocks with equal height zero degrees, Trans. Amer. Math. Soc. 363 (2011), 6647–6669.
[146] G., Malle and G. R., Robinson, On the number of simple modules in a block of a finite group. J. Algebra 475 (2017), 423–438.
[147] A., Marcuş, On equivalences between blocks of group algebras: reduction to simple components. J. Algebra 184 (1996), 372–396.
[148] A., Marcuş, Broué's Abelian defect group conjecture for alternating group, Proc. Amer. Math. Soc., 132 (2003), 7–14.
[149] N., Mazza, Modules d'endo-permutation, Ph.D. Thesis, Lausanne, 2003.
[150] M., Murai, On a minimal counterexample to the Alperin-McKay conjecture, Proc. Japan Acad. Ser. A Math. Sci. 87 (2011), 192–193.
[151] H., Nagao, On a conjecture of Brauer for p-solvable groups, J. Math. Osaka City Univ. 13 (1962), 35–38.
[152] H., Nagao and Y., Tsushima, Representations of finite groups, Academic Press, San Diego (1989).
[153] T., Nakayama, On Frobeniusean algebras. I, Ann. Math. 40 (1939), 611–633.
[154] G., Navarro, The McKay conjecture and Galois automorphisms. Ann. Math. 160 (2004), 1129–1140.
[155] G., Navarro and G. R., Robinson, Blocks with p-power character degrees, Proc. Amer. Math. Soc. 133 (2005), 2845–2851.
[156] G., Navarro and G. R., Robinson, On endo-trivial modules for p-solvable groups, Math. Z. 270 (2012), 983–987.
[157] G., Navarro and P., Tiep, A reduction theorem for the Alperin weight conjecture, Invent. Math. 184 (2011), 529–565.
[158] T., Okuyama, Module correspondences in finite groups, Hokkaido Math. J. 10 (1981), 299–318.
[159] T., Okuyama and S., Wajima, Character correspondence and p-blocks of p-solvable groups, Osaka J. Math. 17 (1980), 801–806.
[160] T., Okuyama and Y., Tsushima, Local properties of p-block algebras of finite groups, Osaka J. Math. 20 (1983), 33–41.
[161] J., Olsson, On 2-blocks with quaternion and quasidihedral defect groups. J. Algebra 36 (1975), 212–241.
[162] S., Park, Realizing a fusion system by a single finite group, Archiv Math. (Basel) 94 (2010), 405–410.
[163] S., Park, The gluing problem for some block fusion systems, J. Algebra 323 (2010), 1690–1697.
[164] C., Picaronny and L., Puig, Quelques remarques sur un thème de Knörr, J. Algebra 109 (1987), 69–73.
[165] W., Plesken, Group rings of finite groups over p-adic integers, Lecture Notes in Mathematics 1026 (1983), Springer Verlag, Berlin, ii+151 pp.
[166] L., Puig, Structure locale dans les groupes finis, Bull.SocMath.France, Mémoire 47 (1976).
[167] L., Puig, Local block theory in p-solvable groups, Proc. Symp. Pure Math. 37 (1980), 385–388.
[168] L., Puig, Local extensions in endo-permutation modules split: a proof of Dade's theorem, Publ. Math. Univ. Paris VII 2 (1984), 199–205.
[169] L., Puig, Pointed groups and construction of characters. Math. Z. 176 (1981), 265–292.
[170] L., Puig, Nilpotent blocks and their source algebras, Invent. Math. 93 (1988), 77–116.
[171] L., Puig, Local fusion in block source algebras, J. Algebra 104 (1986), 358–369.
[172] L., Puig, Sur les P-algèbres de Dade, unpublished manuscript (1988).
[173] L., Puig, Affirmative answer to a question of Feit, J. Algebra 131 (1990), no. 2, 513–526.
[174] L., Puig, Pointed groups and construction of modules, J. Algebra 116 (1988), 7–129.
[175] L., Puig, Une correspondance de modules pour les blocs à groupes de défaut abéliens, Geom. Dedicata 37 (1991), no. 1, 9–43.
[176] L., Puig, On Joanna Scopes' criterion of equivalence for blocks of symmetric groups, Algebra Colloq. 1 (1994), 25–55.
[177] L., Puig, On the local structure of Morita and Rickard equivalences between Brauer blocks, Progress in Math. 178, Birkhäuser Verlag, Basel (1999).
[178] L., Puig, The hyperfocal subalgebra of a block, Invent. Math. 141 (2000), 365–397.
[179] L., Puig, Block source algebras in p-solvable groups, Michigan Math. J. 58 (2009), 323–338.
[180] L., Puig and Y., Usami, Perfect isometries for blocks with abelian defect groups and Klein four inertial quotients. J. Algebra 160 (1995), 192–225.
[181] L., Puig and Y., Usami, Perfect isometries for blocks with abelian defect groups and cyclic inertial quotients of order 4. J. Algebra 172 (1995), 205–213.
[182] D., Quillen, Homotopy properties of the poset of non-trivial p-subgroups of a group. Adv. in Math. 28 (1978), 101–128.
[183] K., Ragnarsson, Classifying spectra of saturated fusion systems, Algebr. Geom. Topol. 6 (2006), 195–252.
[184] W. F., Reynolds, Blocks and normal subgroups of finite groups, NagoyaMath. 22 (1963), 15–32.
[185] J., Rickard, Derived categories and stable equivalence, J. Pure Applied Algebra 61 (1989), 303–317.
[186] J., Rickard, Morita theory for derived categories, J. London Math. Soc. 39 (1989), 436–456.
[187] J., Rickard, Splendid equivalence: derived categories and permutation modules, Proc. London Math. Soc. 72 (1996), 331–358.
[188] G. R., Robinson, The Zp-theorem and units in blocks. J. Algebra 134 (1990), 353–355.
[189] G. R., Robinson, Local structure, vertices, and Alperin's conjecture, Proc. London Math. Soc. 72 (1996), 312–330.
[190] G. R., Robinson, Dade's projective conjecture for p-solvable groups, J. Algebra 229 (2000), 234-248.
[191] G. R., Robinson, More bounds on norms of generalized characters with applications to p-local bounds and blocks, Bull. London Math. Soc. 37 (2005) 555–565.
[192] G. R., Robinson, On the focal defect group of a block, characters of height zero, and lower defect group multiplicities, J. Algebra 320 (2008), 2624–2628.
[193] K. W., Roggenkamp, Subgroup rigidity of p-adic group rings (Weiss arguments revisited). J. London Math. Soc. 46 (1992), 432–448.
[194] R., Rouquier, From stable equivalences to Rickard equivalences for blocks with cyclic defect groups, Proc. ‘Groups 1993, Galway-Saint-Andres’, volume 2, London Math. Soc. Series 212, 512–523, Cambridge University Press (1995).
[195] R., Rouquier, Block theory via stable and Rickard equivalences, in: Modular representation theory of finite groups (Charlottesville, VA 1998), (M. J., Collins, B. J., Parshall, L. L., Scott), DeGruyter, Berlin, 2001, 101–146.
[196] R., Rouquier, The derived category of blocks with cyclic defect groups, in: Derived Equivalences for Group Rings (S. König, A. Zimmermann), Lecture Notes in Math. 1685, Springer Verlag, Berlin-Heidelberg, 1998, 199–220.
[197] R., Rouquier and A., Zimmermann, Picard groups for derived module categories. Proc. London Math. Soc. 87 (2003), 197–225.
[198] A., Ruiz and A., Viruel, The classification of p-local finite groups over the extraspecial group of order p3 and exponent p, Math.Z. 248 (2004), no. 1, 45–65.
[199] A., Salminen, On the sources of simple modules in nilpotent blocks, J. Algebra 319 (2008), 4559–4574.
[200] A., Salminen, Endopermutation modules arising from the action of a p-group on a defect zero block, J. Group Theory 12 (2009), 201–207.
[201] B., Sambale, Blocks of finite groups and their invariants. Lecture Notes in Mathematics 2127 (2014), xiv+243 pp.
[202] B., Sambale, Cartan matrices and Brauer's k(B)-conjecture III. Manuscripta Math. 146 (2015), 505–518.
[203] J., Scopes, Cartan matrices and Morita equivalence for blocks of the symmetric groups, J. Algebra 142 (1991), 441–455.
[204] L. L., Scott, Defect groups and the isomorphism problem, SMF Astérisque 181/182 (1990), 257–262.
[205] L. L., Scott, unpublished notes (1990).
[206] J., Słomińska, Homotopy colimits on EI-categories, Lecture Notes in Mathematics, Springer Verlag, Berlin 1474 (1991), 273–294.
[207] B., Späth, A reduction theorem for the Alperin-McKay conjecture, J. Reine Angew. Math. 680 (2013), 153–189.
[208] B., Späth, A reduction theorem for the blockwise Alperin weight conjecture, J. Group Theory 16 (2) (2013), 159–220.
[209] R., Stancu, Almost all generalized extraspecial p-groups are resistant, J. Algebra 249 (2002), no. 1, 120–126.
[210] R., Stancu, Control of the fusion in fusion systems, J. Algebra and its Applications 5 (2006), no. 6, 817–837.
[211] P., Symonds, The Bredon cohomology of subgroup complexes, J. Pure and Applied Algebra 199 (2005), 261–298.
[212] J., Thévenaz, Permutation representations arising from simplicial complexes. J. Combin. Theory A 46 (1987), 121–155.
[213] J., Thévenaz, Duality in G-algebras, Math. Z. 200 (1988) 47–85.
[214] J., Thévenaz, Endo-permutation modules, a guided tour, in: (eds. M., Geck, D., Testerman, and J., Thévenaz) Group representation theory, EPFL Press, Lausanne (2007), 115–147.
[215] J., Thévenaz, G-algebras and modular representation theory, Oxford Science Publications, Clarendon, Oxford (1995).
[216] J., Thévenaz and P. J., Webb, A Mackey functor version of a conjecture of Alperin. Astérisque 181–182 (1990), 263–272.
[217] A., Turull, Strengthening the McKay conjecture to include local fields and local Schur indices, J. Algebra 319 (2008), 4853–4868.
[218] J., Thompson, Vertices and sources, J. Algebra 6 (1967), 1–6.
[219] K., Uno, Conjectures on character degrees for the simple Thompson group, Osaka J. Math. 41 (2004), 11–36.
[220] J. M., Urfer, Modules d'endo-p-permutation, Ph.D. Thesis, Lausanne, 2006.
[221] Y., Usami, On p-blocks with abelian defect groups and inertial index 2 or 3, I. J. Algebra 119 (1988), 123–146.
[222] A., Watanabe, Note on a p-block of a finite group with abelian defect groups, Osaka J. Math. 26 (1989), 829–836.
[223] A., Watanabe, Notes on p-blocks of characters of finite groups, J. Algebra 136 (1991), 109–116.
[224] A., Watanabe, On nilpotent blocks of finite groups, J. Algebra 163 (1994), 128–134.
[225] P. J., Webb, Subgroup complexes. Proc. Symp. Pure Math. 47 (1987), Amer. Math. Soc., Providence.
[226] P. J., Webb, A split exact sequence of Mackey functors. Comment. Math. Helvet. 66 (1991), 34–69.
[227] P. J., Webb, Standard stratifications of EI categories and Alperin's weight conjecture. J. Algebra 320 (2008), 4073–4091.
[228] A., Weiss, Rigidity of p-adic p-torsion, Ann. Math. 127 (1988), 317–332.
[229] A., Yekutieli, Dualizing complexes, Morita equivalence, and the derived Picard group of a ring. J. London Math. Soc. 60 (1999), 723–746.
[230] A., Zimmermann, Representation theory. A homological algebra point of view. Algebra and Applications 19, Springer, Cham, Heidelberg, New York, Dordrecht, London, 2014.