Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: February 2015

27 - Advancing articular cartilage repair through tissue engineering: from materials and cells to clinical translation

from Part V - Animal models and clinical applications



Owing to the inability of cartilage to heal even minor defects, as well as the prevalence of osteoarthritis, the biological repair of this tissue has been the primary focus of decades of basic science and pre-clinical research. This research focussed on cartilage repair has witnessed marked advances via developments in biomaterials science as well as in tissue engineering methodologies. In this chapter, we review select topics in cartilage tissue engineering, describe current clinical cartilage repair procedures, and discuss ongoing considerations relating to the realization of these advances through pre-clinical animal models.


Cartilage is a collagenous, proteoglycan-rich, and water-saturated flexible soft connective tissue. A single cell type, the chondrocyte, is responsible for cartilage tissue maintenance and homeostasis. The tissue is aneural and avascular in the adult and relies on diffusion for nutrient and waste exchange (Brodin, 1955; Strangeways, 1920). The structure and function of cartilage categorizes these soft connective tissues into three broad groupings: elastic cartilage, fibrocartilage, and hyaline cartilage (Gray and Goss, 1973).

Related content

Powered by UNSILO
Adesida, A. B., Mulet-Sierra, A. and Jomha, N. M. 2012. Hypoxia mediated isolation and expansion enhances the chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res. Ther., 3, 9.
Ahern, B. J., Parvizi, J., Boston, R. and Schaer, T. P. 2009. Preclinical animal models in single site cartilage defect testing: a systematic review. Osteoarthritis Cartilage, 17, 705–13.
Ahmed, T. A., Dare, E. V. and Hincke, M. 2008. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng. Part B Rev., 14, 199–215.
Ando, W., Tateishi, K., Hart, D. A. et al. 2007. Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells. Biomaterials, 28, 5462–70.
Armstrong, C. G. and Mow, V. C. 1982. Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J. Bone Joint Surg. Am., 64, 88–94.
ASTM 2010. Standard Guide for in vivo Assessment of Implantable Devices Intended to Repair or Regenerate Articular Cartilage. West Conshohocken, PA: ASTM International.
Athanasiou, K. A., Rosenwasser, M. P., Buckwalter, J. A., Malinin, T. I. and Mow, V. C. 1991. Interspecies comparisons of in situ intrinsic mechanical properties of distal femoral cartilage. J. Orthop. Res., 9, 330–40.
Baker, B. M., Gee, A. O., Metter, R. B. et al. 2008. The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials, 29, 2348–58.
Barnewitz, D., Endres, M., Kruger, I. et al. 2006. Treatment of articular cartilage defects in horses with polymer-based cartilage tissue engineering grafts. Biomaterials, 27, 2882–9.
Barry, F., Boynton, R. E., Liu, B. and Murphy, J. M. 2001. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp. Cell Res., 268, 189–200.
Basić, N., Basić, V., Bulić, K. et al. 1996. TGF-β and basement membrane matrigel stimulate the chondrogenic phenotype in osteoblastic cells derived from fetal rat calvaria. J. Bone Miner. Res., 11, 384–91.
Benya, P. D. and Shaffer, J. D. 1982. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell, 30, 215–24.
Bhardwaj, N., Nguyen, Q. T., Chen, A. C. et al. 2011. Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin–chitosan for in vitro cartilage tissue engineering. Biomaterials, 32, 5773–81.
Bian, L., Zhai, D. Y., Tous, E. 2011. Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials, 32, 6425–34.
Bowles, R. D., Gebhard, H. H., Hartl, R. and Bonassar, L. J. 2011. Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine. Proc. Nat. Acad. Sci. USA, 108, 13106–11.
Bradham, D. M., Passaniti, A. and Horton, W. E. 1995. Mesenchymal cell chondrogenesis is stimulated by basement membrane matrix and inhibited by age-associated factors. Matrix Biol., 14, 561–71.
Brodin, H. 1955. Paths of nutrition in articular cartilage and intervertebral discs. Acta Orthop. Scand., 24, 177–83.
Buckley, C. T., Meyer, E. G. and Kelly, D. J. 2012. The influence of construct scale on the composition and functional properties of cartilaginous tissues engineered using bone marrow-derived mesenchymal stem cells. Tissue Eng. Part A, 18, 382–96.
Cals, F. L., Hellingman, C. A., Koevoet, W., Baatenburg de Jong, R. J. and van Osch, G. J. 2012. Effects of transforming growth factor-β subtypes on in vitro cartilage production and mineralization of human bone marrow stromal-derived mesenchymal stem cells. J. Tissue Eng. Regen. Med., 6, 68–76.
Carr, A. J., Robertsson, O., Graves, S. et al. 2012 Knee replacement. Lancet, 379, 1331–40.
Chang, N. J., Jhung, Y. R., Yao, C. K. and Yeh, M. L. 2012. Hydrophilic gelatin and hyaluronic acid-treated PLGA scaffolds for cartilage tissue engineering. J. Appl. Biomater. Function. Mater., 11(1), e45–52.
Chu, C. R., Szczodry, M. and Bruno, S. 2010. Animal models for cartilage regeneration and repair. Tissue Eng. Part B Rev., 16, 105–15.
Chung, C., Erickson, I. E., Mauck, R. L. and Burdick, J. A. 2008. Differential behavior of auricular and articular chondrocytes in hyaluronic acid hydrogels. Tissue Eng. Part A, 14, 1121–31.
Coates, E. E., Riggin, C. N. and Fisher, J. P. 2012. Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by alginate-embedded zonal chondrocytes and mesenchymal stem cells. J. Orthop. Res., 30(12), 1886–97.
Custers, R. J., Dhert, W. J., Saris, D. B. et al. 2010. Cartilage degeneration in the goat knee caused by treating localized cartilage defects with metal implants. Osteoarthritis Cartilage, 18, 377–88.
Custers, R. J., Saris, D. B., Dhert, W. J. et al. 2009. Articular cartilage degeneration following the treatment of focal cartilage defects with ceramic metal implants and compared with microfracture. J. Bone Joint Surg. Am., 91, 900–10.
Davidson, D., Blanc, A., Filion, D. et al. 2005. Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J. Biol. Chem., 280, 20509–15.
Degala, S., Williams, R., Zipfel, W. and Bonassar, L. J. 2012. Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture. J. Orthop. Res., 30, 793–9.
Denker, A. E., Nicoll, S. B. and Tuan, R. S. 1995. Formation of cartilage-like spheroids by micromass cultures of murine C3H10T1/2 cells upon treatment with transforming growth factor-β1. Differentiation, 59, 25–34.
Deponti, D., Di Giancamillo, A., Mangiavini, L. et al. 2012. Fibrin-based model for cartilage regeneration: tissue maturation from in vitro to in vivo. Tissue Eng. Part A, 18, 1109–22.
Dickhut, A., Gottwald, E., Steck, E., Heisel, C. and Richter, W. 2008. Chondrogenesis of mesenchymal stem cells in gel-like biomaterials in vitro and in vivo. Front. Biosci., 13, 4517–28.
Dorotka, R., Bindreiter, U., Vavken, P. and Nehrer, S. 2005a. Behavior of human articular chondrocytes derived from nonarthritic and osteoarthritic cartilage in a collagen matrix. Tissue Eng., 11, 877–86.
Dorotka, R., Windberger, U., Macfelda, K. et al. 2005b. Repair of articular cartilage defects treated by microfracture and a three-dimensional collagen matrix. Biomaterials, 26, 3617–29.
El Tamer, M. K. and Reis, R. L. 2009. Progenitor and stem cells for bone and cartilage regeneration. J. Tissue Eng. Regen. Med., 3, 327–37.
Erickson, I. E., Huang, A. H., Chung, C. et al. 2009. Differential maturation and structure–function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng. Part A, 15, 1041–52.
Erickson, I. E., Kestle, S. R., Zellars, K. H. et al. 2012. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Acta Biomater., 8, 3027–34.
Estes, B. T., Diekman, B. O., Gimble, J. M. and Guilak, F. 2010. Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype. Nature Protoc., 5, 1294–311.
Farrell, M. J., Comeau, E. S. and Mauck, R. L. 2012. Mesenchymal stem cells produce functional cartilage matrix in three-dimensional culture in regions of optimal nutrient supply. Eur. Cell Mater., 23, 425–40.
Fening, S. D., Mihnovets, J., Jones, M. H., Midura, R. J. and Miniaci, A. 2011. The effect of storage medium tonicity on osteochondral autograft plug diameter. Arthroscopy, 27, 188–93.
Flandry, F. and Hommel, G. 2011. Normal anatomy and biomechanics of the knee. Sports Med. Arthrosc., 19, 82–92.
Freeman, M. A. R. 1979. Adult Articular Cartilage. Tunbridge Wells: Pitman Medical.
Freyria, A. M. and Mallein-Gerin, F. 2012. Chondrocytes or adult stem cells for cartilage repair: the indisputable role of growth factors. Injury, 43, 259–65.
Frisbie, D. D., Cross, M. W. and McIlwraith, C. W. 2006. A comparative study of articular cartilage thickness in the stifle of animal species used in human pre-clinical studies compared to articular cartilage thickness in the human knee. Vet. Comp. Orthop. Traumatol., 19, 142–6.
Gill, T. J., McCulloch, P. C., Glasson, S. S., Blanchet, T. and Morris, E. A. 2005. Chondral defect repair after the microfracture procedure: a nonhuman primate model. Am. J. Sports Med., 33, 680–5.
Girdler, N. M. 1997. The role of mandibular condylar cartilage in articular cartilage repair. Ann. R. Coll. Surg. Engl., 79, 28–37.
Gomoll, A. H. 2012. Microfracture and augments. J. Knee Surg., 25, 9–15.
Gomoll, A. H., Farr, J., Gillogly, S. D., Kercher, J. and Minas, T. 2010. Surgical management of articular cartilage defects of the knee. J. Bone Joint Surg. Am., 92, 2470–90.
Gomoll, A. H. and Minas, T. 2011. Debridement, microfracture, and osteochondral autograft transfer for treatment of cartilage defects. In Minas, T., editor. A Primer in Cartilage Repair and Joint Preservation of the Knee. Philadelphia, PA: Saunders, pp. 48–53.
Gotterbarm, T., Breusch, S. J., Schneider, U. and Jung, M. 2008. The minipig model for experimental chondral and osteochondral defect repair in tissue engineering: retrospective analysis of 180 defects. Lab. Anim., 42, 71–82.
Gray, H. and Goss, C. M. 1973. Anatomy of the Human Body. Philadelphia, PA: Lea & Febiger.
Guenther, H. L., Guenther, H. E., and Froesch, E. R. and Fleisch, H. 1982. Effect of insulin-like growth factor on collagen and glycosaminoglycan synthesis by rabbit articular chondrocytes in culture. Experientia, 38, 979–81.
Guo, X., Wang, C., Zhang, Y. et al. 2004. Repair of large articular cartilage defects with implants of autologous mesenchymal stem cells seeded into β-tricalcium phosphate in a sheep model. Tissue Eng., 10, 1818–29.
Hangody, L., Vasarhelyi, G., Hangody, L. R. et al. 2008. Autologous osteochondral grafting – technique and long-term results. Injury, 39(Suppl. 1), S32–9.
Harrington, E. K., Lunsford, L. E. and Svoboda, K. K. 2004. Chondrocyte terminal differentiation, apoptosis, and type X collagen expression are downregulated by parathyroid hormone. Anat. Rec. A Discov. Molec. Cell Evol. Biol., 281, 1286–95.
Heir, S., Nerhus, T. K., Rotterud, J. H. et al. 2010. Focal cartilage defects in the knee impair quality of life as much as severe osteoarthritis: a comparison of knee injury and osteoarthritis outcome score in 4 patient categories scheduled for knee surgery. Am. J. Sports Med., 38, 231–7.
Hellingman, C. A., Koevoet, W., Kops, N. et al. 2010. Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis: relating tissue engineering using adult mesenchymal stem cells to embryonic development. Tissue Eng. Part A, 16, 545–56.
Hendrickson, D. A., Nixon, A. J., Grande, D. A. et al. 1994. Chondrocyte–fibrin matrix transplants for resurfacing extensive articular cartilage defects. J. Orthop. Res., 12, 485–97.
Heywood, H. K. and Lee, D. A. 2010. Low oxygen reduces the modulation to an oxidative phenotype in monolayer-expanded chondrocytes. J. Cell Physiol., 222, 248–53.
Ho, S. T., Hutmacher, D. W., Ekaputra, A. K., Hitendra, D. and Hui, J. H. 2010. The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Eng. Part A, 16, 1123–41.
Hoemann, C. D., Hurtig, M., Rossomacha, E. et al. 2005. Chitosan–glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J. Bone Joint Surg. Am., 87, 2671–86.
Hoemann, C. D., Kandel, R. A., Roberts, S. et al. 2011. International Cartilage Repair Society (ICRS) recommended guidelines for histological endpoints for cartilage repair in animal studies in animal models and clinical trials. Cartilage, 2, 153–72.
Hsieh-Bonassera, N. D., Wu, I., Lin, J. K. et al. 2009. Expansion and redifferentiation of chondrocytes from osteoarthritic cartilage: cells for human cartilage tissue engineering. Tissue Eng. Part A, 15, 3513–23.
Hu, J. C. and Athanasiou, K. A. 2006. Chondrocytes from different zones exhibit characteristic differences in high density culture. Connect. Tissue Res., 47, 133–40.
Huang, A. H., Farrell, M. J., Kim, M. and Mauck, R. L. 2010. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. Eur. Cell Mater., 19, 72–85.
Huang, C. Y., Stankiewicz, A., Ateshian, G. A. and Mow, V. C. 2005. Anisotropy, inhomogeneity, and tension–compression nonlinearity of human glenohumeral cartilage in finite deformation. J. Biomech., 38, 799–809.
Huang, Q., Goh, J. C., Hutmacher, D. W. and Lee, E. H. 2002. In vivo mesenchymal cell recruitment by a scaffold loaded with transforming growth factor β1 and the potential for in situ chondrogenesis. Tissue Eng., 8, 469–82.
Hui, J. H., Ren, X., Afizah, M. H., Chian, K. S. and Mikos, A. G. 2013. Oligo[poly(ethylene glycol)fumarate] hydrogel enhances osteochondral repair in porcine femoral condyle defects. Clin. Orthop. Relat. Res., 471(4), 1174–85.
Huntley, J. S., Bush, P. G., McBirnie, J. M., Simpson, A. H. and Hall, A. C. 2005. Chondrocyte death associated with human femoral osteochondral harvest as performed for mosaicplasty. J. Bone Joint Surg. Am., 87, 351–60.
Hurtig, M. B., Buschmann, M. D., Fortier, L. A. et al. 2011. Preclinical studies for cartilage repair: recommendations from the International Cartilage Repair Society. Cartilage, 2, 137–59.
Hwang, N. S., Varghese, S., Li, H. and Elisseeff, J. 2011. Regulation of osteogenic and chondrogenic differentiation of mesenchymal stem cells in PEG–ECM hydrogels. Cell Tissue Res., 344, 499–509.
Ionescu, L. C., Lee, G. C., Huang, K. L. and Mauck, R. L. 2012. Growth factor supplementation improves native and engineered meniscus repair in vitro. Acta Biomater., 8(10), 3687–94.
Irrgang, J. J., Anderson, A. F., Boland, A. L. et al. 2001. Development and validation of the international knee documentation committee subjective knee form. Am. J. Sports Med., 29, 600–13.
Jackson, D. W., Lalor, P. A., Aberman, H. M. and Simon, T. M. 2001. Spontaneous repair of full-thickness defects of articular cartilage in a goat model. A preliminary study. J. Bone Joint Surg. Am., 83A, 53–64.
Jiang, C. C., Chiang, H., Liao, C. J. et al. 2007. Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J. Orthop. Res., 25, 1277–90.
Jiang, J., Tang, A., Ateshian, G. A. et al. 2010. Bioactive stratified polymer ceramic–hydrogel scaffold for integrative osteochondral repair. Ann. Biomed. Eng., 38, 2183–96.
Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M. and Yoo, J. U. 1998. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res., 238, 265–72.
Jones, B. A. and Pei, M. 2012. Synovium-derived stem cells: a tissue-specific stem cell for cartilage engineering and regeneration. Tissue Eng. Part B Rev., 18(4), 301–11.
Jones, R. S., Keene, G. C., Learmonth, D. J. et al. 1996. Direct measurement of hoop strains in the intact and torn human medial meniscus. Clin. Biomech., 11, 295–300.
Jurgens, W. J., Lu, Z., Zandieh-Doulabi, B. et al. 2012. Hyperosmolarity and hypoxia induce chondrogenesis of adipose-derived stem cells in a collagen type 2 hydrogel. J. Tissue Eng. Regen. Med., 6, 570–78.
Kandel, R. A., Grynpas, M., Pilliar, R. et al. 2006. Repair of osteochondral defects with biphasic cartilage–calcium polyphosphate constructs in a sheep model. Biomaterials, 27, 4120–31.
Kaplonyi, G., Zimmerman, I., Frenyo, A. D., Farkas, T. and Nemes, G. 1988. The use of fibrin adhesive in the repair of chondral and osteochondral injuries. Injury, 19, 267–72.
Karagianes, M. T., Wheeler, K. R. and Nilles, J. L. 1975. Cartilage repair over porous metal implants. Arch. Pathol., 99, 398–400.
Kim, H. J. and Im, G. I. 2009. Combination of transforming growth factor-β2 and bone morphogenetic protein 7 enhances chondrogenesis from adipose tissue-derived mesenchymal stem cells. Tissue Eng. Part A, 15, 1543–51.
Kim, M., Kraft, J. J., Volk, A. C. et al. 2011. Characterization of a cartilage-like engineered biomass using a self-aggregating suspension culture model: molecular composition using FT-IRIS. J. Orthop. Res., 29, 1881–87.
Kim, T. K., Sharma, B., Williams, C. G. et al. 2003. Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthritis Cartilage, 11, 653–64.
Klein, T. J., Chaudhry, M., Bae, W. C. and Sah, R. L. 2007. Depth-dependent biomechanical and biochemical properties of fetal, newborn, and tissue-engineered articular cartilage. J. Biomech., 40, 182–90.
Kocher, M. S., Steadman, J. R., Briggs, K. K., Sterett, W. I. and Hawkins, R. J. 2004. Reliability, validity, and responsiveness of the Lysholm knee scale for various chondral disorders of the knee. J. Bone Joint Surg. Am., 86A, 1139–45.
Kon, E., Filardo, G., Tschon, M. et al. 2012. Tissue engineering for total meniscal substitution: animal study in sheep model – Results at 12 months. Tissue Eng. Part A, 18(15–16), 1573–82.
Kon, E., Mutini, A., Arcangeli, E. et al. 2010. Novel nanostructured scaffold for osteochondral regeneration: pilot study in horses. J. Tissue Eng. Regen. Med., 4, 300–8.
Lahiji, A., Sohrabi, A., Hungerford, D. S. and Frondoza, C. G. 2000. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J. Biomed. Mater. Res., 51, 586–95.
LaPrade, R. F., Bursch, L. S., Olson, E. J., Havlas, V. and Carlson, C. S. 2008. Histologic and immunohistochemical characteristics of failed articular cartilage resurfacing procedures for osteochondritis of the knee: a case series. Am. J. Sports Med., 36, 360–8.
Lawrence, R. C., Felson, D. T., Helmick, C. G. et al. 2008. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum., 58, 26–35.
Lee, C. H., Cook, J. L., Mendelson, A. et al. 2010. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study. Lancet, 376, 440–8.
Li, X. A., Iyer, S., Cross, M. B. and Figgie, M. P. 2012. Total joint replacement in adolescents: literature review and case examples. Curr. Opin. Pediatr., 24, 57–63.
Lima, E. G., Bian, L., Ng, K. W. et al. 2007. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-β3. Osteoarthritis Cartilage, 15, 1025–33.
Lind, M., Larsen, A., Clausen, C., Osther, K. and Everland, H. 2008. Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats. Knee Surg. Sports Traumatol. Arthrosc., 16, 690–8.
Liu, X., Jin, X. and Ma, P. X. 2011 Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nature Mater., 10, 398–406.
Macchiarini, P., Jungebluth, P., Go, T. et al. 2008. Clinical transplantation of a tissue-engineered airway. Lancet, 372, 2023–30.
Maher, S. A., Mauck, R. L., Rackwitz, L. and Tuan, R. S. 2010. A nanofibrous cell-seeded hydrogel promotes integration in a cartilage gap model. J. Tissue Eng. Regen. Med., 4, 25–9.
Mainil-Varlet, P., Van Damme, B., Nesic, D. et al. 2010. A new histology scoring system for the assessment of the quality of human cartilage repair: ICRS II. Am. J. Sports Med., 38, 880–90.
Makris, E. A., Hadidi, P. and Athanasiou, K. A. 2011. The knee meniscus: structure–function, pathophysiology, current repair, techniques, and prospects for regeneration. Biomaterials, 32, 7411–31.
Malda, J., Martens, D. E., Tramper, J., van Blitterswijk, C. A. and Riesle, J. 2003. Cartilage tissue engineering: controversy in the effect of oxygen. Crit. Rev. Biotechnol., 23, 175–94.
Mandal, B. B., Park, S. H., Gil, E. S. and Kaplan, D. L. 2011. Stem cell-based meniscus tissue engineering. Tissue Eng. Part A, 17, 2749–61.
Mardones, R. M., Reinholz, G. G., Fitzsimmons, J. S. et al. 2005. Development of a biologic prosthetic composite for cartilage repair. Tissue Eng., 11, 1368–78.
Marlovits, S., Singer, P., Zeller, P. et al. 2006. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur. J. Radiol., 57, 16–23.
Marlovits, S., Striessnig, G., Resinger, C. T. et al. 2004. Definition of pertinent parameters for the evaluation of articular cartilage repair tissue with high-resolution magnetic resonance imaging. Eur. J. Radiol., 52, 310–19.
Marquass, B., Schulz, R., Hepp, P. et al. 2011. Matrix-associated implantation of predifferentiated mesenchymal stem cells versus articular chondrocytes: in vivo results of cartilage repair after 1 year. Am. J. Sports Med., 39, 1401–12.
Matricali, G. A., Dereymaeker, G. P. and Luyten, F. P. 2010. Donor site morbidity after articular cartilage repair procedures: a review. Acta Orthop. Belg., 76, 669–74.
Mauck, R. L., Yuan, X. and Tuan, R. S. 2006. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage, 14, 179–89.
McCormick, F., Yanke, A., Provencher, M. T. and Cole, B. J. 2008. Minced articular cartilage – basic science, surgical technique, and clinical application. Sports Med. Arthrosc., 16, 217–20.
Mease, P. J., Hanna, S., Frakes, E. P. and Altman, R. D. 2011. Pain mechanisms in osteoarthritis: understanding the role of central pain and current approaches to its treatment. J. Rheumatol., 38, 1546–51.
Minas, T. 2001. Autologous chondrocyte implantation for focal chondral defects of the knee. Clin. Orthop. Relat. Res., S349–61.
Minas, T. 2011. Autologous chondrocyte implantation. In Minas, T., editor. A Primer in Cartilage Repair and Joint Preservation of the Knee. Philadelphia, PA: Saunders, pp. 65–119.
Miot, S., Brehm, W., Dickinson, S. et al. 2012. Influence of in vitro maturation of engineered cartilage on the outcome of osteochondral repair in a goat model. Eur. Cell Mater., 23, 222–36.
Mithoefer, K., McAdams, T., Williams, R. J., Kreuz, P. C. and Mandelbaum, B. R. 2009. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am. J. Sports Med., 37, 2053–63.
Moutos, F. T., Freed, L. E. and Guilak, F. 2007. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Mater., 6, 162–7.
Moutos, F. T. and Guilak, F. 2010. Functional properties of cell-seeded three-dimensionally woven poly(ε-caprolactone) scaffolds for cartilage tissue engineering. Tissue Eng. Part A, 16, 1291–301.
Mow, V. C., and Huiskes, R. 2005. Basic Orthopaedic Biomechanics & Mechanobiology. Philadelphia, PA: Lippincott Williams & Wilkins.
Mow, V. C., Kuei, S. C., Lai, W. M. and Armstrong, C. G. 1980. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng., 102, 73–84.
Mrosek, E. H., Schagemann, J. C., Chung, H. W. et al. 2010. Porous tantalum and poly-ε-caprolactone biocomposites for osteochondral defect repair: preliminary studies in rabbits. J. Orthop. Res., 28, 141–8.
Mulhall, K. J., Ghomrawi, H. M., Scully, S., Callaghan, J. J. and Saleh, K. J. 2006. Current etiologies and modes of failure in total knee arthroplasty revision. Clin. Orthop. Relat. Res., 446, 45–50.
Natoli, R. M., Revell, C. M. and Athanasiou, K. A. 2009. Chondroitinase ABC treatment results in greater tensile properties of self-assembled tissue-engineered articular cartilage. Tissue Eng. Part A, 15, 3119–28.
Nehrer, S., Breinan, H. A., Ramappa, A. et al. 1998. Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials, 19, 2313–28.
Nehrer, S., Spector, M. and Minas, T. 1999. Histologic analysis of tissue after failed cartilage repair procedures. Clin. Orthop. Relat. Res., 149–62.
Nerurkar, N. L., Sen, S., Huang, A. H., Elliott, D. M. and Mauck, R. L. 2010. Engineered disc-like angle-ply structures for intervertebral disc replacement. Spine, 35, 867–73.
Nettles, D. L., Kitaoka, K., Hanson, N. A. et al. 2008. In situ crosslinking elastin-like polypeptide gels for application to articular cartilage repair in a goat osteochondral defect model. Tissue Eng. Part A, 14, 1133–40.
Ng, K. W., Ateshian, G. A. and Hung, C. T. 2009. Zonal chondrocytes seeded in a layered agarose hydrogel create engineered cartilage with depth-dependent cellular and mechanical inhomogeneity. Tissue Eng. Part A, 15, 2315–24.
Nguyen, Q. T., Hwang, Y., Chen, A. C., Varghese, S. and Sah, R. L. 2012. Cartilage-like mechanical properties of poly(ethylene glycol)-diacrylate hydrogels. Biomaterials, 33, 6682–90.
Niederauer, G. G., Slivka, M. A., Leatherbury, N. C. et al. 2000. Evaluation of multiphase implants for repair of focal osteochondral defects in goats. Biomaterials, 21, 2561–74.
O’Driscoll, S. W., Marx, R. G., Beaton, D. E. et al. 2001. Validation of a simple histological–histochemical cartilage scoring system. Tissue Eng., 7, 313–20.
Ogston, A. G., and Stanier, J. E. 1953. The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties. J. Physiol., 119, 244–52.
Pallante, A. L., Bae, W. C., Chen, A. C. et al. 2009. Chondrocyte viability is higher after prolonged storage at 37 degrees C than at 4 degrees C for osteochondral grafts. Am. J. Sports Med., 37(Suppl. 1), 24S–32S.
Park, S. H., Gil, E. S. and Cho, H. 2012. Intervertebral disk tissue engineering using biphasic silk composite scaffolds. Tissue Eng. Part A, 18, 447–58.
Pelttari, K., Winter, A., Steck, E. et al. 2006. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum., 54, 3254–66.
Pittenger, M. F., Mackay, A. M., Beck, S. C. et al. 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–7.
Re’em, T., Witte, F., Willbold, E., Ruvinov, E. and Cohen, S. 2012. Simultaneous regeneration of articular cartilage and subchondral bone induced by spatially presented TGF-β and BMP-4 in a bilayer affinity binding system. Acta Biomater., 8, 3283–93.
Reimann, I. 1976. Pathological human synovial fluids. Viscosity and boundary lubricating properties. Clin. Orthop. Relat. Res., 237–41.
Reinholz, G. G., Lu, L., Saris, D. B., Yaszemski, M. J. and O’Driscoll, S. W. 2004. Animal models for cartilage reconstruction. Biomaterials, 25, 1511–21.
Robinson, P. D. 1993. Histologic study of articular cartilage repair in the marmoset condyle. J. Oral Maxillofac. Surg., 51, 1088–94; discussion 1094–5.
Ropes, M. W., Bennett, G. A. and Bauer, W. 1939. The origin and nature of normal synovial fluid. J. Clin. Invest., 18, 351–72.
Sage, A., Chang, A. A., Schumacher, B. L.Sah, R. L. and Watson, D. 2009. Cartilage outgrowth in fibrin scaffolds. Am. J. Rhinol. Allergy, 23, 486–91.
Sams, A. E., and Nixon, A. J. 1995. Chondrocyte-laden collagen scaffolds for resurfacing extensive articular cartilage defects. Osteoarthritis Cartilage, 3, 47–59.
Schatti, O., Grad, S., Goldhahn, J. et al. 2011. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur. Cell Mater., 22, 214–25.
Schek, R. M., Taboas, J. M., Segvich, S. J., Hollister, S. J. and Krebsbach, P. H. 2004. Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Eng., 10, 1376–85.
Schiltz, J. R., Mayne, R. and Holtzer, H. 1973. The synthesis of collagen and glycosaminoglycans by dedifferentiated chondroblasts in culture. Differentiation, 1, 97–108.
Schinagl, R. M., Gurskis, D., Chen, A. C. and Sah, R. L. 1997. Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res., 15, 499–506.
Schinhan, M., Gruber, M., Vavken, P. et al. 2012. Critical-size defect induces unicompartmental osteoarthritis in a stable ovine knee. J. Orthop. Res., 30, 214–20.
Schulz, R. M., Zscharnack, M., Hanisch, I. et al. 2008. Cartilage tissue engineering by collagen matrix associated bone marrow derived mesenchymal stem cells. Biomed. Mater. Eng., 18, S55–70.
Schumacher, B. L., Block, J. A., Schmid, T. M., Aydelotte, M. B. and Kuettner, K. E. 1994. A novel proteoglycan synthesized and secreted by chondrocytes of the superficial zone of articular cartilage. Arch. Biochem. Biophys., 311, 144–52.
Sechriest, V. F., Miao, Y. J., Niyibizi, C. et al. 2000. GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J. Biomed. Mater. Res., 49, 534–41.
Shahin, K. and Doran, P. M. 2011. Improved seeding of chondrocytes into polyglycolic acid scaffolds using semi-static and alginate loading methods. Biotechnol. Prog., 27, 191–200.
Shortkroff, S., Barone, L., Hsu, H. P. et al. 1996. Healing of chondral and osteochondral defects in a canine model: the role of cultured chondrocytes in regeneration of articular cartilage. Biomaterials, 17, 147–54.
Skaalure, S. C., Milligan, I. L. and Bryant, S. J. 2012. Age impacts extracellular matrix metabolism in chondrocytes encapsulated in degradable hydrogels. Biomed. Mater., 7, 024111.
Smith, H. J., Richardson, J. B. and Tennant, A. 2009. Modification and validation of the Lysholm Knee Scale to assess articular cartilage damage. Osteoarthritis Cartilage, 17, 53–8.
Solorio, L. D., Vieregge, E. L., Dhami, C. D., Dang, P. N. and Alsberg, E. 2012. Engineered cartilage via self-assembled hMSC sheets with incorporated biodegradable gelatin microspheres releasing transforming growth factor-β1. J. Control. Release, 158, 224–32.
Spiller, K. L., Holloway, J. L., Gribb, M. E. and Lowman, A. M. 2011. Design of semi-degradable hydrogels based on poly(vinyl alcohol) and poly(lactic-co-glycolic acid) for cartilage tissue engineering. J. Tissue. Eng. Regen. Med., 5, 636–47.
Spiller, K. L., Laurencin, S. J. and Lowman, A. M. 2009. Characterization of the behavior of porous hydrogels in model osmotically-conditioned articular cartilage systems. J. Biomed. Mater. Res. B Appl. Biomater., 90, 752–9.
Starkman, B. G., Cravero, J. D., Delcarlo, M. and Loeser, R. F. 2005. IGF-I stimulation of proteoglycan synthesis by chondrocytes requires activation of the PI 3-kinase pathway but not ERK MAPK. Biochem. J., 389, 723–9.
Strangeways, T. S. 1920. Observations on the nutrition of articular cartilage. Br. Med. J., 1, 661–3.
Sung, M. S., Jeong, C. H., Lim, Y. S. et al. 2011. Periosteal autograft for articular cartilage defects in dogs: MR imaging and ultrasonography of the repair process. Acta Radiol., 52, 181–90.
Swann, D. A., Silver, F. H., Slayter, H. S., Stafford, W. and Shore, E. 1985. The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem. J., 225, 195–201.
Tampieri, A., Sandri, M., Landi, E. et al. 2008. Design of graded biomimetic osteochondral composite scaffolds. Biomaterials, 29, 3539–46.
Tanaka, T., Komaki, H., Chazono, M. and Fujii, K. 2005. Use of a biphasic graft constructed with chondrocytes overlying a β-tricalcium phosphate block in the treatment of rabbit osteochondral defects. Tissue Eng., 11, 331–9.
Tegner, Y. and Lysholm, J. 1985. Rating systems in the evaluation of knee ligament injuries. Clin. Orthop. Relat. Res., 43–9.
Terada, S., Yoshimoto, H., Fuchs, J. R. et al. 2005. Hydrogel optimization for cultured elastic chondrocytes seeded onto a polyglycolic acid scaffold. J. Biomed. Mater. Res. A, 75, 907–16.
Thomopoulos, S., Williams, G. R., Gimbel, J. A., Favata, M. and Soslowsky, L. J. 2003. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J. Orthop. Res., 21, 413–19.
Thoms, R. J. and Marwin, S. E. 2009. The role of fibrin sealants in orthopaedic surgery. J. Am. Acad. Orthop. Surg., 17, 727–36.
Toh, W. S., Lee, E. H. and Cao, T. 2011. Potential of human embryonic stem cells in cartilage tissue engineering and regenerative medicine. Stem Cell Rev., 7, 544–59.
Toh, W. S., Lim, T. C., Kurisawa, M. and Spector, M. 2012. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment. Biomaterials, 33, 3835–45.
Tran-Khanh, N., Hoemann, C. D., McKee, M. D., Henderson, J. E. and Buschmann, M. D. 2005. Aged bovine chondrocytes display a diminished capacity to produce a collagen-rich, mechanically functional cartilage extracellular matrix. J. Orthop. Res., 23, 1354–62.
Treppo, S., Koepp, H., Quan, E. C. et al. 2000. Comparison of biomechanical and biochemical properties of cartilage from human knee and ankle pairs. J. Orthop. Res., 18, 739–48.
Van Assche, D., Staes, F., Van Caspel, D. et al. 2010. Autologous chondrocyte implantation versus microfracture for knee cartilage injury: a prospective randomized trial, with 2-year follow-up. Knee Surg. Sports Traumatol. Arthrosc., 18, 486–95.
Watanabe, H., de Caestecker, M. P. and Yamada, Y. 2001. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-β-induced aggrecan gene expression in chondrogenic ATDC5 cells. J. Biol. Chem., 276, 14466–73.
Weiss, S., Hennig, T., Bock, R., Steck, E. and Richter, W. 2010. Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J. Cell Physiol., 223, 84–93.
Williamson, A. K., Chen, A. C. and Sah, R. L. 2001. Compressive properties and function–composition relationships of developing bovine articular cartilage. J. Orthop. Res., 19, 1113–21.
Wong, J. M., and Khan, W. S., Chimutengwende-Gordon, M. and Dowd, G. S. 2011. Recent advances in designs, approaches and materials in total knee replacement: literature review and evidence today. J. Perioper. Pract., 21, 165–71.
Xerogeanes, J. W., Fox, R. J., Takeda, Y. et al. 1998. A functional comparison of animal anterior cruciate ligament models to the human anterior cruciate ligament. Ann. Biomed. Eng., 26, 345–52.
Yamazoe, K., Mishima, H., Torigoe, K. et al. 2007. Effects of atelocollagen gel containing bone marrow-derived stromal cells on the repair of osteochondral defects in a dog. J. Vet. Med. Sci., 69, 835–9.
Yang, Q., Peng, J., Lu, S. B. et al. 2011. Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin. Med. J. (Engl.), 124, 3930–8.
Yokota, M., Yasuda, K., Kitamura, N. et al. 2011. Spontaneous hyaline cartilage regeneration can be induced in an osteochondral defect created in the femoral condyle using a novel double-network hydrogel. BMC Musculoskelet. Disord., 12, 49.
Youn, I., Choi, J. B., Cao, L., Setton, L. A. and Guilak, F. 2006. Zonal variations in the three-dimensional morphology of the chondron measured in situ using confocal microscopy. Osteoarthritis Cartilage, 14, 889–97.
Yuan, T., Zhang, L., Feng, L., Fan, H. and Zhang, X. 2010. Chondrogenic differentiation and immunological properties of mesenchymal stem cells in collagen type I hydrogel. Biotechnol. Prog., 26, 1749–58.
Zhou, G., Liu, W., Cui, L. et al. 2006. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng., 12, 3209–21.
Zhou, S., Cui, Z. and Urban, J. P. 2004. Factors influencing the oxygen concentration gradient from the synovial surface of articular cartilage to the cartilage–bone interface: a modeling study. Arthritis Rheum., 50, 3915–24.