Skip to main content Accessibility help
×
Home
  • Print publication year: 2015
  • Online publication date: March 2015

2 - Conformational transitions

Summary

The main form of the double helix, the B form, is stabilized by only weak hydrogen bonds and van der Waals interactions. If we also take into account the remarkable flexibility of the backbone of ssDNA, it is not surprising that depending on the solution conditions DNA can be found in various alternative forms. Conformational flexibility of DNA is needed for its functioning, since it facilitates speciflc DNA-DNA, DNA-RNA and DNA–protein interactions inside the cell. When we are changing solution conditions gradually, DNA can undergo transitions from one form to another. Studying these transitions has brought a lot of important information about DNA conformational flexibility and the stability of the various forms. This is why the conformational transitions have been a subject of biophysical investigation for decades. In this chapter we start from general theoretical analysis of the transitions, and then consider individual transitions: DNA melting or the helix–coil transition, B–A and B–Z transitions. We mainly consider only equilibrium properties of the transitions; the corresponding dynamic properties will be the subject of Chapter 4.

Theoretical analysis of conformational transitions in DNA

2.1.1 Preliminary remarks

A key concept of the theoretical description of conformational transitions that will be used in this chapter is a concept of a macrostate. It seems that Zimm and Bragg were the first to apply this approach to the analysis of the helix–coil transition in polypeptides (Zimm & Bragg 1959), although a few groups were moving in the same direction at that time. In this approach all microscopic states of a base pair (or nucleotides that can form the base pair) are divided into two groups, which correspond to the two DNA forms under consideration. The exact numbers of microstates in the macrostates and their corresponding energies are not specified in this approach. To apply it we only need to know the ratio of the statistical weights of the macrostates.

Related content

Powered by UNSILO
Aboul-ela, F., Koh, D., Tinoco, I., Jr. & Martin, F. H. (1985). Base-base mismatches. Thermodynamics of double helix formation for dCAaXAaG + dCT3YT3G(X, Y = A, C, G, T). Nucleic Acids Res. 13, 4811–24.
Abrescia, N. G., Thompson, A., Huynh-Dinh, T. & Subirana, J. A. (2002). Crystal structure of an antiparallel DNA fragment with Hoogsteen base pairing. Proc. Natl. Acad. Sci. U. S. A. 99, 2806–11.
Adams, A. (2002). Crystal structures of acridines complexed with nucleic acids. Curr. Med. Chem. 9, 1667–75.
Allawi, H. T. & SantaLucia, J., Jr. (1997). Thermodynamics and NMR of internal G-T mismatches in DNA. Biochemistry 36, 10581–94.
Allawi, H. T. (1998a). Nearest-neighbor thermodynamics of internal A-C mismatches in DNA: sequence dependence and pH effects. Biochemistry 37, 9435–44.
Allawi, H. T. (1998b). Nearest neighbor thermodynamic parameters for internal G·A mismatches in DNA. Biochemistry 37, 2170–9.
Allawi, H. T. (1998c). NMR solution structure of a DNA dodecamer containing single G-T mismatches. Nucleic Acids Res. 26, 4925–34.
Allawi, H. T. (1998d). Thermodynamics of internal C-T mismatches in DNA. Nucleic Acids Res. 26, 2694–701.
Amirikyan, B. R., Vologodskii, A. V. & Lyubchenko Yu, L. (1981). Determination of DNA cooperativity factor. Nucleic Acids Res. 9, 5469–82.
Ansevin, A. T., Vizard, D. L., Brown, B. W. & McConathy, J. (1976). High-resolution thermal denaturation of DNA. I. Theoretical and practical considerations for the resolution of thermal subtransitions. Biopolymers 15, 153–74.
Anshelevich, V. V., Vologodskii, A. V., Lukashin, A. V. & Frank-Kamenetskii, M. D. (1984). Slow relaxational processes in the melting of linear biopolymers. A theory and its application to nucleic acids. Biopolymers 23, 39–58.
Antao, V. P., Lai, S. Y. & Tinoco, I., Jr. (1991). A thermodynamic study of unusually stable RNA and DNA hairpins. Nucleic Acids Res. 19, 5901–5.
Arnold, F. H., Wolk, S., Cruz, P. & Tinoco, I., Jr. (1987). Structure, dynamics, and thermodynamics of mismatched DNA oligonucleotide duplexes d(CCCAGGG)2 and d(CCCTGGG)2. Biochemistry 26, 4068–75.
Bauer, W. & Vinograd, J. (1968). The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J. Mol. Biol. 33, 141–71.
Biver, T. (2012). Use of UV–Vis spectrometry to gain information on the mode of binding of small molecules to DNAs and RNAs. Appl. Spectrosc. Rev. 47, 272–325.
Blagoi, Y. P., Sorokin, V. A., Valeyev, V. A., Khomenko, S. A. & Gladchenko, G. O. (1978). Magnesium ion effect on the helix–coil transition of DNA. Biopolymers 17, 1103–18.
Blommers, M. J., Walters, J. A., Haasnoot, C. A., Aelen, J. M., van der Marel, G. A., van Boom, J. H. & Hilbers, C. W. (1989). Effects of base sequence on the loop folding in DNA hairpins. Biochemistry 28, 7491–8.
Borovik, A. S., Kalambet, Y. A., Lyubchenko, Y. L., Shitov, V. T. & Golovanov, E. I. (1980). Equilibrium melting of plasmid ColE1 DNA: electron-microscopic visualization. Nucleic Acids Res. 8, 4165–84.
Breslauer, K. J., Frank, R., Blocker, H. & Marky, L. A. (1986). Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. U. S. A. 83, 3746–50.
Cantor, C. R. & Schimmel, P. R. (1980). Biophysical Chemistry.New York: Freeman.
Coman, D. & Russu, I. M. (2005). A nuclear magnetic resonance investigation of the energetics of basepair opening pathways in DNA. Biophys. J. 89, 3285–92.
Conceição, A. S., Minetti, C. A., Remeta, D. P., Dickstein, R. & Breslauer, K. J. (2010). Energetic signatures of single base bulges: thermodynamic consequences and biological implications. Nucleic Acids Res. 38, 97–116.
Craig, M. E., Crothers, D. M. & Doty, P. (1971). Relaxation kinetics of dimer formation by self complementary oligonucleotidesJ. Mol. Biol. 62, 383–401.
Crick, F. H. & Klug, A. (1975). Kinky helix. Nature 255, 530–3.
Delcourt, S. G. & Blake, R. D. (1991). Stacking energies in DNA. J. Biol. Chem. 266, 15160–9.
Devoe, H. & Tinoco, I., Jr. (1962). The hypochromism of helical polynucleotides. J. Mol. Biol. 4, 518–27.
Di Capua, E., Engel, A., Stasiak, A. & Koller, T. (1982). Characterization of complexes between recA protein and duplex DNA by electron microscopy. J. Mol. Biol. 157, 87–103.
Dickerson, R. E. (1998). DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 26, 1906–26.
Doktycz, M. J., Goldstein, R. F., Paner, T. M., Gallo, F. J. & Benight, A. S. (1992). Studies of DNA dumbbells. I. Melting curves of 17 DNA dumbbells with different duplex stem sequences linked by T4 endloops: evaluation of the nearest-neighbor stacking interactions in DNA. Biopolymers 32, 849–64.
Doktycz, M. J., Paner, T. M., Amaratunga, M. & Benight, A. S. (1990). Thermodynamic stability of the 5′ dangling-ended DNA hairpins formed from sequences 5′-(XY)2GGATAC(T)4GTATCC-3′, where X, Y = A, T, G, C. Biopolymers 30, 829–45.
Du, Q., Kotlyar, A. & Vologodskii, A. (2008). Kinking the double helix by bending deformation. Nucleic Acids Res. 36, 1120–8.
Eickbush, T. H. & Moudrianakis, E. N. (1978). The compaction of DNA helices into either continuous supercoils or folded-fiber rods andtoroids. Cell 13, 295–306.
Ellison, M. J., Kelleher, R. J., 3rd, Wang, A. H., Habener, J. F. & Rich, A. (1985). Sequence-dependent energetics of the B–Z transition in supercoiled DNA containing nonalternating purine-pyrimidine sequences. Proc. Natl. Acad. Sci. U. S. A. 82, 8320–4.
Fixman, M. & Freire, J. J. (1977). Theory of DNA melting curves. Biopolymers 16, 2693–704.
Frank-Kamenetskii, M. D. (1971). Simplification of the empirical relationship between melting temperature of DNA, its GC-content and concentration of sodium ions in solution. Biopoly- mers 10, 2623–4.
Frank-Kamenetskii, M. D. & Prakash, S. (2014). Fluctuations in the DNA double helix: a critical review. Phys. Life Rev. 11, 153–70.
Freier, S. M., Kierzek, R., Jaeger, J. A., Sugimoto, N., Caruthers, M. H., Neilson, T. & Turner, D. H. (1986). Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. U. S. A. 83, 9373–7.
Giudice, E., Varnai, P. & Lavery, R. (2003). Base pair opening within B-DNA: free energy pathways for GC and AT pairs from umbrella sampling simulations. Nucleic Acids Res. 31, 1434–43.
Goddard, N. L., Bonnet, G., Krichevsky, O. & Libchaber, A. (2000). Sequence dependent rigidity of single stranded DNA. Phys. Rev. Lett. 85, 2400–3.
Goldstein, R. F. & Benight, A. S. (1992). How many numbers are required to specify sequence-dependent properties of polynucleotides?Biopolymers 32, 1679–93.
Gotoh, O., Husimi, Y., Yabuki, S. & Wada, A. (1976). Hyperfine structure in melting profile of bacteriophage lambda DNA. Biopolymers 15, 655–70.
Gotoh, O. & Tagashira, Y. (1981). Stabilities of nearest-neighbor doublets in double-helical DNA determined by fitting calculated melting profiles to observed profiles. Biopolymers 20, 1033–43.
Gray, D. M. & Tinoco, I. (1970). A new approach to the study of sequence-dependent properties of polynucleotides. Biopolymers 9, 223–44.
Gruenwedel, D. W. (1974). Salt effects on the denaturation of DNA. III. A calorimetric investigation of the transition enthalpy of calf thymus DNA in Na2 SO4 solutions of varying ionic strength. Biochim. Biophys. Acta 340, 16–30.
Gueron, M., Kochoyan, M. & Leroy, J. L. (1987). A single mode of DNA base-pair opening drives imino proton exchange. Nature 328, 89–92.
Gyi, J. I., Conn, G. L., Lane, A. N. & Brown, T. (1996). Comparison of the thermodynamic stabilities and solution conformations of DNA. RNA hybrids containing purine-rich and pyrimidine-rich strands with DNA and RNA duplexes. Biochemistry 35, 12538–48.
Haniford, D. B. & Pulleyblank, D. E. (1983). Facile transition of poly[d(TG) × d(CA)] into a left-handed helix in physiological conditions. Nature 302, 632–4.
Hoff, A. J. & Roos, A. L. (1972). Hysteresis of denaturation of DNA in the melting range. Biopolymers 11, 1289–94.
Huang, N. & MacKerell, A. D. J. (2004). Atomistic view of base flipping in DNA. Phil. Trans. R. Soc.A 362, 1439–60.
Integrated DNA Technologies. http://www.idtdna.com/analyzer/Applications/OligoAnalyzer/ [October 17, 2014].
Ivanov, V. I. & Krylov, D. (1992). A-DNA in solution as studied by diverse approaches. Methods Enzymol. 211, 111–27.
Ivanov, V. I., Krylov, D. & Minyat, E. E. (1985). Three-state diagram for DNA. J. Biomol. Struct. Dyn. 3, 43–55.
Ivanov, V. I., Minchenkova, L. E., Burckhardt, G., Birch-Hirschfeld, E., Fritzsche, H. & Zimmer, C. (1996). The detection of B-form/A-form junction in a deoxyribonucleotide duplex. Biophys. J. 71, 3344–9.
Ivanov, V. I., Minchenkova, L. E., Minyat, E. E., Frank-Kamenetskii, M. D. & Schyolkina, A. K. (1974). The B to A transition of DNA in solution. J. Mol. Biol. 87, 817–33.
Kalnik, M. W., Norman, D. G., Li, B. F., Swann, P. F. & Patel, D. J. (1990). Conformational transitions in thymidine bulge-containing deoxytridecanucleotide duplexes. Role of flanking sequence and temperature in modulating the equilibrium between looped out and stacked thymidine bulge states. J. Biol. Chem. 265, 636–47.
Kalnik, M. W., Norman, D. G., Zagorski, M. G., Swann, P. F. & Patel, D. J. (1989). Conformational transitions in cytidine bulge-containing deoxytridecanucleotide duplexes: extra cytidine equilibrates between looped out (low temperature) and stacked (elevated temperature) conformations in solution. Biochemistry 28, 294–303.
Kang, D. S. & Wells, R. D. (1985). B–Z DNA junctions contain few, if any, nonpaired bases at physiological superhelical densities. J. Biol. Chem. 260, 7783–90.
Kochoyan, M., Leroy, J. L. & Gueron, M. (1987). Proton exchange and base-pair lifetimes in a deoxy-duplex containing a purine–pyrimidine step and in the duplex of inverse sequence. J. Mol. Biol. 196, 599–609.
Kozyavkin, S. A., Mirkin, S. M. & Amirikyan, B. R. (1987). The ionic strength dependence of the cooperativity factor for DNA melting. J. Biomol. Struct. Dyn. 5, 119–26.
Krueger, A., Protozanova, E. & Frank-Kamenetskii, M. D. (2006). Sequence-dependent base pair opening in DNA double helix. Biophys. J. 90, 3091–9.
Lankas, F., Lavery, R. & Maddocks, J. H. (2006). Kinking occurs during molecular dynamics simulations of small DNA minicircles. Structure 14, 1527–34.
Lazurkin, Y. S., Frank-Kamenetskii, M. D. & Trifonov, E. N. (1970). Melting of DNA: its study and application as a research method. Biopolymers 9, 1253–306.
Lerman, L. S. (1961). Structural considerations in the interaction of DNA and acridines. J. Mol. Biol. 3, 18–30.
Leroy, J. L., Kochoyan, M., Huynh-Dinh, T. & Gueron, M. (1988). Characterization of base-pair opening in deoxynucleotide duplexes using catalyzed exchange of the imino proton. J. Mol. Biol. 200, 223–38.
Lesnik, E. A. & Freier, S. M. (1995). Relative thermodynamic stability of DNA, RNA, and DNA:RNA hybrid duplexes: relationship with base composition and structure. Biochemistry 34, 10807–15.
Lukashin, A. V., Vologodskii, A. V., Frank-Kamenetskii, M. D. & Lyubchenko, Y. L. (1976). Fluctuational opening of the double helix as revealed by theoretical and experimental study of DNA interaction with formaldehyde. J. Mol. Biol. 108, 665–82.
Lyubchenko, Y. L., Frank-Kamenetskii, M. D., Vologodskii, A. V., Lazurkin, Y. S. & Gause, G. G., Jr. (1976). Fine structure of DNA melting curves. Biopolymers 15, 1019–36.
Lyubchenko, Y. L., Vologodskii, A. V. & Frank-Kamenetskii, M. D. (1978). Direct comparison of theoretical and experimental melting profiles for RF II phiX174 DNA. Nature 271, 28–31.
Malenkov, G., Minchenkova, L., Minyat, E., Schyolkina, A. & Ivanov, V. (1975). The nature of the B-A transition of DNA in solution. FEBS Lett. 51, 38–42.
Marmur, J. & Doty, P. (1959). Heterogeneity in deoxyribonucleic acids: I. Dependence on composition of the configurational stability of deoxyribonucleic acids. Nature 183, 1427–9.
Martin, F. H. & Tinoco, I., Jr. (1980). DNA-RNA hybrid duplexes containing oligo(dA:rU) sequences are exceptionally unstable and may facilitate termination of transcription. Nucleic Acids Res. 8, 2295–9.
McAteer, K., Jing, Y., Kao, J., Taylor, J. S. & Kennedy, M. A. (1998). Solution-state structure of a DNA dodecamer duplex containing a Cis-syn thymine cyclobutane dimer, the major UV photoproduct of DNA. J. Mol. Biol. 282, 1013–32.
McGhee, J. D. & von Hippel, P. H. (1974). Theoretical aspects of DNA-protein interactions: cooperative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J. Mol. Biol. 86, 469–89.
Melchior, W. B., Jr. & Von Hippel, P. H. (1973). Alteration of the relative stability of dA–dT and dG–dC base pairs in DNA. Proc. Natl. Acad. Sci. U. S. A. 70, 298–302.
Minchenkova, L. E., Schyolkina, A. K., Chernov, B. K. & Ivanov, V. I. (1986). CC/GG contacts facilitate the B to A transition of DNA in solution. J. Biomol. Struct. Dyn. 4, 463–76.
Mirkin, S. M., Lyamichev, V. I., Kumarev, V. P., Kobzev, V. F., Nosikov, V. V. & Vologodskii, A. V (1987). The energetics of the B-Z transition in DNA. J. Biomol. Struct. Dyn. 5, 79–88.
Moe, J. G. & Russu, I. M. (1990). Proton exchange and base-pair opening kinetics in 5′- d(CGCGAATTCGCG)-3′ and related dodecamers. Nucleic Acids Res. 18, 821–7.
Morden, K. M. & Maskos, K. (1993). NMR studies of an extrahelical cytosine in an A.T rich region of a deoxyribodecanucleotide. Biopolymers 33, 27–36.
Nair, D. T., Johnson, R. E., Prakash, L., Prakash, S. & Aggarwal, A. K. (2005). Human DNA polymerase iota incorporates dCTP opposite template G via a G.C + Hoogsteen base pair. Structure 13, 1569–77.
Nakano, M., Moody, E. M., Liang, J. & Bevilacqua, P. C. (2002). Selection forthermodynamically stable DNA tetraloops using temperature gradient gel electrophoresis reveals four motifs: d(cGNNAg), d(cGNABg), d(cCNNGg), and d(gCNNGc). Biochemistry 41, 14281–92.
Nikolova, E. N., Kim, E., Wise, A. A., O'Brien, P. J., Andricioaei, I. & Al-Hashimi, H. M. (2011). Transient Hoogsteen base pairs in canonical duplex DNA. Nature 470, 498–502.
Nordheim, A., Lafer, E. M., Peck, L. J., Wang, J. C., Stollar, B. D. & Rich, A. (1982). Negatively supercoiled plasmids contain left-handed Z-DNA segments as detected by specific antibody binding. Cell 31, 309–18.
Owczarzy, R., Moreira, B. G., You, Y., Behlke, M. A. & Walder, J. A. (2008). Predicting stability of DNA duplexes in solutions containing magnesium and monovalent cations. Biochemistry 47, 5336–53.
Owczarzy, R., Vallone, P. M., Gallo, F. J., Paner, T. M., Lane, M. J. & Benight, A. S. (1997). Predicting sequence-dependent melting stability of short duplex DNA oligomers. Biopolymers 44, 217–39.
Owczarzy, R., You, Y., Moreira, B. G., Manthey, J. A., Huang, L., Behlke, M. A. & Walder, J. A. (2004). Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Biochemistry 43, 3537–54.
Owen, R. J., Hill, L. R. & Lapage, S. P. (1969). Determination of DNA base compositions from melting profiles in dilute buffers. Biopolymers 7, 503–16.
Park, H., Zhang, K., Ren, Y., Nadji, S., Sinha, N., Taylor, J. S. & Kang, C. (2002). Crystal structure of a DNA decamer containing a cis-syn thymine dimer. Proc. Natl. Acad. Sci. U. S. A. 99, 15965–70.
Patel, D. J., Kozlowski, S. A., Ikuta, S. & Itakura, K. (1984). Deoxyadenosine-deoxycytidine pairing in the d(C-G-C-G-A-A-T-T-C-A-C-G) duplex – conformation and dynamics at and adjacent to the dA-dC mismatch site. Biochemistry 23, 3218–26.
Patel, D. J., Kozlowski, S. A., Marky, L. A., Rice, J. A., Broka, C., Dallas, J., Itakura, K. & Breslauer, K. J. (1982). Structure, dynamics, and energetics of deoxyguanosine.thymidine wobble base pair formation in the self-complementary d(CGTGAATTCGCG) duplex in solution. Biochemistry 21, 437–44.
Peck, L. J. & Wang, J. C. (1983). Energetics of B-to-Z transition in DNA. Proc. Natl. Acad. Sci. U. S. A. 80, 6206–10.
Perelroyzen, M. P., Lyamichev, V. I., Kalambet, Y. A., Lyubchenko, Y. L. & Vologodskii, A. V. (1981). A study of the reversibility of helix-coil transition in DNA. Nucleic Acids Res. 9, 4043–59.
Peyrard, M. & Bishop, A. R. (1989). Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62, 2755–8.
Peyret, N., Seneviratne, P. A., Allawi, H. T. & SantaLucia, J., Jr. (1999). Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. Biochemistry 38, 3468–77.
Pohl, F. M. & Jovin, T. M. (1972). Salt-induced cooperative conformational change of a synthetic DNA – equilibrium and kinetic studies with poly(dG-dC). J. Mol. Biol. 67, 375–96.
Poland, D. (1974). Recursion relation generation of probability profiles for specific-sequence macromolecules with long-range correlations. Biopolymers 13, 1859–71.
Protozanova, E., Yakovchuk, P. & Frank-Kamenetskii, M. D. (2004). Stacked-unstacked equilibrium at the nick site of DNA. J. Mol. Biol. 342, 775–85.
Ratmeyer, L., Vinayak, R., Zhong, Y. Y., Zon, G. & Wilson, W. D. (1994). Sequence specific thermodynamic and structural properties for DNA.RNA duplexes. Biochemistry 33, 5298–304.
Rice, S. A. & Doty, P. (1957). The thermal denaturation of desoxyribose nucleic acid. J. Am. Chem. Soc. 79, 3937–47.
Rich, A., Nordheim, A. & Wang, A. H.-J. (1984). The chemistry and biology of left-handed Z-DNA. Annu. Rev. Biochem. 53, 791–846.
Roberts, R. J. & Cheng, X. (1998). Base flipping. Annu. Rev. Biochem. 67, 181–98.
Roberts, R. W. & Crothers, D. M. (1992). Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258, 1463–6.
Rouzina, I. & Bloomfield, V. A. (1999a). Heat capacity effects on the melting of DNA. 1. General aspects. Biophys. J. 77, 3242–51.
Rouzina, I. (1999b). Heat capacity effects on the melting of DNA. 2. Analysis of nearest-neighbor base pair effects. Biophys. J. 77, 3252–5.
Rybenkov, V. V., Vologodskii, A. V. & Cozzarelli, N. R. (1997). The effect of ionic conditions on DNA helical repeat, effective diameter, and free energy of supercoiling. Nucleic Acids Res. 25, 1412–18.
SantaLucia, J., Jr. (1998). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. U. S. A. 95, 1460–5.
SantaLucia, J., Jr., Allawi, H. T. & Seneviratne, P. A. (1996). Improvednearest-neighborparameters for predicting DNA duplex stability. Biochemistry 35, 3555–62.
SantaLucia, J., Jr. & Hicks, D. (2004). The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–40.
Seaman, F. C. & Hurley, L. (1993). Interstrand cross-linking by bizelesin produces a Watson–Crick to Hoogsteen base-pairing transition region in d(CGTAATTACG)2. Biochemistry 32, 12577–85.
Senior, M. M., Jones, R. A. & Breslauer, K. J. (1988). Influence of loop residues on the relative stabilities of DNA hairpin structures. Proc. Natl. Acad. Sci. U. S. A. 85, 6242–6.
Shiao, D. D. & Sturtevant, J. M. (1973). Heats of thermally induced helix-coil transitions of DNA in aqueous solution. Biopolymers 12, 1829–36.
Singleton, C. K., Klysik, J., Stirdivant, S. M. & Wells, R. D. (1982). Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions. Nature 299, 312–16.
Sobell, H. M., Tsai, C. C., Jain, S. C. & Gilbert, S. G. (1977). Visualization of drug-nucleic acid interactions at atomic resolution. III. Unifying structural concepts in understanding drug-DNA interactions and their broader implications in understanding protein-DNA interactions. J. Mol. Biol. 114, 333–65.
Sugimoto, N., Nakano, S., Yoneyama, M. & Honda, K. (1996). Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Res. 24, 4501–5.
Suzuki, M. & Yagi, N. (1995). Stereochemical basis of DNA bending by transcription factors. Nucleic Acids Res. 23, 2083–2091.
Tan, W., Wang, K. & Drake, T. J. (2004). Molecular beacons. Curr. Opin. Chem. Biol. 8, 547–53.
Tanaka, F., Kameda, A., Yamamoto, M. & Ohuchi, A. (2004). Thermodynamic parameters based on a nearest-neighbor model for DNA sequences with a single-bulge loop. Biochemistry 43, 7143–50.
Tinoco, I., Jr., Borer, P. N., Dengler, B., Levin, M. D., Uhlenbeck, O. C., Crothers, D. M. & Bralla, J. (1973). Improved estimation of secondary structure in ribonucleic acids. Nat. New Biol. 246, 40–1.
Tinoco, I., Jr., Uhlenbeck, O. C. & Levine, M. D. (1971). Estimation of secondary structure in ribonucleic acids. Nature 230, 362–7.
Tolstorukov, M. Y., Ivanov, V. I., Malenkov, G. G., Jernigan, R. L. & Zhurkin, V. B. (2001). Sequence-dependent B-A transition in DNA evaluated with dimeric and trimeric scales. Biophys. J. 81, 3409–21.
Tunis-Schneider, M. J. & Maestre, M. F. (1970). Circular dichroism spectra of oriented and unoriented deoxyribonucleic acid films – a preliminary study. J. Mol. Biol. 52, 521–41.
Tyagi, S. & Kramer, F. R. (1996). Molecular beacons: probes that fluoresce upon hybridization. Nature Biotechnol. 14, 303–8.
Ughetto, G., Wang, A. H., Quigley, G. J., van der Marel, G. A., van Boom, J. H. & Rich, A. (1985). A comparison of the structure of echinomycin and triostin A complexed to a DNA fragment. Nucleic Acids Res. 13, 2305–23.
Usatyi, A. F. & Shlyakhtenko, L. S. (1974). Melting of DNA in ethanol-water solutions. Biopolymers 13, 2435–46.
Varani, G. (1995). Exceptionally stable nucleic acid hairpins. Annu. Rev. Biophys. Biomol. Struct. 24, 379–404.
Vologodskii, A. V., Amirikyan, B. R., Lyubchenko, Y. L. & Frank-Kamenetskii, M. D. (1984). Allowance for heterogeneous stacking in the DNA helix-coil transition theory. J. Biomol. Struct. Dyn. 2, 131–48.
Vologodskii, A. V. & Cozzarelli, N. R. (1994). Conformational and thermodynamic properties of supercoiled DNA. Annu. Rev. Biophys. Biomol. Struct. 23, 609–43.
Voskoboinik, A. D., Monaselidze, D. R., Mgeladze, G. N., Chanchalashvili, Z. I., Lazurkin, Y. S. & Frank-Kamenetskii, M. D. (1975). Study of DNA melting in the region of the inversion of relative stability of AT and GC pairs. Mol. Biol. 9, 783–90.
Wang, A. H., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G. & Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282, 680–6.
Wang, J. C. (1974). The degree of unwinding of the DNA helix by ethidium. I. Titration of twisted PM2 DNA molecules in alkaline cesium chloride density gradients. J. Mol. Biol. 89, 783–801.
Werner, M. H., Gronenborn, A. M. & Clore, G. M. (1996). Intercalation, DNA kinking, and the control of transcription. Science 271, 778–84.
Woodson, S. A. & Crothers, D. M. (1988a). Preferential location of bulged guanosine internal to a G.C tract by 1H NMR. Biochemistry 27, 436–45.
Woodson, S. A. (1988b). Structural model for an oligonucleotide containing a bulged guanosine by NMR and energy minimizationBiochemistry 27, 3130–41.
Woodson, S. A. (1989). Conformation of a bulge-containing oligomer from a hot-spot sequence by NMR and energy minimization. Biopolymers 28, 1149–77.
Yakovchuk, P., Protozanova, E. & Frank-Kamenetskii, M. D. (2006). Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res. 34, 564–74.
Zasedatelev, A. S., Gurskii, G. V. & Vol'kenshtein, M. V. (1971). Theory of one-dimensional adsorption. I. Adsorption of small molecules on a homopolymer. Mol. Biol. 5, 194–8.
Zhu, J. & Wartell, R. M. (1999). The effect of base sequence on the stability of RNA and DNA single base bulges. Biochemistry 38, 15986–93.
Zimm, B. H. & Bragg, J. K. (1959). Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem. Phys. 31, 526–31.