Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-04T12:13:18.700Z Has data issue: false hasContentIssue false

2 - Stem cells: pluripotency and extraembryonic differentiation in the mouse

Published online by Cambridge University Press:  07 August 2009

Tilo Kunath
Affiliation:
Institute for Stem Cell Research, University of Edinburgh
Ashley Moffett
Affiliation:
University of Cambridge
Charlie Loke
Affiliation:
University of Cambridge
Anne McLaren
Affiliation:
Cancer Research, UK
Get access

Summary

Abstract. Two distinct classes of stem cell lines can be derived from the mouse blastocyst: embryonic stem (ES) cells and trophoblast stem (TS) cells. Embryonic stem cells can differentiate into all embryonic lineages and extraembryonic mesoderm in chimeras, but are strictly excluded from the trophoblast lineage and rarely contribute to extraembryonic endoderm. In contrast, TS cells have the capacity to populate all trophoblast lineages, but are unable to make embryonic tissues or extraembryonic mesoderm and endoderm. A novel class of blastocyst-derived lines representative of the primitive endoderm lineage have been derived and characterised. Extraembryonic endoderm (XEN) cell lines contribute to derivatives of the primitive endoderm in vivo, but not to epiblast or trophoblast tissues. The signals required to maintain XEN cells in culture are not well characterised. However, the signals and critical transcription factors required for maintenance of ES and TS cell cultures have been partially determined. Embryonic stem cells require signalling through at least two pathways. The first is activated by leukaemia inhibitory factor (LIF) and transduced through the cell-surface receptor, gp130, and the intracellular protein, signal transducer and activator of transcription 3 (STAT3). The second pathway leads to activation of Smad proteins, which may be mediated by several factors, including bone morphogenetic proteins (BMPs). In contrast, TS cells require signalling from fibroblast growth factors (FGFs) and activation of mitogen-activated protein kinases (MAPKs).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arman, E., Haffner-Krausz, R., Chen, Y., Heath, J. K. & Lonai, P. (1998). Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc. Natl. Acad. Sci. U.S.A., 95, 5082–7.CrossRefGoogle ScholarPubMed
Arman, E., Haffner-Krausz, R., Gorivodsky, M. & Lonai, P. (1999). Fgfr2 is required for limb outgrowth and lung-branching morphogenesis. Proc. Natl. Acad. Sci. U.S.A., 96, 11895–9.CrossRefGoogle ScholarPubMed
Avilion, A. A., Nicolis, S. K., Pevny, L. H.et al. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev., 17, 126–40.CrossRefGoogle ScholarPubMed
Beck, F., Erler, T., Russell, A. & James, R. (1995). Expression of Cdx-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Dev. Dyn., 204, 219–27.CrossRefGoogle ScholarPubMed
Buehr, M. & Smith, A. (2003). Genesis of embryonic stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci., 358, 1397–402; discussion 1402.CrossRefGoogle ScholarPubMed
Burdon, T., Stracey, C., Chambers, I., Nichols, J. & Smith, A. (1999). Suppression of SHP-2 and ERK signaling promotes self-renewal of mouse embryonic stem cells. Dev. Biol., 210, 30–43.CrossRefGoogle ScholarPubMed
Chambers, I., Colby, D., Robertson, M.et al. (2003). Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113, 643–55.CrossRefGoogle ScholarPubMed
Chawengsaksophak, K., James, R., Hammond, V. E., Kontgen, F. & Beck, F. (1997). Homeosis and intestinal tumors in Cdx2 mutant mice. Nature, 386, 84–7.CrossRefGoogle ScholarPubMed
Cheng, A. M., Saxton, T. M., Sakai, R.et al. (1998). Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cell, 95, 793–803.CrossRefGoogle ScholarPubMed
Ciruna, B. G. & Rossant, J. (1999). Expression of the T-box gene Eomesodermin during early mouse development. Mech. Dev., 81, 199–203.CrossRefGoogle ScholarPubMed
Copp, A. J. (1978). Interaction between inner cell mass and trophectoderm of the mouse blastocyst. I. A study of cellular proliferation. J. Embryol. Exp. Morphol., 48, 109–25.Google ScholarPubMed
Corson, L. B., Yamanaka, Y., Lai, K. M. & Rossant, J. (2003). Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development, 130, 4527–37.CrossRefGoogle ScholarPubMed
Coucouvanis, E. & Martin, G. R. (1999). BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. Development, 126, 535–46.Google Scholar
Moerlooze, L., Spencer-Dene, B., Revest, J.et al. (2000). An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signaling during mouse organogenesis. Development, 127, 483–92.Google ScholarPubMed
Du, Z., Cong, H. & Yao, Z. (2001). Identification of putative downstream genes of Oct-4 by suppression-subtractive hybridisation. Biochem. Biophys. Res. Commun., 282, 701–6.CrossRefGoogle Scholar
Evans, M. J. & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–6.CrossRefGoogle ScholarPubMed
Ezashi, T., Ghosh, D. & Roberts, R. M. (2001). Repression of Ets-2-induced transactivation of the tau interferon promoter by Oct-4. Mol. Cell. Biol., 21, 7883–91.CrossRefGoogle ScholarPubMed
Feldman, B., Poueymirou, W., Papaioannou, V. E., DeChiara, T. M. & Goldfarb, M. (1995). Requirement of FGF-4 for postimplantation mouse development. Science, 267, 246–9.CrossRefGoogle ScholarPubMed
Fowler, K. J., Mitrangas, K. & Dziadek, M. (1990). In vitro production of Reichert's membrane by mouse embryo-derived parietal endoderm cell lines. Exp. Cell Res., 191, 194–203.CrossRefGoogle ScholarPubMed
Fujikura, J., Yamato, E., Yonemura, S.et al. (2002). Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev., 16, 784–9.CrossRefGoogle ScholarPubMed
Gardner, R. L. (1982). Investigation of cell lineage and differentiation in the extra-embryonic endoderm of the mouse embryo. J. Embryol. Exp. Morphol., 68, 175–98.Google Scholar
Gardner, R. L., Papaioannou, V. E. & Barton, S. C. (1973). Origin of the ectoplacental cone and secondary giant cells in mouse blastocysts reconstituted from isolated trophoblast and inner cell mass. J. Embryol. Exp. Morphol., 30, 561–72.Google ScholarPubMed
Griffin, K. J., Amacher, S. L., Kimmel, C. B. & Kimelman, D. (1998). Molecular identification of spadetail: regulation of zebrafish trunk and tail mesoderm formation by T-box genes. Development, 125, 3379–88.Google ScholarPubMed
Hadari, Y. R., Gotoh, N., Kouhara, H., Lax, I. & Schlessinger, J. (2001). Critical role for the docking-protein FRS2 alpha in FGF receptor-mediated signal transduction pathways. Proc. Natl. Acad. Sci. U.S.A., 98, 8578–83.CrossRefGoogle ScholarPubMed
Hadjantonakis, A. K., Gertsenstein, M., Ikawa, M., Okabe, M. & Nagy, A. (1998). Generating green fluorescent mice by germline transmission of green fluorescent ES cells. Mech. Dev., 76, 79–90.CrossRefGoogle ScholarPubMed
Haffner-Krausz, R., Gorivodsky, M., Chen, Y. & Lonai, P. (1999). Expression of Fgfr2 in the early mouse embryo indicates its involvement in pre-implantation development. Mech. Dev., 85, 167–72.CrossRefGoogle Scholar
Hattori, N., Nishino, K., Ko, Y. G.et al. (2004). Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J. Biol. Chem., 279, 17063–9.CrossRefGoogle ScholarPubMed
Hay, D. C., Sutherland, L., Clark, J. & Burdon, T. (2004). Oct-4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells, 22, 225–35.CrossRefGoogle ScholarPubMed
Ilgren, E. B. (1981). On the control of the trophoblastic giant-cell transformation in the mouse: homotypic cellular interactions and polyploidy. J. Embryol. Exp. Morphol., 62, 183–202.Google ScholarPubMed
Isaacs, H. V., Pownall, M. E. & Slack, J. M. (1998). Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3. EMBO J., 17, 3413–27.CrossRefGoogle ScholarPubMed
Kunath, T., Strumpf, D., Tanaka, S. & Rossant, J. (2001). Trophoblast stem cells. In Marshak, D. R., Gardner, R. L. & Gottlieb, D., eds. Stem Cell Biology. New York: Cold Spring Harbor Press, pp. 267–87.Google Scholar
Kunath, T., Strumpf, D. & Rossant, J. (2004). Early trophoblast determination and stem cell maintenance in the mouse – a review. Placenta, 25, S32–8.CrossRefGoogle ScholarPubMed
Kunath, T., Arnaud, D., Uy, G. D.et al. (2005). Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocyst. Development, 132, 1649–61.CrossRefGoogle Scholar
Liu, L. & Roberts, R. M. (1996). Silencing of the gene for the beta subunit of human chorionic gonadotropin by the embryonic transcription factor Oct-3/4. J. Biol. Chem., 271, 16683–9.CrossRefGoogle ScholarPubMed
Liu, L., Leaman, D., Villalta, M. & Roberts, R. M. (1997). Silencing of the gene for the alpha-subunit of human chorionic gonadotropin by the embryonic transcription factor Oct-3/4. Mol. Endocrinol., 11, 1651–8.Google ScholarPubMed
Luo, J., Sladek, R., Bader, J. A.et al. (1997). Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-beta. Nature, 388, 778–82.CrossRefGoogle ScholarPubMed
Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. U.S.A., 78, 7634–8.CrossRefGoogle ScholarPubMed
Matsuda, T., Nakamura, T., Nakao, K.et al. (1999). STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J., 18, 4261–9.CrossRefGoogle ScholarPubMed
Mitsui, K., Tokuzawa, Y., Itoh, H.et al. (2003). The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113, 631–42.CrossRefGoogle ScholarPubMed
Myers, A. P., Corson, L. B., Rossant, J. & Baker, J. C. (2004). Characterization of mouse Rsk4 as an inhibitor of fibroblast growth factor-RAS-extracellular signal-regulated kinase signaling. Mol. Cell. Biol., 24, 4255–66.CrossRefGoogle ScholarPubMed
Nichols, J., Zevnik, B., Anastassiadis, K.et al. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95, 379–91.CrossRefGoogle ScholarPubMed
Niswander, L. & Martin, G. R. (1992). Fgf-4 expression during gastrulation, myogenesis, limb and tooth development in the mouse. Development, 114, 755–68.Google ScholarPubMed
Niwa, H. (2003). Analysis of transcription factors in the differentiation of extra-embryonic ectoderm (in Japanese). Paper presented at: 36th Japanese Society of Developmental Biology (Sapporo, Japan)
Niwa, H., Burdon, T., Chambers, I. & Smith, A. (1998). Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev., 12, 2048–60.CrossRefGoogle ScholarPubMed
Niwa, H., Miyazaki, J. & Smith, A. G. (2000). Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet., 24, 372–6.CrossRefGoogle ScholarPubMed
Ornitz, D. M., Xu, J., Colvin, J. S.et al. (1996). Receptor specificity of the fibroblast growth factor family. J. Biol. Chem., 271, 15292–7.CrossRefGoogle ScholarPubMed
Pages, G., Guerin, S., Grall, D.et al. (1999). Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science, 286, 1374–7.Google ScholarPubMed
Palmieri, S. L., Peter, W., Hess, H. & Scholer, H. R. (1994). Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extra-embryonic cell lineages involved in implantation. Dev. Biol., 166, 259–67.CrossRefGoogle Scholar
Pesce, M., Gross, M. K. & Scholer, H. R. (1998). In line with our ancestors: Oct-4 and the mammalian germ. BioEssays, 20, 722–32.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Pownall, M. E., Isaacs, H. V. & Slack, J. M. (1998). Two phases of Hox gene regulation during early Xenopus development. Curr. Biol., 8, 673–6.CrossRefGoogle ScholarPubMed
Qi, X., Li, T. G., Hao, J.et al. (2004). BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc. Natl. Acad. Sci. U.S.A., 101, 6027–32.CrossRefGoogle ScholarPubMed
Rathjen, J. & Rathjen, P. D. (2001). Mouse ES cells: experimental exploitation of pluripotent differentiation potential. Curr. Opin. Genet. Dev., 11, 587–94.CrossRefGoogle ScholarPubMed
Rossant, J. & Ofer, L. (1977). Properties of extra-embryonic ectoderm isolated from postimplantation mouse embryos. J. Embryol. Exp. Morphol., 39, 183–94.Google ScholarPubMed
Rossant, J. & Tamura-Lis, W. (1981). Effect of culture conditions on diploid to giant-cell transformation in postimplantation mouse trophoblast. J. Embryol. Exp. Morphol., 62, 217–27.Google ScholarPubMed
Russ, A. P., Wattler, S., Colledge, W. H.et al. (2000). Eomesodermin is required for mouse trophoblast development and mesoderm formation. Nature, 404, 95–9.CrossRefGoogle ScholarPubMed
Saba-El-Leil, M. K., Vella, F. D., Vernay, B.et al. (2003). An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep., 4, 964–8.CrossRefGoogle ScholarPubMed
Saijoh, Y., Fujii, H., Meno, C.et al. (1996). Identification of putative downstream genes of Oct-3, a pluripotent cell-specific transcription factor. Genes Cells, 1, 239–52.CrossRefGoogle ScholarPubMed
Saxton, T. M., Cheng, A. M., Ong, S. H.et al. (2001). Gene dosage-dependent functions for phosphotyrosine-Grb2 signaling during mammalian tissue morphogenesis. Curr. Biol., 11, 662–70.CrossRefGoogle ScholarPubMed
Smith, A. G. (2001). Embryo-derived stem cells: of mice and men. Annu. Rev. Cell. Dev. Biol., 17, 435–62.CrossRefGoogle ScholarPubMed
Smith, A. G., Heath, J. K., Donaldson, D. D.et al. (1988). Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 336, 688–90.CrossRefGoogle ScholarPubMed
Strumpf, D., Mao, C.-A., Yamanaka, Y.et al. (2005). Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development, 132, 2093–102.CrossRefGoogle ScholarPubMed
Tanaka, S., Kunath, T., Hadjantonakis, A. K., Nagy, A. & Rossant, J. (1998). Promotion of trophoblast stem cell proliferation by FGF4. Science, 282, 2072–5.CrossRefGoogle ScholarPubMed
Tremblay, G. B., Kunath, T., Bergeron, D.et al. (2001). Diethylstilbestrol regulates trophoblast stem cell differentiation as a ligand of orphan nuclear receptor ERR beta. Genes Dev., 15, 833–8.CrossRefGoogle ScholarPubMed
Uy, G. D., Downs, K. M. & Gardner, R. L. (2002). Inhibition of trophoblast stem cell potential in chorionic ectoderm coincides with occlusion of the ectoplacental cavity in the mouse. Development, 129, 3913–24.Google ScholarPubMed
Velkey, J. M. & O'Shea, K. S. (2003). Oct4 RNA interference induces trophectoderm differentiation in mouse embryonic stem cells. Genesis, 37, 18–24.CrossRefGoogle ScholarPubMed
Verheijen, M. H., Karperien, M., Chung, U.et al. (1999). Parathyroid hormone-related peptide (PTHrP) induces parietal endoderm formation exclusively via the type I PTH/PTHrP receptor. Mech. Dev., 81, 151–61.CrossRefGoogle ScholarPubMed
Wassarman, P. M. & Keller, G. M. (eds.) (2003). Methods in Enzymology, Vol. 365, Differentiation of Embryonic Stem Cells. London: Elsevier Academic Press.Google Scholar
Wilder, P. J., Kelly, D., Brigman, K.et al. (1997). Inactivation of the FGF-4 gene in embryonic stem cells alters the growth and/or the survival of their early differentiated progeny. Dev. Biol., 192, 614–29.CrossRefGoogle ScholarPubMed
Xu, X., Weinstein, M., Li, C.et al. (1998). Fibroblast growth factor receptor 2 (FGFR2)-mediated reciprocal regulation loop between FGF8 and FGF10 is essential for limb induction. Development, 125, 753–65.Google ScholarPubMed
Yao, Y., Li, W., Wu, J.et al. (2003). Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc. Natl. Acad. Sci. U.S.A., 100, 12759–64.CrossRefGoogle ScholarPubMed
Ying, Q. L., Nichols, J., Chambers, I. & Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115, 281–92.CrossRefGoogle ScholarPubMed
Yoshida, K., Chambers, I., Nichols, J.et al. (1994). Maintenance of the pluripotential phenotype of embryonic stem cells through direct activation of gp130 signaling pathways. Mech. Dev., 45, 163–71.CrossRefGoogle Scholar
Avilion, A. A., Nicolis, S. K., Pevny, L. H.et al. (2003). Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev., 17, 126–40.CrossRefGoogle ScholarPubMed
Hillman, N., Sherman, M. I. & Graham, C. (1972). The effect of spatial arrangement on cell determination during mouse development. J. Embryol. Exp. Morphol., 28, 263–78.Google ScholarPubMed
Johnson, M. H. & Ziomek, C. A. (1983). Cell interactions influence the fate of mouse blastomeres undergoing the transition from the 16- to the 32-cell stage. Dev. Biol., 95, 211–18.CrossRefGoogle ScholarPubMed
Paria, B. C., Jones, K. L., Flanders, K. C. & Dey, S. K. (1992). Localization and binding of transforming growth factor-beta isoforms in mouse pre-implantation embryos and in delayed and activated blastocysts. Dev. Biol., 151, 91–104.CrossRefGoogle Scholar
Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med., 10, 55–63.CrossRefGoogle ScholarPubMed
Strumpf, D., Mao, C.-A.Yamanaka, Y.et al. (2005). Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development, 132, 2093–102.CrossRefGoogle ScholarPubMed
Xu, R. H., Chen, X., Li, D. S.et al. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol., 20, 1261–4.CrossRefGoogle ScholarPubMed
Zwaka, T. P. & Thomson, J. A. (2003). Homologous recombination in human embryonic stem cells. Nat. Biotechnol., 21, 319–21.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×