Skip to main content Accessibility help
×
Home
  • Print publication year: 2015
  • Online publication date: March 2015

6 - Circular DNA

Summary

In 1963 Dulbecco and Vogt, and Weil and Vinograd, discovered that dsDNA of the polyoma virus exists in a closed circular form (Dulbecco & Vogt 1963, Weil & Vinograd 1963). It turned out that this form is typical of bacterial DNA and of cytoplasmic DNA in animals. The distinctive feature of closed circular molecules is that its topological state cannot be altered by any conformational rearrangement that does not involve breaking DNA strands. This topological constraint is the basis for the fascinating properties of circular DNA molecules. The physical properties of circular DNA molecules is a subject of the current chapter.

Linking number of complementary strands and DNA supercoiling

Two forms of circular DNA molecules are extracted from the cell; they were designated as form I and form II (Weil & Vinograd 1963). The more compact form I was found to turn into form II after a single-stranded break was introduced into one chain of the double helix. Subsequent studies performed by Vinograd and co-workers linked the compactness of form I, in which both DNA strands are intact, to supercoiling. Form I is called the closed circular form. In this form each of the two strands that make up the DNA molecule are closed in on themselves. A diagram of closed circular DNA is presented in Fig. 6.1. The two strands of the double helix in closed circular DNA are topologically linked. In topological terms, the links between two strands of the double helix belong to a particular class, called the torus class (see Section 6.7). The quantitative description of such links is called the linking number, Lk, which may be determined in the following way (Fig. 6.2). One of the strands defines the edge of an imaginary surface (any such surface gives the same result). Lk is the algebraic (i.e. sign-dependent) number of intersections of the surface by the other strand.

Related content

Powered by UNSILO
Aboul-ela, F., Bowater, R. P. & Lilley, D. M. J. (1992). Competing B–Z and helix–coil conformational transitions in supercoiled plasmid DNA. J. Biol. Chem. 267, 1776–85.
Adams, C. C. (1994). The Knot Book. New York: Freeman.
Adrian, M., ten Heggeler-Bordier, B., Wahli, W., Stasiak, A. Z., Stasiak, A. & Dubochet, J. (1990). Direct visualization of supercoiled DNA molecules in solution. EMBO J. 9, 4551–4.
Alexander, J. W. (1928). Topological invariants of knots and links. Trans. Am. Math. Soc. 30, 275–306.
Bauer, W. & Vinograd, J. (1968). The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J. Mol. Biol. 33, 141–71.
Bauer, W. & Vinograd, J. (1970). The interaction of closed circular DNA with intercalative dyes. II. The free energy of superhelix formation in SV40 DNA. J. Mol. Biol. 47, 419–35.
Bauer, W. R. (1978). Structure and reactions of closed duplex DNA. Annu. Rev. Biophys. Bioeng. 7, 7–287.
Bauer, W. R. & Benham, C. J. (1993). The free energy, enthalpy and entropy of native and of partially denatured closed circular DNA. J. Mol. Biol. 234, 1184–96.
Bauer, W. R., Crick, F. H. C. & White, J. H. (1980). Supercoiled DNA. Sci. Am. 243, 100–13.
Beard, P., Morrow, J. F. & Berg, P. (1973). Cleavage of circular, superhelical simian virus 40 DNA to a linear duplex by S1 nuclease. J. Virol. 12, 1303–13.
Bednar, J., Furrer, P., Stasiak, A., Dubochet, J., Egelman, E. H. & Bates, A. D. (1994). The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. J. Mol. Biol. 235, 825–47.
Benham, C. J. (1978). The statistics of superhelicity. J. Mol. Biol. 123, 361–70.
Benham, C. J. (1979). Torsional stress and local denaturation in supercoiled DNA. Proc. Natl. Acad. Sci. U. S. A. 76, 3870–4.
Benham, C. J. (1983). Statistical mechanical analysis of competing conformational transitions in superhelical DNA. Cold Spring Harbor Symp. Quant. Biol. 47, 219–27.
Bliska, J. B. & Cozzarelli, N. R. (1987). Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. J. Mol. Biol. 194, 205–18.
Boles, T. C., White, J. H. & Cozzarelli, N. R. (1990). Structure of plectonemically supercoiled DNA. J. Mol. Biol. 213, 931–51.
Borst, P., Overdulve, J. P., Weijers, P. J., Fase-Fowler, F. & Van den Berg, M. (1984). DNA circles with cruciforms from Isospora (Toxoplasma) gondii. Biochim. Biophys. Acta 781, 100–11.
Brahms, S., Nakasu, S., Kikuchi, A. & Brahms, J. G. (1989). Structural changes in positively and negatively supercoiled DNA. Eur. J. Biochem. 184, 297–303.
Brahms, S., Vergne, J., Brahms, J. G., Di Capua, E., Bucher, P. & Koller, T. (1982). Natural DNA sequences can form left-handed helices in low salt solution under conditions of topological constraint. J. Mol. Biol. 162, 473–93.
Brown, P. O. & Cozzarelli, N. R. (1979). A sign inversion mechanism for enzymatic supercoiling of DNA. Science 206, 1081–3.
Brown, P. O. & Cozzarelli, N. R. (1981). Catenation and knotting of duplex DNA by type 1 topoisomerases: a mechanistic parallel with type 2 topoisomerases. Proc. Natl. Acad. Sci. U. S. A. 78, 843–7.
Browning, D. F., Grainger, D. C. & Busby, S. J. W. (2010). Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr. Opin. Microbiol. 13, 773–80.
Buck, G. R. & Zechiedrich, E. L. (2004). DNA disentangling by type-2 topoisomerases. J. Mol. Biol. 340, 933–9.
Calugareanu, G. (1961). Surlas classes d'isotopie des noeuds tridimensionnels et leurs invariants. Czech. Math. J. 11, 588–625.
Champoux, J. J. (2001). DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369–413.
Champoux, J. J. & Dulbecco, R. (1972). An activity from mammalian cells that untwists superhelical DNA – a possible swivel for DNA replication. Proc. Natl. Acad. Sci. U. S. A. 69, 143–6.
Charvin, G., Bensimon, D. & Croquette, V. (2003). Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases. Proc. Natl. Acad. Sci. U. S. A. 100, 9820–5.
Courey, A. J. & Wang, J. C. (1983). Cruciform formation in a negatively supercoiled DNA may be kinetically forbidden under physiological conditions. Cell 33, 817–29.
Crisona, N. J., Kanaar, R., Gonzalez, T. N., Zechiedrich, E. L., Klippel, A. & Cozzarelli, N. R. (1994). Processive recombination by wild-type Gin and an enhancer-independent mutant: Insight into the mechanisms of recombination selectivity and strand exchange. J. Mol. Biol. 243, 243–437.
Crisona, N. J., Strick, T. R., Bensimon, D., Croquette, V. & Cozzarelli, N. R. (2000). Preferential relaxation of positively supercoiled DNA by E. coli topoisomerase IV in single-molecule and ensemble measurements. Genes Dev. 14, 2881–92.
Dayn, A., Malkhosyan, S., Duzhy, D., Lyamichev, V., Panchenko, Y. & Mirkin, S. (1991). Formation of (dA-dT)n cruciform in E. coli cells under different environmental conditions. J. Bacteriol. 173, 2658–64.
Dayn, A., Malkhosyan, S. & Mirkin, S. M. (1992). Transcriptionally driven cruciform formation in vivo. Nucleic Acids Res. 20, 5991–7.
Dedon, P. C., Dederich, D. A. & Barth, M. C. (2009). An improved method for large-scale preparation of negatively and positively supercoiled plasmid DNA. Bio Techniques 47, 633–5.
Dekker, N. H., Rybenkov, V. V., Duguet, M., Crisona, N. J., Cozzarelli, N. R., Bensimon, D. & Croquette, V. (2002). The mechanism of type IA topoisomerases. Proc. Natl. Acad. Sci. U. S.A. 99, 12126–31.
Depew, R. E. & Wang, J. C. (1975). Conformational fluctuations of DNA helix. Proc. Natl. Acad. Sci. U. S. A. 72, 4275–9.
DiGate, R. J. & Marians, K. J. (1988). Identification of a potent decatenating enzyme from Escherichia coli. J. Biol. Chem. 263, 13366–73.
Dong, K. C. & Berger, J. M. (2007). Structural basis for gate-DNA recognition and bending by type IIA topoisomerases. Nature 450, 1201–5.
Drlica, K. (1992). Control of bacterial DNA supercoiling. Mol. Microbiol. 6, 425–33.
Du, Q., Livshits, A., Kwiatek, A., Jayaram, M. & Vologodskii, A. (2007). Protein-induced local DNA bends regulate global topology of recombination products. J. Mol. Biol. 368, 170–82.
Dulbecco, R. & Vogt, M. (1963). Evidence for a ring structure of polyoma virus DNA. Proc. Natl. Acad. Sci. U. S. A. 50, 236–43.
Ellison, M. J., Fenton, M. J., Ho, P. S. & Rich, A. (1987). Long-range interactions of multiple DNA structural transitions within a common topological domain. EMBO J. 6, 1513–22.
Ellison, M. J., Kelleher, R. J., 3rd, Wang, A. H., Habener, J. F. & Rich, A. (1985). Sequence-dependent energetics of the B-Z transition in supercoiled DNA containing nonalternating purine-pyrimidine sequences. Proc. Natl. Acad. Sci. U. S. A. 82, 8320–4.
Frank-Kamenetskii, M. D., Lukashin, A. V., Anshelevich, V. V. & Vologodskii, A. V. (1985). Torsional and bending rigidity of the double helix from data on small DNA rings. J. Biomol. Struct. Dyn. 2, 1005–12.
Frank-Kamenetskii, M. D. & Vologodskii, A. V. (1981). Topological aspects of the physics of polymers: the theory and its biophysical applications. Sov. Phys. Usp. 24, 679–96.
Frank-Kamenetskii, M. D. & Vologodskii, A. V. (1984). Thermodynamics of the B–Z transition in superhelical DNA. Nature 307, 481–2.
Fuller, F. B. (1971). The writhing number of a space curve. Proc. Natl. Acad. Sci. U. S. A. 68, 815–19.
Gagua, A. V., Belintsev, B. N. & Lyubchenko, Y. L. (1981). Effect of base-pair stability on the melting of superhelical DNA. Nature 294, 662–3.
Gebe, J. A., Delrow, J. J., Heath, P. J., Fujimoto, B. S., Stewart, D. W. & Schurr, J. M. (1996). Effects of Na+ and Mg2+ on the structures of supercoiled DNAs: comparison of simulations with experiments. J. Mol. Biol. 262, 105–28.
Gebe, J. A. & Schurr, J. M. (1996). Thermodynamics of the first transition in writhe of a small circular DNA by Monte Carlo simulation. Biopolymers 38, 493–503.
Geggier, S., Kotlyar, A. & Vologodskii, A. (2011). Temperature dependence of DNA persistence length. Nucleic Acids Res. 39, 1419–26.
Geggier, S. & Vologodskii, A. (2010). Sequence dependence of DNA bending rigidity. Proc. Natl. Acad. Sci. U. S. A. 107, 15421–6.
Gellert, M., Mizuuchi, K., O'Dea, M. H. & Nash, H. A. (1976). DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proc. Natl. Acad. Sci. U. S. A. 73, 3872–6.
Gellert, M., Mizuuchi, K., O'Dea, M. H., Ohmori, H. & Tomizawa, J. (1979). DNA gyrase and DNA supercoiling. Cold Spring Harbor Symp. Quant. Biol. 43, 35–40.
Gellert, M., O'Dea, M. H. & Mizuuchi, K. (1983). Slow cruciform transitions in palindromic DNA. Proc. Natl. Acad. Sci. U. S. A. 80, 5545–9.
Gray, H. B., Jr., Ostrander, D. A., Hodnett, J. L., Legerski, R. J. & Robberson, D. L. (1975). Extracellular nucleases of Pseudomonas BAL 31. I. Characterization of single strand-specific deoxyriboendonuclease and double-strand deoxyriboexonuclease activities. Nucleic Acids Res. 2, 1459–92.
Greaves, D. R., Patient, R. K. & Lilley, D. M. (1985). Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene. J. Mol. Biol. 185, 461–78.
Halford, S. E., Welsh, A. J. & Szczelkun, M. D. (2004). Enzyme-mediated DNA looping. Annu. Rev. Biophys. Biomol. Struct. 33, 1–24.
Hammermann, M., Brun, N., Klenin, K. V., May, R., Toth, K. & Langowski, J. (1998). Salt-dependent DNA superhelix diameter studied by small angle neutron scattering measurements and Monte Carlo simulations. Biophys. J. 75, 3057–63.
Haniford, D. B. & Pulleyblank, D. E. (1983a). Facile transition of poly[d(TG) • d(CA)] into a left-handed helix in physiological conditions. Nature 302, 632–4.
Haniford, D. B. & Pulleyblank, D. E. (1983b). The in-vivo occurrence of Z DNA. J. Biomol. Struct. Dyn. 1, 593–609.
Haniford, D. B. & Pulleyblank, D. E. (1985). Transition of a cloned d(AT)n × d(AT)n tract to a cruciform in vivo. Nucleic Acids Res. 13, 4343–63.
Hentschel, C. C. (1982). Homocopolymer sequences in the spacer of a sea urchin histone gene repeat are sensitive to S1 nuclease. Nature 295, 714–6.
Hiasa, H. & Marians, K. J. (1994). Topoisomerase III, but not topoisomerase I, can support nascent chain elongation during theta-type DNA replication. J. Biol. Chem. 269, 32655–9.
Higgins, N. P. & Vologodskii, A. V. (2004). Topological behavior of plasmid DNA. In Plasmid Biology, eds. G., Phillips & B., Funnell, 181–201. Washington, DC: ASM Press.
Ho, P. S., Ellison, M. J., Quigley, G. J. & Rich, A. (1986). A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO. J. 5, 2737–44.
Hochschild, A. (1990). Protein–protein interactions and DNA loop formation. In DNA Topology and its Biological Effects, eds. N. R., Cozzarelli & J. C., Wang, 107–38. Cold Spring Harbor, NY: Cold Spring Habor Laboratory Press.
Hochschild, A. & Ptashne, M. (1986). Cooperative binding of lambda repressors to sites separated by integral turns of the DNA helix. Cell 44, 681–7.
Horowitz, D. S. & Wang, J. C. (1984). Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling. J. Mol. Biol. 173, 75–91.
Hsieh, T. S. & Wang, J. C. (1975). Thermodynamic properties of superhelical DNAs. Biochemistry 14, 14–527.
Htun, H., Lund, E. & Dahlberg, J. E. (1984). Human U1 RNA genes contain an unusually sensitive nuclease S1 cleavage site within the conserved 3′ flanking region. Proc. Natl. Acad. Sci. U. S. A. 81, 7288–92.
Kampranis, S. C., Bates, A. D. & Maxwell, A. (1999). A model for the mechanism of strand passage by DNA gyrase. Proc. Natl. Acad. Sci. U. S. A. 96, 8414–9.
Kelleher, R. J., 3rd, Ellison, M. J., Ho, P. S. & Rich, A. (1986). Competitive behavior of multiple, discrete B-Z transitions in supercoiled DNA. Proc. Natl. Acad. Sci. U. S. A. 83, 6342–6.
Keller, W. (1975). Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc. Natl. Acad. Sci. U. S. A. 72, 4876–80.
Kikuchi, A. & Asai, K. (1984). Reverse gyrase – a topoisomerase which introduces positive superhelical turns into DNA. Nature 309, 677–81.
King, I. F., Yandava, C. N., Mabb, A. M., Hsiao, J. S., Huang, H. S., Pearson, B. L., Calabrese, J. M., Starmer, J., Parker, J. S., Magnuson, T., Chamberlain, S. J., Philpot, B. D. & Zylka, M. J. (2013). Topoisomerases facilitate transcription of long genes linked to autism. Nature 501, 58–62.
Kirkegaard, K. & Wang, J. C. (1985). Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded loop. J. Mol. Biol. 185, 625–37.
Klenin, K. V., Vologodskii, A. V., Anshelevich, V. V., Dykhne, A. M. & Frank-Kamenetskii, M. D. (1988). Effect of excluded volume on topological properties of circular DNA. J. Biomol. Struct. Dyn. 5, 1173–85.
Klenin, K. V., Vologodskii, A. V., Anshelevich, V. V., Klisko, V. Y., Dykhne, A. M. & Frank-Kamenetskii, M. D. (1989). Variance of writhe for wormlike DNA rings with excluded volume. J. Biomol. Struct. Dyn. 6, 707–14.
Klug, A. & Lutter, L. C. (1981). The helical periodicity of DNA on the nucleosome. Nucleic Acids Res. 17, 4267–83.
Koster, D. A., Croquette, V., Dekker, C., Shuman, S. & Dekker, N. H. (2005). Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature 434, 671–4.
Kouzine, F., Gupta, A., Baranello, L., Wojtowicz, D., Ben-Aissa, K., Liu, J., Przytycka, T. M. & Levens, D. (2013). Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat. Struct. Mol. Biol. 20, 396–403.
Kramer, H., Amouyal, M., Nordheim, A. & Muller-Hill, B. (1988). DNA supercoiling changes the spacing requirement of two lac operators for DNA loop formation with lac repressor. EMBO J. 7, 547–56.
Kramer, P. R., Bat, O. & Sinden, R. R. (1999). Measurement of localized DNA supercoiling and topological domain size in eukaryotic cells. Methods Enzymol. 304, 639–50.
Kramer, P. R. & Sinden, R. R. (1997). Measurement of unrestrained negative supercoiling and topological domain size in living human cells. Biochemistry 36, 3151–8.
Krasilnikov, A. S., Podtelezhnikov, A., Vologodskii, A. & Mirkin, S. M. (1999). Large-scale effects of transcriptional DNA supercoiling in vivo. J. Mol. Biol. 292, 1149–60.
Krasnow, M. A., Stasiak, A., Spengler, S. J., Dean, F., Koller, T. & Cozzarelli, N. R. (1983). Determination of the absolute handedness of knots and catenanes of DNA. Nature 304, 559–60.
Kreuzer, K. N. & Cozzarelli, N. R. (1980). Formation and resolution of DNA catenanes by DNA gyrase. Cell 20, 245–54.
Krueger, A., Protozanova, E. & Frank-Kamenetskii, M. D. (2006). Sequence-dependent base pair opening in DNA double helix. Biophys. J. 90, 3091–9.
Krylov, D. Y., Makarov, V. L. & Ivanov, V. I. (1990). The B-A transition in superhelical DNA. Nucleic Acids Res. 18, 759–61.
LaMarr, W. A., Sandman, K. M., Reeve, J. N. & Dedon, P. C. (1997). Large scale preparation of positively supercoiled DNA using the archaeal histone HMf. Nucleic Acids Res. 25, 1660–1.
Larsen, A. & Weintraub, H. (1982). An altered DNA conformation detected by S1 nuclease occurs at specific regions in active chick globin chromatin. Cell 29, 609–22.
Laundon, C. H. & Griffith, J. D. (1988). Curved helix segments can uniquely orient the topology of supertwisted DNA. Cell 52, 545–9.
Le Bret, M. (1979). Catostrophic variation of twist and writhing of circular DNAs with constraint?Biopolymers 18, 1709–25.
Le Bret, M. (1980). Monte Carlo computation of supercoiling energy, the sedimentation constant, and the radius of gyration of unknotted and knotted circular DNA. Biopolymers 19, 619–37.
Lee, C. H., Mizusawa, H. & Kakefuda, T. (1981). Unwinding of double-stranded DNA helix by dehydration. Proc. Natl. Acad. Sci. U. S. A. 78, 2838–42.
Lee, D. W. & Schleif, R. F. (1989). In vivo DNA loops in araCBAD: Size limits and helical repeat. Proc. Natl. Acad. Sci. U. S. A. 86, 476–80.
Lilley, D. M. (1980). The inverted repeat as a recognizable structural feature in supercoiled DNA molecules. Proc. Natl. Acad. Sci. U. S. A. 77, 6468–72.
Liu, L. F., Liu, C.-C. & Alberts, B. M. (1980). Type II DNA topoisomerases: enzymes that can unknot a topologically knotted DNA molecule via a reversible double-strand break. Cell 19, 697–707.
Liu, L. F., Liu, C. C. & Alberts, B. M. (1979). T4 DNA topoisomerase: a new ATP-dependent enzyme essential for initiation of T4 bacteriophage DNA replication. Nature 281, 456–61.
Liu, L. F. & Wang, J. C. (1987). Supercoiling of the DNA template during transcription. Proc. Natl. Acad. Sci. U. S. A. 84, 7024–7.
Ljungman, M. & Hanawalt, P. C. (1992). Localized torsional tension in the DNA of human cells. Proc. Natl. Acad. Sci. U. S. A. 89, 6055–9.
Lyamichev, V., Panyutin, I. & Mirkin, S. (1984). The absence of cruciform structures from pAO3 plasmid DNA in vivo. J. Biomol. Struct. Dyn. 2, 291–301.
Lyamichev, V. I., Mirkin, S. M. & Frank-Kamenetskii, M. D. (1985). A pH-dependent structural transition in the homopurine–homopyrimidine tract in superhelical DNA. J. Biomol. Struct. Dyn. 3, 327–38.
Lyamichev, V. I., Mirkin, S. M. & Frank-Kamenetskii, M. D. (1986). Structures of homopurine–homopyrimidine tract in superhelical DNA. J. Biomol. Struct. Dyn. 3, 667–9.
Lyamichev, V. I., Mirkin, S. M. & Frank-Kamenetskii, M. D. (1987). Structure of (dG)n·(dC)n under superhelical stress and acid pH. J. Biomol. Struct. Dyn. 5, 275–82.
Lyamichev, V. I., Mirkin, S. M., Kumarev, V. P., Baranova, L. V., Vologodskii, A. V. & Frank-Kamenetskii, M. D. (1989). Energetics of the B-H transition in supercoiled DNA carrying d(CT)x · d(AG)x and d(C)n × d(G)n inserts. Nucleic Acids Res. 17, 9417–23.
Lyamichev, V. I., Panyutin, I. G. & Frank-Kamenetskii, M. D. (1983). Evidence of cruciform structures in superhelical DNA provided by two-dimensional gel electrophoresis. FEBS Lett. 153, 298–302.
Lyubchenko, Y. L. & Shlyakhtenko, L. S. (1997). Visualization of supercoiled DNA with atomic force microscopy in situ. Proc. Natl. Acad. Sci. U. S. A. 94, 496–501.
McClellan, J., Boublikova, P., Palecek, E. & Lilley, D. (1990). Superhelical torsion in cellular DNA responds directly to enironmental and genetic factors. Proc. Natl. Acad. Sci. U. S. A. 87, 87–8373.
Menzel, R. & Gellert, M. (1987). Regulation of the genes for E. coli DNA gyrase: homeostatic control of DNA supercoiling. Cell 34, 105–13.
Mirkin, S. M. & Frank-Kamenetskii, M. D. (1994). H-DNA and related structures. Annu. Rev. Biophys. Biomol. Struct. 23, 541–76.
Mirkin, S. M., Lyamichev, V. I., Drushlyak, K. N., Dobrynin, V. N., Filippov, S. A. & Frank-Kamenetskii, M. D. (1987a). DNA H form requires a homopurine–homopyrimidine mirror repeat. Nature 330, 495–7.
Mirkin, S. M., Lyamichev, V. I., Kumarev, V. P., Kobzev, V. F., Nosikov, V. V. & Vologodskii, A. V. (1987b). The energetics of the B-Z transition in DNA. J. Biomol. Struct. Dyn. 5, 79–88.
Mizuuchi, K., Fisher, L. M., O'Dea, M. H. & Gellert, M. (1980). DNA gyrase action involves the introduction of transient double-strand breaks into DNA. Proc. Natl. Acad. Sci. U. S. A. 77, 1847–51.
Naughton, C., Avlonitis, N., Corless, S., Prendergast, J. G., Mati, I. K., Eijk, P. P., Cockroft, S. L., Bradley, M., Ylstra, B. & Gilbert, N. (2013). Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat. Struct. Mol. Biol. 20, 387–95.
Naylor, L. H., Lilley, D. M. & van de Sande, J. H. (1986). Stress-induced cruciform formation in a cloned d(CATG)10 sequence. EMBO J. 5, 2407–13.
Neale, B. M., Kou, Y., Liu, L., Ma'ayan, A., Samocha, K. E., Sabo, A., Lin, C. F., Stevens, C., Wang, L. S., Makarov, V., Polak, P., Yoon, S., Maguire, J., Crawford, E. L., Campbell, N. G., Geller, E. T., Valladares, O., Schafer, C., Liu, H., Zhao, T., Cai, G., Lihm, J., Dannenfelser, R., Jabado, O., Peralta, Z., Nagaswamy, U., Muzny, D., Reid, J. G., Newsham, I., Wu, Y., Lewis, L., Han, Y., Voight, B. F., Lim, E., Rossin, E., Kirby, A., Flannick, J., Fromer, M., Shakir, K., Fennell, T., Garimella, K., Banks, E., Poplin, R., Gabriel, S., DePristo, M., Wimbish, J. R., Boone, B. E., Levy, S. E., Betancur, C., Sunyaev, S., Boerwinkle, E., Buxbaum, J. D., Cook, E. H., Jr., Devlin, B., Gibbs, R. A., Roeder, K., Schellenberg, G. D., Sutcliffe, J. S. & Daly, M. J. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–5.
Panayotatos, N. & Wells, R. D. (1981). Cruciform structures in supercoiled DNA. Nature 289, 466–70.
Panyutin, I., Klishko, V. & Lyamichev, V. (1984). Kinetics of cruciform formation and stability of cruciform structure in superhelical DNA. J. Biomol. Struct. Dyn. 1, 1311–24.
Panyutin, I., Lyamichev, V. & Mirkin, S. (1985). A structural transition in d(AT)n × d(AT)n inserts within superhelical DNA. J. Biomol. Struct. Dyn. 2, 1221–34.
Peck, L. J., Wang, J. C., Nordheim, A. & Rich, A. (1986). Rate of B to Z structural transition of supercoiled DNA. J. Mol. Biol. 190, 125–7.
Pettijohn, D. & Phenninger, O. (1980). Supercoils in prokaryotic DNA restrained in vivo. Proc. Natl. Acad. Sci. 77, 1331–5.
Pohl, F. M. (1986). Dynamics of the B-to-Z transition in supercoiled DNA. Proc. Natl. Acad. Sci. U. S. A. 83, 4783–7.
Pohl, F. M., Thomae, R. & Di Capua, E. (1982). Antibodies to Z-DNA interact with form V DNA. Nature 300, 545–6.
Pulleyblank, D. E., Shure, M., Tang, D., Vinograd, J. & Vosberg, H. P. (1975). Action of nicking-closing enzyme on supercoiled and nonsupercoiled closed circular DNA: formation of a Boltzmann distribution of topological isomers. Proc. Natl. Acad. Sci. U. S. A. 72, 4280–4.
Rahmouni, A. R. & Wells, R. D. (1989). Stabilization of Z DNA in vivo by localized supercoiling. Science 246, 358–63.
Roca, J., Berger, J. M., Harrison, S. C. & Wang, J. C. (1996). DNA transport by a type II topoisomerase – direct evidence for a two-gate mechanism. Proc. Natl. Acad. Sci. U. S. A. 93, 93–4057.
Roca, J. & Wang, J. (1994). DNA transport by a type II DNA topoisomerase – evidence in favor of a two-gate mechanism. Cell 77, 609–16.
Rodriguez, A. C. & Stock, D. (2002). Crystal structure of reverse gyrase: insights into the positive supercoiling of DNA. EMBO J. 21, 418–26.
Rolfsen, D. (1976). Knots and Links. Berkeley, CA: Publish or Perish.
Rudolph, M. G., del Toro Duany, Y., Jungblut, S. P., Ganguly, A. & Klostermeier, D. (2012). Crystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling. Nucleic Acids Res. DOI: 10.1093/nar/gks1073
Rybenkov, V. V., Cozzarelli, N. R. & Vologodskii, A.V (1993). Probability of DNA knotting and the effective diameter of the DNA double helix. Proc. Natl. Acad. Sci. U. S. A. 90, 5307–11.
Rybenkov, V. V., Ullsperger, C., Vologodskii, A. V. & Cozzarelli, N. R. (1997a). Simplification of DNA topology below equilibrium values by type II topoisomerases. Science 277, 690–3.
Rybenkov, V. V., Vologodskii, A. V. & Cozzarelli, N. R. (1997b). The effect of ionic conditions on DNA helical repeat, effective diameter, and free energy of supercoiling. Nucleic Acids Res. 25, 25–1412.
Rybenkov, V. V, Vologodskii, A. V & Cozzarelli, N. R. (1997c). The effect of ionic conditions on the conformations of supercoiled DNA. I. Sedimentation analysis. J. Mol. Biol. 267, 299–311.
Rybenkov, V. V., Vologodskii, A. V. & Cozzarelli, N. R. (1997d). The effect of ionic conditions on the conformations of supercoiled DNA. II. Equilibrium catenation. J. Mol. Biol. 267, 312–23.
Schoeffler, A. J. & Berger, J. M. (2008). DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Q. Rev. Biophys. 41, 41–101.
Shaw, S. Y. & Wang, J. C. (1993). Knotting of a DNA chain during ring closure. Science 260, 533–6.
Shimada, J. & Yamakawa, H. (1988). Moments for DNA topoisomers: the helical wormlike chain. Biopolymers 27, 657–73.
Sinden, R. R., Broyles, S. S. & Pettijohn, D. E. (1983). Perfect palindromic lac operator DNA sequence exists as a stable cruciform structure in supercoiled DNA in vitro but not in vivo. Proc. Natl. Acad. Sci. U. S. A. 80, 1797–801.
Sinden, R. R., Carlson, J. O. & Pettijohn, D. E. (1980). Torsional tension in the DNA double helix measured with trimethylpsoralen in living E. coli cells: analogous measurements in insect and human cells. Cell 21, 773–83.
Singleton, C. K., Klysik, J., Stirdivant, S. M. & Wells, R. D. (1982). Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions. Nature 299, 312–6.
Slesarev, A. I. (1988). Positive supercoiling catalysed in vitro by ATP-dependent topoisomerase from Desulfurococcus amylolyticus. Eur. J. Biochem. 173, 395–9.
Stark, W. M. & Boocock, M. R. (1995). Topological selectivity in site-specific recombination. In Mobile Genetic Elements, ed. D. J., Sherratt, 101–29. Oxford: Oxford University Press.
Stewart, L., Redinbo, M. R., Qiu, X., Hol, W. G. & Champoux, J. J. (1998). A model for the mechanism of human topoisomerase I. Science 279, 1534–41.
Stone, M. D., Bryant, Z., Crisona, N. J., Smith, S. B., Vologodskii, A., Bustamante, C. & Cozzarelli, N. R. (2003). Chirality sensing by Escherichia coli topoisomerase IV and the mechanism of type II topoisomerases. Proc. Natl. Acad. Sci. U. S. A. 100, 8654–9.
Tse, Y. & Wang, J. C. (1980). E. coli and M. luteus DNA topoisomerase I can catalyze catenation of decatenation of double-stranded DNA rings. Cell 22, 269–76.
Ullsperger, C. J., Vologodskii, A. V. & Cozzarelli, A. V. (1995). Unlinking of DNA by topoisomerases during DNA replication. Nucl. Acids Mol. Biol. 9, 115–42.
Vinograd, J., Lebowitz, J., Radloff, R., Watson, R. & Laipis, P. (1965). The twisted circular form of polyoma viral DNA. Proc. Natl. Acad. Sci. U. S. A. 53, 1104–11.
Vinograd, J., Lebowitz, J. & Watson, R. (1968). Early and late helix-coil transitions in closed circular DNA. The number of superhelical turns in polyoma DNA. J. Mol. Biol. 33, 173–97.
Vologodskaia, M. Y. & Vologodskii, A. V. (1999). Effect of magnesium on cruciform extrusion in supercoiled DNA. J. Mol. Biol. 289, 851–9.
Vologodskii, A. 2007. Monte Carlo simulation of DNA topological properties. In Topology in Molecular Biology, ed. M., Monastryrsky, 23–41. Berlin: Springer.
Vologodskii, A. (2009). Theoretical models of DNA topology simplification by type IIA DNA topoisomerases. Nucleic Acids Res. 37, 3125–33.
Vologodskii, A. V, Anshelevich, V. V., Lukashin, A. V. & Frank-Kamenetskii, M. D. (1979a). Statistical mechanics of supercoils and the torsional stiffness of the DNA. Nature 280, 294–298.
Vologodskii, A. V. & Cozzarelli, N. R. (1994). Conformational and thermodynamic properties of supercoiled DNA. Annu. Rev. Biophys. Biomol. Struct. 23, 609–43.
Vologodskii, A. V. & Cozzarelli, N. R. (1996). Effect of supercoiling on the juxtaposition and relative orientation of DNA sites. Biophys. J. 70, 2548–56.
Vologodskii, A. V, Crisona, N. J., Laurie, B., Pieranski, P., Katritch, V., Dubochet, J. & Stasiak, A. (1998). Sedimentation and electrophoretic migration of DNA knots and catenanes. J. Mol. Biol. 278, 1–3.
Vologodskii, A. V. & Frank-Kamenetskii, M. D. (1983). The relaxation time for a cruciform structure in superhelical DNA. FEBS Lett. 160, 173–6.
Vologodskii, A. V., Levene, S. D., Klenin, K. V., Frank-Kamenetskii, M. & Cozzarelli, N. R. (1992). Conformational and thermodynamic properties of supercoiled DNA. J. Mol. Biol. 227, 227–1224.
Vologodskii, A. V., Lukashin, A. V., Anshelevich, V. V. & Frank-Kamenetskii, M. D. (1979b). Fluctuations in superhelical DNA. Nucleic Acids Res. 6, 967–82.
Vologodskii, A. V, Zhang, W., Rybenkov, V. V, Podtelezhnikov, A. A., Subramanian, D., Griffith, J. D. & Cozzarelli, N. R. (2001). Mechanism of topology simplification by type II DNA topoisomerases. Proc. Natl. Acad. Sci. U. S. A. 98, 3045–9.
Wang, A. H., Gessner, R. V., van der Marel, G. A., van Boom, J. H. & Rich, A. (1985). Crystal structure of Z-DNA without an alternating purine-pyrimidine sequence. Proc. Natl. Acad. Sci. U.S.A. 82, 3611–5.
Wang, J. C. (1971). Interaction between DNA and an Escherichia coli protein ω. J. Mol. Biol. 55, 523–33.
Wang, J. C. (1974a). The degree of unwinding of the DNA helix by ethidium. I. Titration of twisted PM2 DNA molecules in alkaline cesium chloride density gradients. J. Mol. Biol. 89, 783–801.
Wang, J. C. (1974b). Interactions between twisted DNAs and enzymes: the effects of superhelical turns. J. Mol. Biol. 87, 797–816.
Wang, J. C. (1996). DNA topoisomerases. Annu. Rev. Biochem. 65, 635–95.
Wang, J. C. (1998). Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine. Q. Rev. Biophys. 31, 107–44.
Wang, J. C. (2009). Untangling the Double Helix: DNA Entanglement and the Action of the DNA Topoisomerases. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Wang, J. C., Peck, L. J. & Becherer, K. (1983). DNA supercoiling and its effects on DNA structure and function. Cold SpringHarbor Symp. Quant. Biol. 47, 85–91.
Wang, J. C. & Schwartz, H. (1967). Noncomplementarity in base sequences between the cohesive ends of coliphages 186 and lambda and the formation of interlocked rings between the two DNAs. Biopolymers 5, 953–66.
Wasserman, S. A. & Cozzarelli, N. R. (1986). Biochemical topology: applications to DNA recombination and replication. Science 232, 951–60.
Wasserman, S. A., White, J. H. & Cozzarelli, N. R. (1988). The helical repeat of double-stranded DNA varies as a function of catenation and supercoiling. Nature 334, 448–50.
Weil, R. & Vinograd, J. (1963). The cyclic helix and cyclic coil forms of polyoma viral DNA. Proc. Natl. Acad. Sci. U. S. A. 50, 730–8.
White, J. H. (1969). Self-linking and the Gauss integral in higher dimensions. Am. J. Math. 91, 693–728.
White, J. H., Cozzarelli, N. R. & Bauer, W. R. (1988). Helical repeat and linking number of surface-wrapped DNA. Science 241, 323–7.
Wittig, B., Wolfl, S., Dorbic, T., Vahrson, W. & Rich, A. (1992). Transcription of human c-myc in permeabilized nuclei is associated with formation of Z-DNA in three discrete regions of the gene. EMBO J. 11, 4653–63.
Wolfl, S., Martinez, C., Rich, A. & Majzoub, J. A. (1996). Transcription of the human corticotropin-releasing hormone gene in NPLC cells is correlated with Z-DNA formation. Proc. Natl. Acad. Sci. U. S. A. 93, 3664–8.
Wu, H.-Y., Shyy, S., Wang, J. C. & Liu, L. F. (1988). Transcription generates positively and negatively supercoiled domains in the template. Cell 53, 433–40.
Yan, J., Magnasco, M. O. & Marko, J. F. (1999). A kinetic proofreading mechanism for disentanglement of DNA by topoisomerases. Nature 401, 932–5.
Zacharias, W., Jaworski, A., Larson, J. E. & Wells, R. D. (1988). The B- to Z-DNA equilibrium in vivo is perturbed by biological processes. Proc. Natl. Acad. Sci. 85, 7069.