Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-25T18:53:35.358Z Has data issue: false hasContentIssue false

17 - Hydrogel scaffolds for regenerative medicine

from Part III - Hydrogel scaffolds for regenerative medicine

Published online by Cambridge University Press:  05 February 2015

Edward A. Sander
Affiliation:
University of Iowa
Erin D. Grassl
Affiliation:
Medtronic Inc.
Robert T. Tranquillo
Affiliation:
University of Minnesota
Peter X. Ma
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Some strategies in tissue engineering and regenerative medicine (TERM) rely on the use of an appropriate biomaterial to guide and foster tissue repair and regeneration. Collagen-based materials are perhaps the most widely investigated of these biomaterials because collagen is the primary structural protein responsible for tissue integrity in most tissues [1]. Collagen gels offer several advantages as a scaffolding material, including the ability to deliver a homogeneous distribution of entrapped cells into a specific geometry and excellent biocompatibility and transport properties [2]. However, collagen does have some disadvantages, including suppression of cell proliferation and protein synthesis [3, 4], issues that can limit the quality of the engineered tissue produced.

An alternative biopolymer that shares similar properties to collagen is fibrin. Fibrin is a natural biopolymer involved in the wound-healing process, and it forms the provisional matrix of a clot. It rapidly polymerizes to form a biocompatible and biodegradable fibrous scaffold that promotes cell proliferation and ECM synthesis. Another attractive property of fibrin is that its precursor (fibrinogen) can be extracted from the patient’s blood, making it an autologous material. In this chapter we will review the properties of fibrin and fibrin-based engineered tissues and how these materials are being incorporated into TERM technologies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fratzl, P. 2008. Collagen: Structure and Mechanics. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Sander, E., Barocas, V. and Fratzl, P. 2008. Biomimetic Collagen Tissues: Collagenous Tissue Engineering and Other Applications. New York: Springer.Google Scholar
Clark, R., Nielsen, L. D., Welch, M. P. and McPherson, J. M. 1995. Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGF-β. J. Cell Sci., 108(3), 1251.Google ScholarPubMed
Thie, M., Schlumberger, W., Semich, R., Rauterberg, J. and Robenek, H. 1991. Aortic smooth muscle cells in collagen lattice culture: effects on ultrastructure, proliferation and collagen synthesis. Eur. J. Cell Biol., 55(2), 295–304.Google ScholarPubMed
Mosesson, M. 2005. Fibrinogen and fibrin structure and functions. J. Thrombosis Haemostasis, 3(8), 1894–904.CrossRefGoogle ScholarPubMed
Lord, S. T. 2011. Molecular mechanisms affecting fibrin structure and stability. Arterioscler. Thromb. Vasc. Biol., 31(3), 494–9.CrossRefGoogle ScholarPubMed
Weisel, J. W. 2005. Fibrinogen and fibrin. Adv. Protein Chem., 70, 247–99.CrossRefGoogle ScholarPubMed
Medved, L. and Weisel, J. 2009. Recommendations for nomenclature on fibrinogen and fibrin. J. Thrombosis Haemostasis, 7(2), 355–9.CrossRefGoogle ScholarPubMed
Herrick, S., Blanc-Brude, O., Gray, A. and Laurent, G. 1999. Fibrinogen. Int. J. Biochem. Cell Biol., 31(7), 741–6.CrossRefGoogle ScholarPubMed
Henschen, A. and Mcdonagh, J. 1986. Fibrinogen, fibrin and factor XIII. New Comprehensive Biochem., 13, 171–241.CrossRefGoogle Scholar
Yee, V. C., Pratt, K. P., Côté, H. C. F. et al. 1997. Crystal structure of a 30 kDa C-terminal fragment from the γ chain of human fibrinogen. Structure, 5(1), 125–38.CrossRefGoogle ScholarPubMed
Spraggon, G., Everse, S. J. and Doolittle, R. F. 1997. Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature, 389(6650), 455–62.CrossRefGoogle ScholarPubMed
Lewis, S. D., Shields, P. and Shafer, J. 1985. Characterization of the kinetic pathway for liberation of fibrinopeptides during assembly of fibrin. J. Biol. Chem., 260(18), 10192.Google ScholarPubMed
Doolittle, R. F. 1984. Fibrinogen and fibrin. In Encyclopedia of Life Sciences. London: Nature Publishing Group.Google Scholar
Laudano, A. P. and Doolittle, R. F. 1978. Synthetic peptide derivatives that bind to fibrinogen and prevent the polymerization of fibrin monomers. Proc. Nat. Acad. Sci., 75(7), 3085.CrossRefGoogle ScholarPubMed
Litvinov, R. I., Gorkun, O. V., Galanakis, D. K. et al. 2007. Polymerization of fibrin: direct observation and quantification of individual B: b knob–hole interactions. Blood, 109(1), 130.CrossRefGoogle ScholarPubMed
Laudano, A. P. and Doolittle, R. F. 1980. Studies on synthetic peptides that bind to fibrinogen and prevent fibrin polymerization. Structural requirements, number of binding sites, and species differences. Biochemistry, 19(5), 1013–19.CrossRefGoogle ScholarPubMed
Gorkun, O. V., Veklich, Y. I., Weisel, J. W. and Lord, S. T. 1997. The conversion of fibrinogen to fibrin: recombinant fibrinogen typifies plasma fibrinogen. Blood, 89(12), 4407.Google ScholarPubMed
Collet, J. P., Moen, J. L., Veklich, Y. I. et al. 2005. The αC domains of fibrinogen affect the structure of the fibrin clot, its physical properties, and its susceptibility to fibrinolysis. Blood, 106(12), 3824.CrossRefGoogle ScholarPubMed
Ferry, J. D. 1952. The mechanism of polymerization of fibrinogen. Proc. Natl. Acad. Sci. USA, 38(7), 566.CrossRefGoogle ScholarPubMed
Kaibara, M., Fukada, E. and Sakaoku, K. 1981. Rheological study on network structure of fibrin clots under various conditions. Biorheology, 18(1), 23–35.CrossRefGoogle ScholarPubMed
Ryan, E. A., Mockros, L. F., Weisel, J. W. and Lorand, L. 1999. Structural origins of fibrin clot rheology. Biophys. J., 77(5), 2813–26.CrossRefGoogle ScholarPubMed
Muller, M. F., Ris, H. and Ferry, J. D. 1984. Electron microscopy of fine fibrin clots and fine and coarse fibrin films: observations of fibers in cross-section and in deformed states. J. Molec. Biol., 174(2), 369–84.CrossRefGoogle ScholarPubMed
Weisel, J. W., Nagaswami, C. and Makowski, L. 1987. Twisting of fibrin fibers limits their radial growth. Proc. Nat. Acad. Sci., 84(24), 89–91.CrossRefGoogle ScholarPubMed
Mosesson, M., DiOrio, J., Siebenlist, K., Wall, J. and Hainfeld, J. 1993. Evidence for a second type of fibril branch point in fibrin polymer networks, the trimolecular junction. Blood, 82(5), 15–17.Google ScholarPubMed
Mosesson, M. W., Siebenlist, K. R., Amrani, D. L. and DiOrio, J. P. 1989. Identification of covalently linked trimeric and tetrameric D domains in crosslinked fibrin. Proc. Nat. Acad. Sci., 86(4), 11–13.CrossRefGoogle ScholarPubMed
Baradet, T. C., Haselgrove, J. C. and Weisel, J. W. 1995. Three-dimensional reconstruction of fibrin clot networks from stereoscopic intermediate voltage electron microscope images and analysis of branching. Biophys. J., 68(4), 1551–60.CrossRefGoogle Scholar
Ariëns, R. A. S., Lai, T. S., Weisel, J. W., Greenberg, C. S. and Grant, P. J. 2002. Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. Blood, 100(3), 743.CrossRefGoogle ScholarPubMed
Brown, A. E. X., Litvinov, R. I., Discher, D. E., Purohit, P. K. and Weisel, J. W. 2009. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science, 325(5941), 741.CrossRefGoogle ScholarPubMed
Pretorius, E., Briedenhann, S., Marx, J. et al. 2007. Ultrastructural comparison of the morphology of three different platelet and fibrin fiber preparations. Anatomical Record: Adv. Integrative Anatomy Evolutionary Biol., 290(2), 188–98.CrossRefGoogle ScholarPubMed
Ishida, T. and Tanaka, K. 1982. Effects of fibrin and fibrinogen-degradation products on the growth of rabbit aortic smooth muscle cells in culture. Atherosclerosis, 44(2), 161–74.CrossRefGoogle ScholarPubMed
Greenberg, C. S., Birckbichler, P. J. and Rice, R. H. 1991. Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J., 5(15), 3071.CrossRefGoogle ScholarPubMed
Watanabe, K. and Tanaka, K. 1983. Influence of fibrin, fibrinogen and fibrinogen degradation products on cultured endothelial cells. Atherosclerosis, 48(1), 57–70.CrossRefGoogle ScholarPubMed
Weaver, F. A., Lew, W., Granke, K. et al. 2008. A comparison of recombinant thrombin to bovine thrombin as a hemostatic ancillary in patients undergoing peripheral arterial bypass and arteriovenous graft procedures. J. Vascular Surgery, 47(6), 1266–73.CrossRefGoogle ScholarPubMed
Collet, J., Park, D., Lesty, C. et al. 2000. Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arterioscler. Thromb. Vasc. Biol., 20(5), 1354–61.CrossRefGoogle ScholarPubMed
Carr, M. E. 1988. Fibrin formed in plasma is composed of fibers more massive than those formed from purified fibrinogen. Thromb. Haemost., 59(3), 535–9.Google ScholarPubMed
Blomback, B., Carlsson, K., Hessel, B. et al. 1989. Native fibrin gel networks observed by 3D microscopy, permeation and turbidity. Bioch. Biophys. Acta – Protein Structure Molec. Enzymol., 997(1–2), 96–110.CrossRefGoogle ScholarPubMed
Ho, W., Tawil, B., Dunn, J. C. Y. and Wu, B M. 2006. The behavior of human mesenchymal stem cells in 3D fibrin clots: dependence on fibrinogen concentration and clot structure. Tissue Eng., 12(6), 1587–95.CrossRefGoogle ScholarPubMed
Ferry, J. D. and Morrison, P. R. 1947. Preparation and properties of serum and plasma proteins. VIII. The conversion of human fibrinogen to fibrin under various conditions. J. Am. Chem. Soc., 69(2), 388–400.CrossRefGoogle Scholar
Weisel, J. W. 2004. The mechanical properties of fibrin for basic scientists and clinicians. Biophys. Chem., 112(2–3), 267–76.CrossRefGoogle ScholarPubMed
Janmey, P. A., Winer, J. P. and Weisel, J. W. 2009. Fibrin gels and their clinical and bioengineering applications. J. Roy. Soc. Interface, 6(30), 1.CrossRefGoogle ScholarPubMed
Mockros, L., Roberts, W. and Lorand, L. 1974. Viscoelastic properties of ligation-inhibited fibrin clots. Biophys. Chem., 2(2), 164.CrossRefGoogle ScholarPubMed
Roberts, W. W., Lorand, L. and Mockros, L. 1973. Viscoelastic properties of fibrin clots. Biorheology, 10(1), 29.CrossRefGoogle ScholarPubMed
Gerth, C., Roberts, W. W. and Ferry, J. D. 1974. Rheology of fibrin clots II: linear viscoelastic behavior in shear creep. Biophys. Chem., 2(3), 208–17.CrossRefGoogle ScholarPubMed
Nelb, G. W., Gerth, C., Ferry, J. D. and Lorand, L. 1976. Rheology of fibrin clots: III. Shear creep and creep recovery of fine ligated and coarse unligated clots. Biophys. Chem., 5(3), 377–87.CrossRefGoogle Scholar
Liu, W., Jawerth, L., Sparks, E. et al. 2006. Fibrin fibers have extraordinary extensibility and elasticity. Science, 313(5787), 634.CrossRefGoogle ScholarPubMed
Liu, W., Carlisle, C., Sparks, E. and Guthold, M. 2010. The mechanical properties of single fibrin fibers. J. Thromb. Haemost., 8(5), 1030–6.Google ScholarPubMed
Collet, J. P., Shuman, H., Ledger, R. E., Lee, S. and Weisel, J. W. 2005. The elasticity of an individual fibrin fiber in a clot. Proc. Nat. Acad. Sci. USA, 102(26), 9133–7.CrossRefGoogle Scholar
Guthold, M., Liu, W., Stephens, B. et al. 2004. Visualization and mechanical manipulations of individual fibrin fibers suggest that fiber cross section has fractal dimension 1.3. Biophys. J., 87(6), 4226–36.CrossRefGoogle ScholarPubMed
Tower, T. T., Neidert, M. R. and Tranquillo, R. T. 2002. Fiber alignment imaging during mechanical testing of soft tissues. Ann. Biomed. Eng., 30(10), 1221–33.CrossRefGoogle ScholarPubMed
Sander, E. A., Stylianopoulos, T., Tranquillo, R. T. and Barocas, V. H. 2009. Image-based multiscale modeling predicts tissue-level and network-level fiber reorganization in stretched cell-compacted collagen gels. Proc. Nat. Acad. Sci., 106(42), 17675.CrossRefGoogle ScholarPubMed
Carlisle, C., Sparks, E., Der Loughian, C. and Guthold, M. 2010. Strength and failure of fibrin fiber branchpoints. J. Thromb. Haemost., 8(5), 1135–8.Google ScholarPubMed
Tuan, T. L. and Grinnell, F. 1989. Fibronectin and fibrinolysis are not required for fibrin gel contraction by human skin fibroblasts. J. Cell Physiol., 140(3), 577–83.CrossRefGoogle Scholar
Tuan, T. L., Song, A., Chang, S., Younai, S. and Nimni, M. E. 1996. In vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp. Cell Res., 223(1), 127–34.CrossRefGoogle ScholarPubMed
Neidert, M., Lee, E., Oegema, T. and Tranquillo, R. 2002. Enhanced fibrin remodeling in vitro with TGF-β1, insulin and plasmin for improved tissue-equivalents. Biomaterials, 23(17), 3717–31.CrossRefGoogle ScholarPubMed
Sander, E., Barocas, V. and Tranquillo, R. 2011. Initial fiber alignment pattern alters extracellular matrix synthesis in fibroblast-populated fibrin gel cruciforms and correlates with predicted tension. Ann. Biomed. Eng., 1–16.
Ye, Q., Zünd, G., Benedikt, P. et al. 2000. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur. J. Cardio-Thoracic Surgery, 17(5), 587–91.CrossRefGoogle ScholarPubMed
Naito, M., Nomura, H. and Iguchi, A. 1996. Migration of cultured vascular smooth muscle cells into non-crosslinked fibrin gels. Thromb. Res., 84(2), 129–36.CrossRefGoogle ScholarPubMed
Weinbaum, J. S., Qi, J. and Tranquillo, R. T. 2009. Monitoring collagen transcription by vascular smooth muscle cells in fibrin-based tissue constructs. Tissue Eng. Part C: Methods, 16(3), 459–67.CrossRefGoogle Scholar
Ross, J. and Tranquillo, R. 2003. ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells. Matrix Biol., 22(6), 477–90.CrossRefGoogle ScholarPubMed
Bensaīd, W., Triffitt, J., Blanchat, C. et al. 2003. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials, 24(14), 2497–502.CrossRefGoogle Scholar
Chong, A., Ang, A., Goh, J. et al. 2007. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. J. Bone Joint Surgery Am. Volume, 89(1), 74.CrossRefGoogle Scholar
Nakatsu, M. N., Sainson, R. C. A., Aoto, J. N. et al. 2003. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and angiopoietin-1. Microvasc. Res., 66(2), 102–12.CrossRefGoogle ScholarPubMed
Tranquillo, R. T. 1999. Self-organization of tissue-equivalents: the nature and role of contact guidance. Biochem. Soc. Symp., 65, 27–42.Google ScholarPubMed
Grassl, E., Oegema, T. and Tranquillo, R. 2002. Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent. J. Biomed. Mater. Res., 60(4), 607–612.CrossRefGoogle ScholarPubMed
Robinson, P. S., Johnson, S. L., Evans, M. C., Barocas, V. H. and Tranquillo, R. T. 2008. Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen. Tissue Eng. Part A, 14(1), 83–95.CrossRefGoogle ScholarPubMed
Syedain, Z. H., Weinberg, J. S. and Tranquillo, R. T. 2008. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc. Nat. Acad. Sci., 105(18), 6537.CrossRefGoogle ScholarPubMed
Grassl, E., Oegema, T. and Tranquillo, R. 2003. A fibrin-based arterial media equivalent. J. Biomed. Mater. Res. Part A, 66(3), 550–61.CrossRefGoogle ScholarPubMed
Neidert, M. R. and Tranquillo, R. T. 2006. Tissue-engineered valves with commissural alignment. Tissue Eng., 12(4), 891–903.CrossRefGoogle ScholarPubMed
Jhun, C. S., Evans, M. C., Barocas, V. H. and Tranquillo, R. T. 2009 Planar biaxial mechanical behavior of bio-artificial tissues possessing prescribed fiber alignment. J. Biomech. Eng., 131, 081006.CrossRefGoogle Scholar
Cummings, C. L., Gawlitta, D., Nerem, R. M. and Stegemann, J. P. 2004. Properties of engineered vascular constructs made from collagen, fibrin, and collagen-fibrin mixtures. Biomaterials, 25(17), 3699–706.CrossRefGoogle ScholarPubMed
Balestrini, J. L. and Billiar, K. L. 2009. Magnitude and duration of stretch modulate fibroblast remodeling. J. Biomech. Eng., 131, 051005.CrossRefGoogle ScholarPubMed
Syedain, Z. H. and Tranquillo, R. T. 2011. TGF-β1 diminishes collagen production during long-term cyclic stretching of engineered connective tissue: implication of decreased ERK signaling. J. Biomech., 44(5), 848–55.CrossRefGoogle ScholarPubMed
Duong, H., Wu, B. and Tawil, B. 2009. Modulation of 3D fibrin matrix stiffness by intrinsic fibrinogen–thrombin compositions and by extrinsic cellular activity. Tissue Eng. Part A, 15(7), 1865–76.CrossRefGoogle ScholarPubMed
Bjork, J. W., Johnson, S. L. and Tranquillo, R. T. 2011. Ruthenium-catalyzed photo cross-linking of fibrin-based engineered tissue. Biomaterials, 32(10), 2479–88.CrossRefGoogle ScholarPubMed
Syedain, Z. H., Bjork, J., Sando, L. and Tranquillo, R. T. 2009. Controlled compaction with ruthenium-catalyzed photochemical cross-linking of fibrin-based engineered connective tissue. Biomaterials, 30(35), 6695–701.CrossRefGoogle ScholarPubMed
Dare, E. V., Griffith, M., Poitras, P. et al. 2009. Genipin cross-linked fibrin hydrogels for in vitro human articular cartilage tissue-engineered regeneration. Cells Tissues Organs (Print), 190(6), 313–25.CrossRefGoogle ScholarPubMed
Coustry, F., Gillery, P., Maquart, F. X. and Borel, J. P. 1990. Effect of transforming growth factor β on fibroblasts in three-dimensional lattice cultures. FEBS Lett., 262(2), 339–41.CrossRefGoogle ScholarPubMed
Vavken, P., Joshi, S. M. and Murray, M. M. 2011. Fibrin concentration affects ACL fibroblast proliferation and collagen synthesis. Knee, 18(1), 42–6.CrossRefGoogle ScholarPubMed
Sahni, A., Odrljin, T. and Francis, C. W. 1998. Binding of basic fibroblast growth factor to fibrinogen and fibrin. J. Biol. Chem., 273(13), 7554.CrossRefGoogle ScholarPubMed
Sahni, A. and Francis, C. W. 2000. Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation. Blood, 96(12), 3772.Google ScholarPubMed
Weisel, J. and Litvinov, R. 2008. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate. Cardiovasc. Hematol. Agents Med. Chem., 6(3), 161–80.CrossRefGoogle ScholarPubMed
Veklich, Y., Francis, C. W., White, J. and Weisel, J. W. 1998. Structural studies of fibrinolysis by electron microscopy. Blood, 92(12), 4721.Google ScholarPubMed
Varjú, I., Sótonyi, P., Machovich, R. et al. 2011. Hindered dissolution of fibrin formed under mechanical stress. J. Thromb. Haemost., 9(5), 979–86.CrossRefGoogle ScholarPubMed
Meana, A., Iglesias, J., Del Rio, M. et al. 1998. Large surface of cultured human epithelium obtained on a dermal matrix based on live fibroblast-containing fibrin gels. Burns, 24(7), 621–30.CrossRefGoogle ScholarPubMed
Mol, A., van Lieshout, M. I., Dam-de Veen, C. G. et al. 2005. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials, 26(16), 3113–21.CrossRefGoogle ScholarPubMed
Rowe, S. L. and Lee, S. Y. and Stegemann, J. P. 2007. Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels. Acta Biomater., 3(1), 59–67.CrossRefGoogle ScholarPubMed
Kupcsik, L., Alini, M. and Stoddart, M. J. 2009. Epsilon-aminocaproic acid is a useful fibrin degradation inhibitor for cartilage tissue engineering. Tissue Eng. Part A, 15(8), 2309–13.CrossRefGoogle ScholarPubMed
Anonick, P. K., Vasudevan, J. and Gonias, S L. 1992. Antifibrinolytic activities of α-N-acetyl-l-lysine methyl ester, ε-aminocaproic acid, and tranexamic acid. Importance of kringle interactions and active site inhibition. Arterioscler. Thromb. Vasc. Biol., 12(6), 708.CrossRefGoogle ScholarPubMed
Sun, Z., Chen, Y., Wang, P. et al. 2002. The blockage of the high-affinity lysine binding sites of plasminogen by EACA significantly inhibits prourokinase-induced plasminogen activation. Biochim. Biophys. Acta – Protein Structure Molec. Enzymol., 1596(2), 182–92.CrossRefGoogle ScholarPubMed
Bakker, A. H. F, Weening-Verhoeff, E. J. D. and Verheijen, J. H. 1995. The role of the lysyl binding site of tissue-type plasminogen activator in the interaction with a forming fibrin clot. J. Biol. Chem., 270(21), 12355.CrossRefGoogle ScholarPubMed
Ahmann, K. A., Weinbaum, J. S., Johnson, S. L. and Tranquillo, R. T. 2010. Fibrin degradation enhances vascular smooth muscle cell proliferation and matrix deposition in fibrin-based tissue constructs fabricated in vitro. Tissue Eng. Part A, 16(10), 3261–70.CrossRefGoogle ScholarPubMed
Senior, R. M., Skogen, W. F., Griffin, G. L. and Wilner, G. D. 1986. Effects of fibrinogen derivatives upon the inflammatory response. Studies with human fibrinopeptide B. J. Clin. Invest., 77(3), 10–14.CrossRefGoogle ScholarPubMed
Hatzfeld, J. A., Hatzfeld, A. and Maigne, J. 1982. Fibrinogen and its fragment D stimulate proliferation of human hemopoietic cells in vitro. Proc. Nat. Acad. Sci., 79(20), 62–80.CrossRefGoogle ScholarPubMed
Thompson, W., Ervans, A. and Campbell, R. 1986. The control of fibrogenesis: stimulation and suppression of collagen synthesis in the chick chorioallantoic membrane with fibrin degradation products, wound extracts and proteases. J. Pathol., 148(3), 207–15.CrossRefGoogle ScholarPubMed
Qureshi, G. D., Guzelian, P. S., Vennart, R. M. and Evans, H. J. 1985. Stimulation of fibrinogen synthesis in cultured rat hepatocytes by fibrinogen fragment E. Biochim. Biophys. Acta – Molec. Cell Res., 844(3), 288–95.CrossRefGoogle ScholarPubMed
Campbell, P. G., Novak, J. F., Yanosick, T. and McMaster, J. 1992. Involvement of the plasmin system in dissociation of the insulin-like growth factor-binding protein complex. Endocrinology, 130(3), 1401.Google ScholarPubMed
George, S. J., Johnson, J. L., Smith, M. A., Angelini, G. D. and Jackson, C. L. 2005. Transforming growth factor-β is activated by plasmin and inhibits smooth muscle cell death in human saphenous vein. J. Vasc. Res., 42(3), 247–54.CrossRefGoogle ScholarPubMed
Roberts, A. B., Mccune, B. K. and Sporn, M. B. 1992. TGF-β: regulation of extracellular matrix. Kidney Int., 41, 557–9.CrossRefGoogle ScholarPubMed
Hong, H. H., Mehmet, I. U., Chunni, D., Sheff, M. C. and Trackman, P. C. 1999. Regulation of lysyl oxidase, collagen, and connective tissue growth factor by TGF-β1 and detection in human gingiva. Lab. Investigation, 79(12), 1655–67.Google ScholarPubMed
Clark, R. A. F., McCoy, G. A., Folkvord, J. M. and McPherson, J. M. 1997. TGF-β1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin matrix-dependent event. J. Cell Physiol., 170(1), 69–80.3.0.CO;2-J>CrossRefGoogle Scholar
Ghahary, A., Tredget, E. E., Mi, L. and Yang, L. 1999. Cellular response to latent TGF-β1 is facilitated by insulin-like growth factor-II/mannose-6-phosphate receptors on MS-9 cells. Exp. Cell. Res., 251(1), 111–20.CrossRefGoogle ScholarPubMed
Long, J. L. and Tranquillo, R. T. 2003. Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol., 22(4), 339–50.CrossRefGoogle ScholarPubMed
Pedersen, J. A. and Swartz, M. A. 2005. Mechanobiology in the third dimension. Ann. Biomed. Eng., 33(11), 1469–90.CrossRefGoogle ScholarPubMed
Balestrini, J. L. and Billiar, K. L. 2006. Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin. J. Biomech., 39(16), 2983–90.CrossRefGoogle ScholarPubMed
Papakrivopoulou, J., Lindahl, G. E., Bishop, J. E. and Laurent, G. J. 2004. Differential roles of extracellular signal-regulated kinase 1/2 and p38MAPK in mechanical load-induced procollagen α1(I) gene expression in cardiac fibroblasts. Cardiovasc. Res., 61(4), 736–44.CrossRefGoogle ScholarPubMed
Grinnell, F., Zhu, M., Carlson, M. A. and Abrams, J. M. 1999. Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp. Cell Res., 248(2), 608–19.CrossRefGoogle Scholar
Mochitate, K., Pawelek, P. and Grinnell, F. 1991. Stress relaxation of contracted collagen gels: disruption of actin filament bundles, release of cell surface fibronectin, and down-regulation of DNA and protein synthesis. Exp. Cell Res., 193(1), 198–207.CrossRefGoogle ScholarPubMed
Shreiber, D. I., Enever, P. A. J. and Tranquillo, R. T. 2001. Effects of PDGF-BB on rat dermal fibroblast behavior in mechanically stressed and unstressed collagen and fibrin gels. Exp. Cell Res., 266(1), 155–66.CrossRefGoogle ScholarPubMed
Lorimier, S., Bouthors, S., Droulle, C. et al. 1997. The rate of fibrinolysis is increased by free retraction of human gingival fibroblast populated fibrin lattices. Int. J. Biochem. Cell Biol., 29(1), 181–9.CrossRefGoogle ScholarPubMed
Kapacee, Z., Richardson, S. H., Lu, Y. et al. 2008. Tension is required for fibripositor formation. Matrix Biol., 27(4), 371–5.CrossRefGoogle ScholarPubMed
MacGillivray, T. E. 2003. Fibrin sealants and glues. J. Card. Surg., 18(6), 480–5.CrossRefGoogle ScholarPubMed
Radosevich, M., Goubran, H. and Burnouf, T. 1997. Fibrin sealant: scientific rationale, production methods, properties, and current clinical use. Vox Sang., 72(3), 133–43.CrossRefGoogle ScholarPubMed
Spotnitz, W. D. 2010. Fibrin sealant: past, present, and future: a brief review. World J. Surg., 34(4), 632–4.CrossRefGoogle ScholarPubMed
Eyrich, D., Göpferich, A. and Blunk, T. 2007. Fibrin in tissue engineering. Tissue Eng., 13(2), 379–92.Google Scholar
Ahmed, T. A. E., Dare, E. V. and Hincke, M. 2008. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Part B: Rev., 14(2), 199–215.CrossRefGoogle ScholarPubMed
Bach, A., Bannasch, H., Galla, T., Bittner, K. and Stark, G. 2001. Fibrin glue as matrix for cultured autologous urothelial cells in urethral reconstruction. Tissue Eng., 7(1), 45–53.CrossRefGoogle ScholarPubMed
Christman, K. L., Vardanian, A. J., Fang, Q. et al. 2004. Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. J. Am. Coll. Cardiol., 44(3), 654–60.CrossRefGoogle ScholarPubMed
Hankemeier, S., van Griensven, M., Ezechieli, M. et al. 2007. Tissue engineering of tendons and ligaments by human bone marrow stromal cells in a liquid fibrin matrix in immunodeficient rats: results of a histologic study. Arch. Orthop. Trauma Surg., 127(9), 815–21.CrossRefGoogle Scholar
Falanga, V., Iwamoto, S., Chartier, M. et al. 2007. Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng., 13(6), 1299–312.CrossRefGoogle Scholar
Grant, I., Warwick, K., Marshall, J., Green, C. and Martin, R. 2002. The co-application of sprayed cultured autologous keratinocytes and autologous fibrin sealant in a porcine wound model. Br. J. Plast. Surg., 55(3), 219–27.CrossRefGoogle Scholar
Currie, L. J., Sharpe, J. R. and Martin, R. 2001. The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review. Plast. Reconstr. Surg., 108(6), 1713.CrossRefGoogle ScholarPubMed
Doolin, E. J., Strande, L. F., Sheng, X. and Hewitt, C. W. 2002. Engineering a composite neotrachea with surgical adhesives. J. Pediatr. Surg., 37(7), 1034–7.CrossRefGoogle ScholarPubMed
Auger, F. and Guignard, R. 1993. Role and innocuity of Tisseel®, a tissue glue, in the grafting process and in vivo evolution of human cultured epidermis. Br. J. Plast. Surg., 46(2), 136–42.CrossRefGoogle Scholar
Flasza, M., Kemp, P., Shering, D. et al. 2007. Development and manufacture of an investigational human living dermal equivalent (ICX-SKN). Regen. Med., 2(6), 903–18.CrossRefGoogle Scholar
Boyd, M., Flasza, M., Johnson, P. A., Roberts, J. S. C. and Kemp, P. 2007. Integration and persistence of an investigational human living skin equivalent (ICX-SKN) in human surgical wounds. Regen. Med., 2(4), 363–70.CrossRefGoogle Scholar
Llames, S. G., Del Rio, M., Larcher, F. et al. 2004. Human plasma as a dermal scaffold for the generation of a completely autologous bioengineered skin. Transplantation, 77(3), 350.CrossRefGoogle ScholarPubMed
Mazlyzam, A., Aminuddin, B., Fuzina, N. et al. 2007. Reconstruction of living bilayer human skin equivalent utilizing human fibrin as a scaffold. Burns, 33(3), 355–63.CrossRefGoogle Scholar
Kubo, M., Van De Water, L., Plantefaber, L. C. et al. 2001. Fibrinogen and fibrin are anti-adhesive for keratinocytes: a mechanism for fibrin eschar slough during wound repair. J. Invest. Dermatol., 117(6), 1369–81.CrossRefGoogle ScholarPubMed
Clark, R. A. F. 2003. Fibrin glue for wound repair: facts and fancy. Thromb. Haemost. 90(6), 1003–6.Google ScholarPubMed
Clark, R. A. F. 2003. Fibrin is a many splendored thing. J. Invest. Dermatol. 121(5), xxi–xxii.CrossRefGoogle ScholarPubMed
Hansbrough, J. F., Boyce, S. T., Cooper, M. L. and Foreman, T. J. 1989. Burn wound closure with cultured autologous keratinocytes and fibroblasts attached to a collagen–glycosaminoglycan substrate. JAMA: J. Am. Med. Assoc., 262(15), 21–25.CrossRefGoogle ScholarPubMed
Boyce, S. T., Supp, A. P., Swope, V. B. and Warden, G. D. 2002. Vitamin C regulates keratinocyte viability, epidermal barrier, and basement membrane in vitro, and reduces wound contraction after grafting of cultured skin substitutes. J. Invest. Dermatol., 118(4), 565–72.CrossRefGoogle ScholarPubMed
Hojo, M., Inokuchi, S., Kidokoro, M. et al. 2003. Induction of vascular endothelial growth factor by fibrin as a dermal substrate for cultured skin substitute. Plast. Reconstr. Surg., 111(5), 1638.CrossRefGoogle ScholarPubMed
Barocas, V., Girton, T. and Tranquillo, R. 1998. Engineered alignment in media equivalents: magnetic prealignment and mandrel compaction. J. Biomech. Eng., 120, 660.CrossRefGoogle ScholarPubMed
Girton, T., Oegema, T. and Tranquillo, R. 1999. Exploiting glycation to stiffen and strengthen tissue equivalents for tissue engineering. J. Biomed. Mater. Res., 46(1), 87–92.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Ma, P. X. and Elisseeff, J. H. 2005. Scaffolding in Tissue Engineering. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Swartz, D. D., Russell, J. A. and Andreadis, S. T. 2005. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am. J. Physiol. – Heart Circulatory Physiol., 288(3), H1451.CrossRefGoogle ScholarPubMed
Solan, A., Mitchell, S., Moses, M. and Niklason, L. 2003. Effect of pulse rate on collagen deposition in the tissue-engineered blood vessel. Tissue Eng., 9(4), 579–86.CrossRefGoogle ScholarPubMed
Isenberg, B. C., Williams, C. and Tranquillo, R. T. 2006. Endothelialization and flow conditioning of fibrin-based media-equivalents. Ann. Biomed. Eng., 34(6), 971–85.CrossRefGoogle ScholarPubMed
Bjork, J. W. and Tranquillo, R. T. 2009. Transmural flow bioreactor for vascular tissue engineering. Biotechnol. Bioeng., 104(6), 1197–206.CrossRefGoogle ScholarPubMed
Seliktar, D., Black, R. A., Vito, R. P. and Nerem, R. M. 2000. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng., 28(4), 351–62.CrossRefGoogle ScholarPubMed
Niklason, L., Gao, J., Abbott, W. et al. 1999. Functional arteries grown in vitro. Science, 284(5413), 489.CrossRefGoogle ScholarPubMed
Syedain, Z. H. and Tranquillo, R. T. 2009. Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials, 30(25), 4078–84.CrossRefGoogle ScholarPubMed
Brown, R., Prajapati, R., McGrouther, D., Yannas, I. and Eastwood, M. 1998. Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. J. Cell Physiol., 175(3), 323–32.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Syedain, Z. H., Meier, L. A., Bjork, J. W., Lee, A. and Tranquillo, R. T. 2011. Implantable arterial grafts from human fibroblasts and fibrin using a multi-graft pulsed flow–stretch bioreactor with noninvasive strength monitoring. Biomaterials, 32(3), 714–22.CrossRefGoogle ScholarPubMed
Vesely, I. 2005. Heart valve tissue engineering. Circ. Res., 97(8), 743.CrossRefGoogle ScholarPubMed
Neuenschwander, S. 2004. Heart valve tissue engineering. Transpl. Immunol., 12(3–4), 359–65.CrossRefGoogle ScholarPubMed
Jockenhoevel, S., Zund, G., Hoerstrup, S. P. et al. 2001. Fibrin gel – advantages of a new scaffold in cardiovascular tissue engineering. Eur. J. Cardio-thoracic Surg., 19(4), 424–30.CrossRefGoogle ScholarPubMed
Jockenhoevel, S., Chalabi, K., Sachweh, J. et al. 2001. Tissue engineering: complete autologous valve conduit – a new moulding technique. Thorac. Cardiovasc. Surg., 49(5), 287–90.CrossRefGoogle ScholarPubMed
Robinson, P. S. and Tranquillo, R. T. 2009. Planar biaxial behavior of fibrin-based tissue-engineered heart valve leaflets. Tissue Eng. Part A, 15(10), 2763–72.CrossRefGoogle ScholarPubMed
Mol, A., Driessen, N. J. B., Rutten, M. C. M. et al. 2005. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann. Biomed. Eng., 33(12), 1778–88.CrossRefGoogle ScholarPubMed
Flanagan, T. C., Cornelissen, C., Koch, S. et al. 2007. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials, 28(23), 3388–97.CrossRefGoogle ScholarPubMed
Hoerstrup, S. P., Sodian, R., Sperling, J. S., Vacanti, J. P. and Mayer, J. E. 2006. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng., 6(1), 75–9.CrossRefGoogle Scholar
Syedain, Z. H., Lahti, M. T., Johnson, S. L. et al. 2011. Implantation of a tissue-engineered heart valve from human fibroblasts exhibiting short term function in the sheep pulmonary artery. Cardiovasc. Eng. Technol., 2, 101–12.CrossRefGoogle Scholar
Flanagan, T. C., Sachweh, J. S., Frese, J. et al. 2009. In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng. Part A, 15(10), 2965–76.CrossRefGoogle ScholarPubMed
Black, L. D., Meyers, J. D., Weinbaum, J. S., Shvelidze, Y. A. and Tranquillo, R. T. 2009. Cell-induced alignment augments twitch force in fibrin gel-based engineered myocardium via gap junction modification. Tissue Eng. Part A, 15(10), 3099–108.CrossRefGoogle ScholarPubMed
Morin, K. T. and Tranquillo, R. T. 2011. Guided sprouting from endothelial spheroids in fibrin gels aligned by magnetic fields and cell-induced gel compaction. Biomaterials, 32(26), 6111–18.CrossRefGoogle ScholarPubMed
Chen, X., Aledia, A. S., Ghajar, C. M. et al. 2008. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng. Part A, 15(6), 1363–71.CrossRefGoogle Scholar
Eyrich, D., Brandl, F., Appel, B. et al. 2007. Long-term stable fibrin gels for cartilage engineering. Biomaterials, 28(1), 55–65.CrossRefGoogle ScholarPubMed
Pelaez, D. C., Huang, C. Y. and Cheung, H. S. 2009. Cyclic compression maintains viability and induces chondrogenesis of human mesenchymal stem cells in fibrin gel scaffolds. Stem Cells Development, 18(1), 93–102.CrossRefGoogle ScholarPubMed
Hunter, C. J., Mouw, J. K. and Levenston, M. E. 2004. Dynamic compression of chondrocyte-seeded fibrin gels: effects on matrix accumulation and mechanical stiffness. Osteoarthritis Cartilage, 12(2), 117–30.CrossRefGoogle ScholarPubMed
Han, B., Schwab, I. R., Madsen, T. K. and Isseroff, R. R. 2002. A fibrin-based bioengineered ocular surface with human corneal epithelial stem cells. Cornea, 21(5), 505.CrossRefGoogle ScholarPubMed
Dubey, N., Letourneau, P. and Tranquillo, R. 2001. Neuronal contact guidance in magnetically aligned fibrin gels: effect of variation in gel mechano-structural properties. Biomaterials, 22(10), 1065–75.CrossRefGoogle ScholarPubMed
Willerth, S. M., Arendas, K. J., Gottlieb, D. I. and Sakiyama-Elbert, S. E. 2006. Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials, 27(36), 5990–6003.CrossRefGoogle ScholarPubMed
Johnson, P. J., Parker, S. R. and Sakiyama-Elbert, S. E. 2010. Fibrin-based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury. J. Biomed. Mater. Res. Part A, 92(1), 152–63.CrossRefGoogle Scholar
Schense, J. C., Bloch, J., Aebischer, P. and Hubbell, J. A. 2000. Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nature Biotechnol., 18(4), 415–19.CrossRefGoogle ScholarPubMed
Osathanon, T., Linnes, M. L., Rajachar, R. M. et al. 2008. Microporous nanofibrous fibrin-based scaffolds for bone tissue engineering. Biomaterials, 29(30), 4091–9.CrossRefGoogle ScholarPubMed
Zhang, G., Hu, Q., Braunlin, E. A., Suggs, L. J. and Zhang, J. 2006. Enhancing efficacy of cell transplantation in hearts with post-infarction LV remodeling by an injectable biomatrix. Circulation, 114(18, Suppl. II), 239.Google Scholar
Zhang, G., Drinnan, C. T., Geuss, L. R. and Suggs, L. J. 2010. Vascular differentiation of bone marrow stem cells is directed by a tunable three-dimensional matrix. Acta Biomater., 6(9), 3395–403.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×