Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-25T04:53:08.794Z Has data issue: false hasContentIssue false

5 - Gestational trophoblastic disease

from General discussion I

Published online by Cambridge University Press:  07 August 2009

Ashley Moffett
Affiliation:
University of Cambridge
Charlie Loke
Affiliation:
University of Cambridge
Anne McLaren
Affiliation:
Cancer Research, UK
Get access

Summary

Introduction

Gestational trophoblastic diseases (GTD) are a group of diseases involving abnormal proliferation of trophoblastic tissue. They include the benign condition hydatidiform mole (HM), both partial (PHM) and complete (CHM), invasive mole (IM) and the overtly malignant tumours, choriocarcinoma (CC) and placental site trophoblastic tumour (PSTT). Complete hydatidiform mole and PHM are unique in having two copies of the paternal genome. Gestational trophoblastic tumours (GTT) are unusual malignancies in that they are allografts, derived from a conceptus and not from host tissue and are potentially curable even when widely disseminated.

Hydatidiform moles

The abnormal pregnancy HM is characterised by placental overgrowth and abnormal fetal development. In the UK approximately 1 in 700 pregnancies develop as a HM (Bagshawe et al. 1986). The incidence of GTD varies widely and has been reported to be considerably higher in some parts of Asia and South America (Bracken 1987, Palmer 1994). Interestingly, recent evidence suggests that the incidence of HM may now be declining in some areas (Kim et al. 1998, Matsui et al. 2003). Molar pregnancies may be classified on the basis of both pathology and genetics as CHM or PHM (Vassilakos & Kajii 1976, Vassilakos et al. 1977, Szulman & Surti 1978a, b). Both are more common in young women and in women over 45 years of age (Sebire et al. 2002).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aapola, U., Kawasaki, K., Scott, H. S.et al. (2000). Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family, Genomics, 65, 293–8.CrossRefGoogle ScholarPubMed
Ahmed, M. N., Kim, K., Haddad, B., Berchuck, A. & Qumsiyeh, M. B. (2000). Comparative genomic hybridization studies in hydatidiform moles and choriocarcinoma: amplification of 7q21-q31 and loss of 8p12-p21 in choriocarcinoma. Cancer Genet. Cytogenet., 116, 10–15.CrossRefGoogle ScholarPubMed
Al-Hussaini, T. K., Abd, ElAal, D. M. & Veyver, I. B. (2003). Recurrent pregnancy loss due to familial and non-familial habitual molar pregnancy. Int. J. Gynaecol. Obstet., 83, 179–86.CrossRefGoogle ScholarPubMed
Ambani, L. M., Vaidya, R. A., Rao, C. S., Daftary, S. D. & Motashaw, N. D. (1980). Familial occurrence of trophoblastic disease – report of recurrent molar pregnancies in sisters in three families. Clin. Genet., 18, 27–9.CrossRefGoogle ScholarPubMed
Amezcua, C. A., Bahador, A., Naidu, Y. M. & Felix, J. C. (2001). Expression of human telomerase reverse transcriptase, the catalytic subunit of telomerase, is associated with the development of persistent disease in complete hydatidiform moles. Am. J. Obstet. Gynecol., 184, 1441–6.CrossRefGoogle ScholarPubMed
Ariel, I., Lustig, O., Oyer, C. E.et al. (1994). Relaxation of imprinting in trophoblastic disease. Gynecol. Oncol., 53, 211–19.CrossRefGoogle ScholarPubMed
Arima, T., Imamura, T., Sakuragi, N.et al. (1995). Malignant trophoblastic neoplasms with different mode of origin. Cancer Genet. Cytogenet., 85, 5–15.CrossRefGoogle Scholar
Arima, T., Drewell, R. A., Oshimura, M., Wake, N. & Surani, M. A. (2000). A novel imprinted gene, HYMAI, is located within an imprinted domain on human chromosome 6 containing ZAC. Genomics, 67, 248–55.CrossRefGoogle ScholarPubMed
Asanoma, K., Matsuda, T., Kondo, H.et al. (2003). NECC1, a candidate choriocarcinoma suppressor gene that encodes a homeodomain consensus motif. Genomics, 81, 15–25.CrossRefGoogle ScholarPubMed
Azuma, C., Saji, F., Nobunaga, T.et al. (1990). Studies of the pathogenesis of choriocarcinoma by analysis of restriction fragment length polymorphisms. Cancer Res., 50, 488–91.Google ScholarPubMed
Azuma, C., Saji, F., Takemura, M.et al. (1992). Triplet pregnancy involving complete hydatidiform mole and two foetuses: Genetic analysis by deoxyribonucleic acid fingerprint. Am. J. Obstet. Gynecol., 166, 664–7.CrossRefGoogle Scholar
Bae, S. N. & Kim, S. J. (1999). Telomerase activity in complete hydatidiform mole. Am. J. Obstet. Gynecol., 180, 328–33.CrossRefGoogle ScholarPubMed
Bagshawe, K. D. (1976). Risk and prognostic factors in trophoblastic neoplasia. Cancer, 38, 1373–85.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Bagshawe, K. D. & Lawler, S. D. (1982). Choriocarcinoma. In , D.Schottenfeld, J. F.Fraumeni, , eds. Cancer Epidemiology and Prevention. Philadelphia: W. B. Saunders, pp. 909–24.Google Scholar
Bagshawe, K. D. & Noble, M. I. M. (1966). Cardio-respiratory aspects of trophoblastic tumors. Q. J. Med., 35, 39–54.Google Scholar
Bagshawe, K. D., Dent, J. & Webb, J. (1986). Hydatidiform mole in England and Wales 1973–83. Lancet, 2, 673–7.CrossRefGoogle ScholarPubMed
Bagshawe, K. D., Lawler, S. D., Paradinas, F. J.et al. (1990). Gestational trophoblastic tumors following initial diagnosis of partial hydatidiform mole. Lancet, 335, 1074–6.CrossRefGoogle ScholarPubMed
Barton, S. C., Surani, M. A. H. & Norris, M. L. (1984). Role of maternal and paternal genomes in mouse development. Nature, 311, 374–6.CrossRefGoogle ScholarPubMed
Batorfi, J., Ye, B., Mok, S. C.et al. (2003). Protein profiling of complete mole and normal placenta using ProteinChip analysis on laser capture microdissected cells. Gynecol. Oncol., 88, 424–8.CrossRefGoogle ScholarPubMed
Bell, K. A., Deerlin, V., Addya, K.et al. (1999). Molecular genetic testing from paraffin-embedded tissue distinguishes nonmolar hydropic abortion from hydatidiform mole. Mol. Diagn., 4, 11–19.CrossRefGoogle ScholarPubMed
Berkowitz, R. S., Sandstrom, M., Goldstein, D. P. & Driscoll, S. G. (1982). 45, X complete hydatidiform mole. Gynecol. Oncol., 14, 279–83.CrossRefGoogle ScholarPubMed
Berkowitz, R. S., Goldstein, D. P. & Bernstein, M. R. (1985). Natural history of partial molar pregnancy. Obstet. Gynecol., 66, 677–81.Google ScholarPubMed
Berkowitz, R. S., Im, S. S., Bernstein, M. R. & Goldstein, D. P. (1998). Gestational trophoblastic disease. Subsequent pregnancy outcome, including repeat molar pregnancy. J. Reprod. Med., 43, 81–6.Google ScholarPubMed
Bettio, D., Giardino, D., Rizzi, N. & Simoni, G. (1993) Cytogenetic abnormalities detected by direct analysis in a case of choriocarcinoma. Cancer Genet. Cytogenet., 68, 149–51.CrossRefGoogle Scholar
Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science, 294, 2536–9.CrossRefGoogle ScholarPubMed
Bower, M., Brock, C., Fisher, R. A., Newlands, E. S. N. & Rustin, G. J. S. (1995). Gestational choriocarcinoma. Ann. Oncol., 6, 503–8.CrossRefGoogle ScholarPubMed
Bower, M., Paradinas, F. J., Fisher, R. A.et al. (1996). Placental site trophoblastic tumor: clinical experience and genetic origin. Clin. Cancer Res., 2, 897–902.Google Scholar
Bracken, M. B. (1987). Incidence and aetiology of hydatidiform mole: an epidemiological review. Br. J. Obstet. Gynaecol., 94, 1123–35.CrossRefGoogle Scholar
Braunstein, G. D., Vaitukaitis, J. L., Carbone, P. P. & Ross, G. T. (1973). Ectopic production of human chorionic gonadotropin by neoplasms. Ann. Intern. Med., 78, 39–45.CrossRefGoogle ScholarPubMed
Buckell, E. W. C. & Owen, T. K. (1954). Chorionepithelioma in mother and infant. Br. J. Obstet. Gynaecol., 61, 329–30.CrossRefGoogle ScholarPubMed
Castrillon, D. H., Sun, D., Weremowicz, S.et al. (2001). Discrimination of complete hydatidiform mole from its mimics by immunohistochemistry of the paternally imprinted gene product p57KIP2. Am. J. Surg. Pathol., 25, 1225–30.CrossRefGoogle ScholarPubMed
Chedin, F., Lieber, M. R. & Hsieh, C. L. (2002). The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc. Natl. Acad. Sci. U.S.A., 99, 16916–21.CrossRefGoogle ScholarPubMed
Cheung, A. N., Srivastava, G., Pittaluga, S.et al. (1993). Expression of c-myc and c-fms oncogenes in trophoblastic cells in hydatidiform mole and normal human placenta. J. Clin. Pathol., 46, 204–7.CrossRefGoogle ScholarPubMed
Cheung, A. N., Sit, A. S., Chung, L. P.et al. (1994a). Detection of heterozygous XY complete hydatidiform mole by chromosome in situ hybridization. Gynecol. Oncol., 55, 386–92.CrossRefGoogle Scholar
Cheung, A. N., Srivastava, G., Chung, L. P.et al. (1994b). Expression of the p53 gene in trophoblastic cells in hydatidiform moles and normal human placentae. J. Reprod. Med., 39, 223–7.Google Scholar
Cheung, A. N., Shen, D. H., Khoo, U. S., Wong, L. C. & Ngan, H. Y. (1998). p21WAF1/CIP1 expression in gestational trophoblastic disease: correlation with clinicopathological parameters, and Ki67 and p53 gene expression. J. Clin. Pathol., 51, 159–62.CrossRefGoogle ScholarPubMed
Cheung, A. N., Shen, D. H., Khoo, U. S.et al. (1999a). Immunohistochemical and mutational analysis of p53 tumor suppressor gene in gestational trophoblastic disease: correlation with mdm2, proliferation index, and clinicopathologic parameters. Int. J. Gynecol. Cancer, 9, 123–30.CrossRefGoogle Scholar
Cheung, A. N., Zhang, D. K., Liu, Y.et al. (1999b). Telomerase activity in gestational trophoblastic disease. J. Clin. Pathol., 52, 588–92.CrossRefGoogle Scholar
Cheville, J. C., Greiner, T., Robinson, R. A. & Benda, J. A. (1995). Ploidy analysis by flow cytometry and fluorescence in situ hybridization in hydropic placentae and gestational trophoblastic disease. Hum. Pathol., 26, 753–7.CrossRefGoogle Scholar
Chew, S. H., Perlman, E. J., Williams, R., Kurman, R. J. & Ronnett, B. M. (2000). Morphology and DNA content analysis in the evaluation of first trimester placentae for partial hydatidiform mole (PHM). Hum. Pathol., 31, 914–24.CrossRefGoogle Scholar
Chilosi, M., Piazzola, E., Lestani, M.et al. (1998). Differential expression of p57kip2, a maternally imprinted cdk inhibitor, in normal human placenta and gestational trophoblastic disease. Lab. Invest., 78, 269–76.Google ScholarPubMed
Cho., S. & Kim, S. J. (1993). Genetic study of hydatidiform moles by restriction fragment length polymorphisms (RFLPs) analysis. J. Korean Med. Sci., 8, 446–52.CrossRefGoogle ScholarPubMed
Crisp, H., Burton, J. L., Stewart, R. & Wells, M. (2003) Refining the diagnosis of hydatidiform mole: image ploidy analysis and p57KIP2 immunohistochemistry. Histopathology, 43, 363–73.CrossRefGoogle Scholar
Eckstein, R. P., Paradinas, F. J. & Bagshawe, K. D. (1982). Placental site trophoblastic tumor (trophoblastic pseudotumour): a study of four cases requiring hysterectomy including one fatal case. Histopathology, 6, 211–26.CrossRefGoogle ScholarPubMed
Eckstein, R. P., Russell, P., Friedlander, M. L., Tattersall, M. H. & Bradfield, A. (1985). Metastasizing placental site trophoblastic tumor: a case study. Hum. Pathol., 16, 632–6.CrossRefGoogle ScholarPubMed
Edwards, Y. H., Jeremiah, S. J., McMillan, S. L.et al. (1984). Complete hydatidiform moles combine maternal mitochondria with a paternal nuclear genome. Ann. Hum. Genet., 48, 119–27.CrossRefGoogle ScholarPubMed
El-Maarri, O., Seoud, M., Coullin, P.et al. (2003). Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum. Mol. Genet., 12, 1405–13.CrossRefGoogle ScholarPubMed
Elston, C. W. (1976). The histopathology of trophoblastic tumors. J. Clin. Pathol., 29, 111–31.CrossRefGoogle Scholar
Elston, C. W. & Bagshawe, K. D. (1967). The value of histological grading in the management of hydatidiform mole. Br. J. Obstet. Gynaecol., 79, 717–24.CrossRefGoogle Scholar
Elston, C. W. & Bagshawe, K. D. (1972). The diagnosis of trophoblastic tumors from uterine curettings. J. Clin. Pathol., 25, 111–18.CrossRefGoogle Scholar
Emery, J. L. (1952). Chorionepithelioma in new-born male child with hyperplasia of interstitial cells of testis. J. Pathol. Bacteriol., 64, 735–9.CrossRefGoogle ScholarPubMed
Fallahian, M. (2003). Familial gestational trophoblastic disease. Placenta, 24, 797–9.CrossRefGoogle ScholarPubMed
Falls, J. G., Pulford, D. J., Wylie, A. A. & Jirtle, R. L. (1999). Genomic imprinting: implications for human disease. Am. J. Pathol., 154, 635–47.CrossRefGoogle ScholarPubMed
Feinberg, A. P. & Tycko, B. (2004). The history of cancer epigenetics. Nat. Rev. Cancer., 4, 143–53.CrossRefGoogle ScholarPubMed
Feltmate, C. M., Genest, D. R., Wise, L.et al. (2001). Placental site trophoblastic tumor: a 17-year experience at the New England Trophoblastic Disease Center. Gynecol. Oncol., 82, 415–19.CrossRefGoogle ScholarPubMed
Fisher, R. A. & Lawler, S. D. (1984). Heterozygous complete hydatidiform moles: do they have a worse prognosis than homozygous complete moles?Lancet, ii, 51CrossRefGoogle Scholar
Fisher, R. A. & Newlands, E. S. (1993). Rapid diagnosis and classification of hydatidiform moles using the polymerase chain reaction. Am. J. Obstet. Gynecol., 168, 563–9.CrossRefGoogle ScholarPubMed
Fisher, R. A., Lawler, S. D., Ormerod, M. G., Imrie, P. & Povey, S. (1987). Flow cytometry used to distinguish between complete and partial hydatidiform moles. Placenta, 8, 249–56.CrossRefGoogle ScholarPubMed
Fisher, R. A., Lawler, S. D., Povey, S. & Bagshawe, K. D. (1988). Genetically homozygous choriocarcinoma following pregnancy with hydatidiform mole. Br. J. Cancer, 58, 788–92.CrossRefGoogle ScholarPubMed
Fisher, R. A., Povey, S., Jeffreys, A. J.et al. (1989). Frequency of heterozygous complete hydatidiform moles, estimated by locus-specific minisatellite and Y chromosome-specific probes. Hum. Genet., 8, 259–63.CrossRefGoogle Scholar
Fisher, R. A., Newlands, E. S., Jeffreys, A. J.et al. (1992a). Gestational and non-gestational trophoblastic tumors distinguished by DNA analysis. Cancer, 69, 839–45.3.0.CO;2-E>CrossRefGoogle Scholar
Fisher, R. A., Paradinas, F. J., Newlands, E. S. & Boxer, G. M. (1992b). Genetic evidence that placental site trophoblastic tumors can originate from a hydatidiform mole or a normal conceptus. Br. J. Cancer, 65, 355–8.CrossRefGoogle Scholar
Fisher, R. A., Soteriou, B., Meredith, L., Paradinas, F. J. & Newlands, E. S. (1995). Previous hydatidiform mole identified as the causative pregnancy of choriocarcinoma following birth of normal twins. Int. J. Gynecol. Cancer, 5, 64–70.CrossRefGoogle ScholarPubMed
Fisher, R. A., Paradinas, F. J., Soteriou, B. A., Foskett, M. & Newlands, E. S. (1997). Diploid hydatidiform moles with fetal red blood cells in molar villi. 2 – Genetics. J. Pathol, 181, 189–95.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Fisher, R. A., Khatoon, R., Paradinas, F. J., Roberts, A. P. & Newlands, E. S. (2000). Repetitive complete hydatidiform mole can be biparental in origin and either male or female. Hum. Reprod., 15, 594–8.CrossRefGoogle ScholarPubMed
Fisher, R. A., Hodges, M. D., Rees, H. C.et al. (2002). The maternally transcribed gene p57KIP2 (CDNK1C) is abnormally expressed in both androgenetic and biparental complete hydatidiform moles. Hum. Mol. Genet., 11, 3267–72.CrossRefGoogle Scholar
Fisher, R. A., Hodges, M. D. & Newlands, E. S. (2004a). Familial recurrent hydatidiform mole: a review. J. Reprod. Med., 49, 595–601.Google Scholar
Fisher, R. A., Nucci, M. R., Thaker, H. M.et al. (2004b). Complete hydatidiform mole retaining a chromosome 11 of maternal origin: molecular genetic analysis of a case. Mod. Pathol., 17, 1155–60.CrossRefGoogle Scholar
Fitzpatrick, G. V., Soloway, P. D. & Higgins, M. J. (2002). Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat. Genet., 32, 426–31.CrossRefGoogle ScholarPubMed
Ford, J. H., Brown, J. K., Lew, W. Y. & Peters, G. B. (1986). Diploid complete hydatidiform mole, mosaic for normally fertilized cells and androgenetic homozygous cells. Case report. Br. J. Obstet. Gynaecol., 93, 1181–6.CrossRefGoogle ScholarPubMed
Frank, D., Mendelsohn, C. L., Ciccone, E.et al. (1999). A novel pleckstrin homology-related gene family defined by Ipl/Tssc3, TDAG51, and Tih1: tissue-specific expression, chromosomal location, and parental imprinting. Mamm. Genome, 10, 1150–9.CrossRefGoogle ScholarPubMed
Frank, D., Fortino, W., Clark, L.et al. (2002). Placental overgrowth in mice lacking the imprinted gene Ipl. Proc. Natl. Acad. Sci. U.S.A., 99, 7490–5.CrossRefGoogle ScholarPubMed
Fujita, N., Tamura, S., Shimizu, N. & Nozawa, S. (1994). Genetic analysis of hydatidiform mole and non-molar abortion using the polymerase chain reaction method. Acta Obstet. Gynecol. Scand., 73, 719–25.CrossRefGoogle ScholarPubMed
Fukunaga, M. (2002). Immunohistochemical characterization of p57(KIP2) expression in early hydatidiform moles. Hum. Pathol., 33, 1188–92.CrossRefGoogle ScholarPubMed
Fukunaga, M., Ushigome, S., Fukunaga, M. & Sugishita, M. (1993). Methods in pathology: application of flow cytometry in diagnosis of hydatidiform moles. Mod. Pathol., 6, 353–9.Google Scholar
Fukuyama, R., Takata, M., Kudoh, J.et al. (1991). DNA diagnosis of hydatidiform mole using the polymerase chain reaction. Hum. Genet., 87, 216–18.CrossRefGoogle ScholarPubMed
Fulop, V., Colitti, C. V., Genest, D.et al. (1998a). DOC-2/hDab2, a candidate tumor suppressor gene involved in the development of gestational trophoblastic diseases. Oncogene, 17, 419–24.CrossRefGoogle Scholar
Fulop, V., Mok, S. C., Genest, D. R.et al. (1998b). p53, p21, Rb and mdm2 oncoproteins. Expression in normal placenta, partial and complete mole, and choriocarcinoma. J. Reprod. Med., 43, 119–27.Google Scholar
Fulop, V., Mok, S. C., Genest, D. R.et al. (1998c). c-myc, c-erbB-2, c-fms and bcl-2 oncoproteins. Expression in normal placenta, partial and complete mole, and choriocarcinoma. J. Reprod. Med., 43, 101–10.Google Scholar
Genest, D. R. (2001). Partial hydatidiform mole: clinicopathological features, differential diagnosis, ploidy and molecular studies, and gold standards for diagnosis. Int. J. Gynecol. Pathol., 20, 315–22.CrossRefGoogle ScholarPubMed
Genest, D. R., Laborde, O., Berkowitz, R. S.et al. (1991). A clinicopathologic study of 153 cases of complete hydatidiform mole (1980–1990): histologic grade lacks prognostic significance. Obstet. Gynecol., 78, 402–9.Google ScholarPubMed
Hamazaki, S., Nakamoto, S., Okino, T.et al. (1999). Epithelioid trophoblastic tumor: morphological and immunohistochemical study of three lung lesions. Hum. Pathol., 30, 1321–7.CrossRefGoogle ScholarPubMed
Hashimoto, K., Azuma, C., Koyama, M.et al. (1995). Loss of imprinting in choriocarcinoma. Nat. Genet., 9, 109–10.CrossRefGoogle ScholarPubMed
Helwani, M. N., Seoud, M., Zahed, L.et al. (1999). A familial case of recurrent hydatidiform molar pregnancies with biparental genomic contribution. Hum. Genet., 105, 112–15.CrossRefGoogle ScholarPubMed
Hemming, J. D., Quirke, P., Womack, C., Wells, M. & Elston, C. W. (1987). Diagnosis of molar pregnancy and persistent trophoblastic disease by flow cytometry. J. Clin. Pathol., 40, 615–20.CrossRefGoogle ScholarPubMed
Henry, I., Bonaiti-Pellie, C., Chehensse, V.et al. (1991). Uniparental paternal disomy in a genetic cancer-predisposing syndrome. Nature, 351, 665–7.CrossRefGoogle Scholar
Hertig, A. T. & Mansell, H. (1956). Tumors of the female sex organs. Part 1. Hydatidiform mole and choriocarcinoma. In Atlas of Tumor Pathology, Sect. 9, Fasc. 33, 1956, Armed Forces Institute of Pathology, Washington, DC
Hertig, A. T. & Sheldon, W. H. (1947). Hydatidiform mole: a pathologico-clinical correlation of 200 cases. Am. J. Obstet. Gynecol., 53, 1–36.CrossRefGoogle ScholarPubMed
Higashino, M., Harada, N., Hataya, I.et al. (1999). Trizygotic pregnancy consisting of two foetuses and a complete hydatidiform mole with dispermic androgenesis. Am. J. Med. Genet., 82, 67–9.3.0.CO;2-H>CrossRefGoogle Scholar
Hodges, M. D., Rees, H. C., Seckl, M. J.Newlands, E. S. & Fisher, R. A. (2003). Genetic refinement and physical mapping of a biparental complete hydatidiform mole locus on chromosome 19q13.4. J. Med. Genet., 40, e95.CrossRefGoogle ScholarPubMed
Hoshi, K., Morimura, Y., Azuma, C.et al. (1994). A case of quadruplet pregnancy containing complete mole and three foetuses. Am. J. Obstet. Gynecol., 170, 1372–3.CrossRefGoogle Scholar
Hsu, C. C., McConnell, J., Ko, T. M. & Braude, P. R. (1993). Twin pregnancy consisting of a complete hydatidiform mole and a foetus: genetic origin determined by DNA typing. Am. J. Obstet. Gynecol., 100, 867–9.Google Scholar
Huettner, P. C. & Gersell, D. J. (1994). Placental site nodule: a clinicopathologic study of 38 cases. Int. J. Gynecol. Pathol., 13, 191–8.CrossRefGoogle ScholarPubMed
Hui, P., Riba, A., Pejovic, T.et al. (2004). Comparative genomic hybridization study of placental site trophoblastic tumor: a report of four cases. Mod. Pathol., 17, 248–51.CrossRefGoogle ScholarPubMed
Ikeda, Y., Jinno, Y., Masuzaki, H., Niikawa, N. & Ishimaru, T. (1996). A partial hydatidiform mole with 2N/3N mosaicism identified by molecular analysis. J. Assist. Reprod. Genet., 13, 739–44.CrossRefGoogle ScholarPubMed
Jacobs, P. A., Angell, R. R., Buchanan, I. M.et al. (1978a). The origin of human triploids. Ann. Hum. Genet., 42, 49–57.CrossRefGoogle Scholar
Jacobs, P. A., Hassold, T. J., Matsuyama, A. M. & Newlands, I. M. (1978b). Chromosome constitution of gestational trophoblastic disease. Lancet, ii, 49.CrossRefGoogle Scholar
Jacobs, P. A., Wilson, C. M., Sprenkle, J. A., Rosenshein, N. B. & Migeon, B. R. (1980). Mechanism of origin of complete hydatidiform moles. Nature, 286, 714–16.CrossRefGoogle ScholarPubMed
Jacobs, P. A., Hunt, P. A., Matsuura, J. S., Wilson, C. C. & Szulman, A. E. (1982a). Complete and partial hydatidiform mole in Hawaii: cytogenetics, morphology and epidemiology. Br. J. Obstet. Gynaecol., 89, 258–66.CrossRefGoogle Scholar
Jacobs, P. A., Szulman, A. E., Funkhouser, J., Matsuura, J. S. & Wilson, C. C. (1982b). Human triploidy: relationship between parental origin of the additional haploid complement and development of partial hydatidiform mole. Ann. Hum. Genet., 46, 223–31.CrossRefGoogle Scholar
Jauniaux, E., Nicolaides, K. H. & Hustin, J. (1997). Perinatal features associated with placental mesenchymal dysplasia. Placenta, 18, 701–6.CrossRefGoogle ScholarPubMed
Jeffers, M. D., O'Dwyer, P., Curran, B., Leader, M. & Gillan, J. E. (1993). Partial hydatidiform mole: a common but underdiagnosed condition. A 3-year retrospective clinicopathological and DNA flow cytometric analysis. Int. J. Gynecol. Pathol., 12, 315–23.CrossRefGoogle ScholarPubMed
Judson, H., Hayward, B. E., Sheridan, E. & Bonthron, D. T. (2002). A global disorder of imprinting in the human female germ line. Nature, 416, 539–42.CrossRefGoogle ScholarPubMed
Jun, S. Y., Ro, J. Y. & Kim, K. R. (2003). p57kip2 is useful in the classification and differential diagnosis of complete and partial hydatidiform moles. Histopathology, 43, 17–25.CrossRefGoogle ScholarPubMed
Kajii, T. & Ohama, K. (1977). Androgenetic origin of hydatidiform mole. Nature, 268, 633–4.CrossRefGoogle ScholarPubMed
Kajii, T., Kurashige, H., Ohama, K. & Uchino, F. (1984). XY and XX complete moles: clinical and morphological correlations. Am. J. Obstet. Gynecol., 150, 57–64.CrossRefGoogle Scholar
Kamiya, M., Judson, H., Okazaki, Y.et al. (2000). The cell cycle control gene ZAC/PLAGL1 is imprinted – a strong candidate gene for transient neonatal diabetes. Hum. Mol. Genet., 9, 453–60.CrossRefGoogle ScholarPubMed
Kato, H. D., Terao, Y., Ogawa, M.et al. (2002). Growth-associated gene expression profiles by microarray analysis of trophoblast of molar pregnancies and normal villi. Int. J. Gynecol. Pathol., 21, 255–60.CrossRefGoogle ScholarPubMed
Kim, S. J., Bae, S. N. & Kim, J. H. (1998). Epidemiology and time trends of gestational trophoblastic disease in Korea. Int. J. Gynaecol. Obstet., 60 (Suppl 1), S33–8.CrossRefGoogle ScholarPubMed
Kircheisen, R. & Ried, T. (1994). Hydatidiform moles. Hum. Reprod., 9, 1783–5.CrossRefGoogle ScholarPubMed
Ko, T.-M., Hsieh, C.-Y., Ho, H.-N., Hsieh, F.-J. & Lee, T.-Y. (1991). Restriction fragment length polymorphism analysis to study the genetic origin of hydatidiform mole. Am. J. Obstet. Gynecol., 164, 901–6.CrossRefGoogle Scholar
Kovacs, B. W., Shahbahrami, B., Tast, D. E. & Curtin, J. P. (1991). Molecular genetic analysis of complete hydatidiform moles. Cancer Genet. Cytogenet., 54, 143–52.CrossRefGoogle ScholarPubMed
Kurman, R. J., Scully, R. E. & Norris, H. J. (1976). Trophoblastic pseudotumour of the uterus: an exaggerated form of ‘syncytial endometritis’ simulating a malignant tumor. Cancer, 38, 1214–26.3.0.CO;2-J>CrossRefGoogle Scholar
Vecchia, C., Franceschi, S., Fasoli, M. & Mangioni, C. (1982). Gestational trophoblastic neoplasms in homozygous twins. Obstet. Gynecol., 60, 250–2.Google ScholarPubMed
Lai, C. Y., Chan, K. Y., Khoo, U. S.et al. (2004). Analysis of gestational trophoblastic disease by genotyping and chromosome in situ hybridization. Mod. Pathol., 17, 40–8.CrossRefGoogle ScholarPubMed
Lage, J. M., Driscoll, S. G., Yavner, D. L.et al. (1988). Hydatidiform moles; application of flow cytometry in diagnosis. Am. J. Clin. Pathol., 89, 596–600.CrossRefGoogle ScholarPubMed
Lane, S. A., Taylor, G. R., Ozols, B. & Quirke, P. (1993). Diagnosis of complete molar pregnancy by microsatellites in archival material. J. Clin. Pathol., 46, 346–8.CrossRefGoogle ScholarPubMed
Lathrop, J. C., Lauchlan, S., Nayak, R. & Ambler, M. (1988). Clinical characteristics of placental site trophoblastic tumor (PSST). Gynecol. Oncol., 31, 32–42.CrossRefGoogle Scholar
Lawler, S. & Fisher, R. A. (1986). Genetic aspects of gestational trophoblastic tumors. In Ichinoe, K., ed., Trophoblastic Diseases. New York: Igaku-Shoin, pp. 23–33.Google Scholar
Lawler, S. D., Pickthall, V. J., Fisher, R. A.et al. (1979). Genetic studies of complete and partial hydatidiform moles. Lancet, 2, 580.CrossRefGoogle ScholarPubMed
Lawler, S. D., Fisher, R. A., Pickthall, V. J., Povey, S. & Evans, M. W. (1982a). Genetic studies on hydatidiform moles. I. The origin of partial moles. Cancer Genet. Cytogenet., 5, 309–20.CrossRefGoogle Scholar
Lawler, S. D., Povey, S., Fisher, R. A. & Pickthall, V. J. (1982b). Genetic studies on hydatidiform moles. II. The origin of complete moles. Ann. Hum. Genet., 46, 209–22.CrossRefGoogle Scholar
Lawler, S. D., Fisher, R. A. & Dent, J. (1991). A prospective study of hydatidiform mole. Am. J. Obstet. Gynecol., 164, 1270–7.CrossRefGoogle Scholar
Lee, Y. S. (1995). p53 expression in gestational trophoblastic disease. Int. J. Gynecol. Pathol., 14, 119–24.CrossRefGoogle ScholarPubMed
Lee, K. C. & Chan, J. K. (1990). Placental site nodule. Histopathology, 16, 193–5.CrossRefGoogle ScholarPubMed
Lee, M. H., Reynisdottir, I. & Massague, J. (1995). Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev., 9, 639–49.CrossRefGoogle ScholarPubMed
Lorigan, P. C., Sharma, S., Bright, N., Coleman, R. E. & Hancock, B. W. (2000). Characteristics of women with recurrent molar pregnancies. Gynecol. Oncol., 78, 288–92.CrossRefGoogle ScholarPubMed
Lustig-Yariv, O., Schulze, E. & Komitowski, D. (1997). The expression of the imprinted genes H19 and IGF-2 in choriocarcinoma cell lines. Is H19 a tumor suppressor gene?Oncogene, 15, 169–77.CrossRefGoogle ScholarPubMed
Magrath, I. T., Golding, P. R. & Bagshawe, K. D. (1971). Medical presentations of choriocarcinoma. Br. Med. J., ii, 633–7.CrossRefGoogle Scholar
Makino, S., Sasaki, M. S. & Fukuschima, T. (1965). Cytological studies of tumors XLI, chromosomal instability in human chorionic lesions. Okajimas Folia Anat. Jpn., 40, 439–65.CrossRefGoogle ScholarPubMed
Makrydimas, G., Sebire, N. J., Thornton, S. E.et al. (2002). Complete hydatidiform mole and normal live birth: a novel case of confined placental mosaicism: case report. Hum. Reprod., 17, 2459–63.CrossRefGoogle ScholarPubMed
Mangili, G., Parazzini, F., Maggi, R. & Spolti, N. (1993). Repeated gestational trophoblastic disease after natural and heterologous assisted conception. A case report. J. Reprod. Med., 38, 405–6.Google ScholarPubMed
Matsuda, T., Sasaki, M. & Kato, H. (1997). Human chromosome 7 carries a putative tumor suppressor gene(s) involved in choriocarcinoma. Oncogene, 15, 2773–81.CrossRefGoogle ScholarPubMed
Matsui, H., Iitsuka, Y., Suzuka, K., Seki, K. & Sekiya, S. (2001). Subsequent pregnancy outcome in patients with spontaneous resolution of hCG after evacuation of hydatidiform mole: comparison between complete and partial mole. Hum. Reprod., 16, 1274–7.CrossRefGoogle ScholarPubMed
Matsui, H., Iitsuka, Y., Yamazawa, K.et al. (2003). Changes in the incidence of molar pregnancies. A population-based study in Chiba Prefecture and Japan between 1974 and 2000. Hum. Reprod., 18, 172–5.CrossRefGoogle ScholarPubMed
Mazur, M. T. (1989). Metastatic gestational choriocarcinoma: unusual pathological variant following therapy. Cancer, 50, 1370–7.3.0.CO;2-G>CrossRefGoogle Scholar
McFadden, D. E., Kwong, L. C., Yam, I. Y. & Langlois, S. (1993). Parental origin of triploidy in human foetuses: evidence for genomic imprinting. Hum. Genet., 92, 465–9.CrossRefGoogle Scholar
McGrath, J. & Solter, D. (1984). Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell, 37, 179–83.CrossRefGoogle ScholarPubMed
Moglabey, Y. B., Kircheisen, R., Seoud, M.et al. (1999). Genetic mapping of a maternal locus responsible for familial hydatidiform moles. Hum. Mol. Genet., 8, 667–71.CrossRefGoogle ScholarPubMed
Morison, I. M. & Reeve, A. E. (1998). A catalogue of imprinted genes and parent-of-origin effects in humans and animals. Hum. Mol. Genet., 7, 1599–1609.CrossRefGoogle ScholarPubMed
Mowery-Rushton, P. A., Driscoll, D. J., Nicholls, R. D., Locker, J. & Surti, U. (1996). DNA methylation patterns in human tissues of uniparental origin using a zinc-finger gene (ZNF127) from the Angelman/Prader–Willi region. Am. J. Med. Genet., 61, 140–6.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Muller-Hocker, J., Obernitz, N., Johannes, A. & Lohrs, U. (1997). p53 gene product and EGF-receptor are highly expressed in placental site trophoblastic tumor. Hum. Pathol., 28, 1302–6.CrossRefGoogle ScholarPubMed
Mutter, G. L., Pomponio, R. J., Berkowitz, R. S. & Genest, D. R. (1993a). Sex chromosome composition of complete hydatidiform moles: Relationship to metastasis. Am. J. Obstet. Gynecol., 168, 1547–51.CrossRefGoogle Scholar
Mutter, G. L., Stewart, C. L., Chaponot, M. L. & Pomponio, R. J. (1993b). Oppositely imprinted genes H19 and insulin-like growth factor 2 are coexpressed in human androgenetic trophoblast. Am. J. Hum. Genet., 53, 1096–102.Google Scholar
Namba, A., Nakagawa, S., Nakamura, N.et al. (2003). Ovarian choriocarcinoma arising from partial mole as evidenced by deoxyribonucleic acid microsatellite analysis. Obstet. Gynecol., 102, 991–4.Google ScholarPubMed
Newlands, E. S. (1997). Presentation and management of persistent gestational trophoblastic disease and gestational trophoblastic tumors in the UK. In Hancock, B. W., Newlands, E. S. & Berkowitz, R. S., eds., Gestational Trophoblastic Disease. London: Chapman and Hall, pp. 5–26.Google Scholar
Ogawa, O., Eccles, M. R., Szeto, J.et al. (1993). Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumor. Nature, 362, 749–51.CrossRefGoogle Scholar
Ohama, K., Kajii, T., Okamoto, E.et al. (1981). Dispermic origin of XY hydatidiform moles. Nature, 29, 551–2.CrossRefGoogle Scholar
Ohira, S., Yamazaki, T., Hatano, H.et al. (1999). Trophoblastic tumor metastatic to the vagina: an immunohistochemical and ultrastructural study. Int. J. Gynecol. Pathol., 19, 381–6.CrossRefGoogle Scholar
Okabe, T., Sasaki, N., Matsuzaki, M.et al. (1983). Establishment and characterization of a new human functional cell line from a choriocarcinoma. Cancer Res., 43, 4920–6.Google ScholarPubMed
Osada, H., Kawata, M., Yamada, M., Okumura, K. & Takamizawa, H. (1991). Genetic identification of pregnancies responsible for choriocarcinomas after multiple pregnancies by restriction fragment length polymorphism analysis. Am. J. Obstet. Gynecol., 165, 682–8.CrossRefGoogle ScholarPubMed
Osada, H., Iitsuka, Y., Matsui, H. & Sekiya, S. (1995). A complete hydatidiform mole co-existing with a normal foetus was confirmed by variable number tandem repeat (VNTR) polymorphism analysis using polymerase chain reaction. Gynecol. Oncol., 56, 90–3.CrossRefGoogle Scholar
Palmer, J. R. (1994). Advances in the epidemiology of gestational trophoblastic disease. J. Reprod. Med., 39, 155–62.Google ScholarPubMed
Papadopoulos, A. J., Foskett, M., Seckl, M. J.et al. (2002). Twenty-five years' clinical experience with placental site trophoblastic tumors. J. Reprod. Med., 47, 460–4.Google ScholarPubMed
Paradinas, F. J. (1992). Pathology and classification of trophoblastic tumors. In: Coppleson, M., Monaghan, J. M., Morrow, C. P. and Tattersall, M. H. N., eds., Gynecologic Oncology. Edinburgh: Churchill Livingstone, pp. 1013–26.Google Scholar
Paradinas, F. J. (1994). The histological diagnosis of hydatidiform moles. Curr. Diag. Pathol., 1, 24–31.CrossRefGoogle Scholar
Paradinas, F. J., Browne, P., Fisher, R. A.et al. (1996). A clinical, histopathological and flow cytometric study of 149 complete moles, 146 partial moles and 107 non-molar hydropic abortions. Histopathology, 28, 101–9.CrossRefGoogle ScholarPubMed
Paradinas, F. J., Fisher, R. A., Browne, P. & Newlands, E. S. (1997). Diploid hydatidiform moles with fetal red blood cells in molar villi: 1 – Pathology, Incidence and Prognosis. J. Pathol., 181, 183–8.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Paradinas, F. J., Sebire, N. J., Fisher, R. A.et al. (2001). Pseudo-partial moles; placental stem vessel hydrops and the association with Beckwith–Wiedemann syndrome and complete moles. Histopathology, 39, 447–54.CrossRefGoogle ScholarPubMed
Parazzini, F., Vecchia, C., Franceschi, S. & Mangili, G. (1984). Familial trophoblastic disease: case report. Am. J. Obstet. Gynecol., 149, 382–3.CrossRefGoogle ScholarPubMed
Park, W. W. (1971). Choriocarcinoma: A Study of its Pathology. London: Heinemann.Google Scholar
Parrington, J. M., West, L. F. & Povey, S. (1984). The origin of ovarian teratomas. J. Med. Genet., 21, 4–12.CrossRefGoogle ScholarPubMed
Rainier, S., Johnson, L. A., Dobry, C. J.et al. (1993). Relaxation of imprinted genes in human cancer. Nature, 362, 747–9.CrossRefGoogle ScholarPubMed
Reik, W. & Walter, J. (2001). Genomic imprinting: Parental influence on the genome. Nat. Rev. Genet., 2, 21–32.CrossRefGoogle ScholarPubMed
Repiska, V., Vojtassak, J., Danihel, L.et al. (2003). Application of DNA polymorphism analysis to detection of complete hydatidiform mole origin. Biologia, 58, 403–8.Google Scholar
Reubinoff, B. E., Lewin, A., Verner, M.et al. (1997). Intracytoplasmic sperm injection combined with pre-implantation genetic diagnosis for the prevention of recurrent gestational trophoblastic disease. Hum. Reprod., 12, 805–8.CrossRefGoogle Scholar
Rice, L. W., Berkowitz, R. S., Lage, J. M., Goldstein, D. P. & Bernstein, M. R. (1990). Persistent gestational trophoblastic tumor after partial hydatidiform mole. Gynecol. Oncol., 36, 358– 62.CrossRefGoogle ScholarPubMed
Roberts, D. J. & Mutter, G. L. (1994). Advances in the molecular biology of gestational trophoblastic disease. J. Reprod. Med., 39, 201–8.Google ScholarPubMed
Rodriguez, E., Melamed, J., Reuter, V. & Chaganti, R. S. (1995). Chromosomal abnormalities in choriocarcinomas of the female. Cancer Genet. Cytogenet., 80, 9–12.CrossRefGoogle ScholarPubMed
Saji, F., Tokugawa, Y., Kimura, T.et al. (1989). A new approach using DNA fingerprinting for the determination of androgenesis as a cause of hydatidiform mole. Placenta, 10, 399–405.CrossRefGoogle ScholarPubMed
Sander, C. M. (1993). Angiomatous malformation of placental chorionic stem vessels and pseudo-partial molar placentae: report of five cases. Pediatr. Pathol., 13, 621–33.CrossRefGoogle Scholar
Sarno, A. P., Moorman, A. J.Kalousek, D. K. (1993). Partial molar pregnancy with fetal survival: an unusual example of confined placental mosaicism. Obstet. Gynecol., 82, 716– 19.Google ScholarPubMed
Sasaki, S., Katayama, P. K., Roesler, M.et al. (1982). Cytogenetic analysis of choriocarcinoma cell lines. Acta Obstet. Gynaecol. Jpn., 34, 2253–6.Google ScholarPubMed
Saxena, A., Frank, D., Panichkul, P.et al. (2003). The product of the imprinted gene IPL marks human villous cytotrophoblast and is lost in complete hydatidiform mole. Placenta, 24, 835–42.CrossRefGoogle ScholarPubMed
Schroeder, W. T., Chao, L. Y., Dao, D. D.et al. (1987). Nonrandom loss of maternal chromosome 11 alleles in Wilms' tumor. Am. J. Hum. Genet., 40, 413–20.Google Scholar
Sebire, N. J., Foskett, M., Fisher, R. A.et al. (2002). Risk of partial and complete hydatidiform molar pregnancy in relation to maternal age. Br. J. Obstet. Gynaecol., 109, 99–102.CrossRefGoogle ScholarPubMed
Sebire, N. J., Fisher, R. A., Foskett, M.et al. (2003a). Risk of recurrent hydatidiform mole and subsequent pregnancy outcome following complete or partial hydatidiform molar pregnancy. Br. J. Obstet. Gynaecol., 110, 22–6.CrossRefGoogle Scholar
Sebire, N. J., Fisher, R. A. & Rees, H. (2003b). Histopathological diagnosis of partial and complete hydatidiform mole in the first trimester of pregnancy. Pediatr. Dev. Pathol., 6, 69–77.CrossRefGoogle Scholar
Sebire, N. J., Rees, H. C., Peston, D.et al. (2004). P57KIP2 immunohistochemical staining of gestational trophoblastic tumors does not identify the type of the causative pregnancy. Histopathology, 45, 135–41.CrossRefGoogle Scholar
Seckl, M. J., Fisher, R. A., Salerno, G.et al. (2000). Choriocarcinoma and partial hydatidiform moles. Lancet, 356, 36–9.CrossRefGoogle ScholarPubMed
Sekiya, S., Shirotake, S., Kaiho, T.et al. (1983). A newly established human gestational choriocarcinoma cell line and its characterization. Gynecol. Oncol., 15, 413–21.CrossRefGoogle ScholarPubMed
Sensi, A., Gualandi, F., Pittalis, M. C.et al. (2000). Mole maker phenotype: possible narrowing of the candidate region. Eur. J. Hum. Genet., 8, 641–4.CrossRefGoogle ScholarPubMed
Seoud, M., Khalil, A., Frangieh, A.et al. (1995). Recurrent molar pregnancies in a family with extensive intermarriage: report of a family and review of the literature. Obstet. Gynecol., 86, 692–5.CrossRefGoogle Scholar
Shahib, N., Martaadisoebrata, D., Kondo, H.et al. (2001). Genetic origin of malignant trophoblastic neoplasms analyzed by sequence tag site polymorphic markers. Gynecol. Oncol., 81, 247–53.CrossRefGoogle ScholarPubMed
Shapter, A. P. & McLellan, R. (2001). Gestational trophoblastic disease. Obstet. Gynecol. Clin. North Am., 28, 805–17.CrossRefGoogle ScholarPubMed
Sheppard, D. M., Fisher, R. A., Lawler, S. D. & Povey, S. (1982). Tetraploid conceptus with three paternal contributions. Hum. Genet., 62, 371–4.CrossRefGoogle ScholarPubMed
Sheppard, D. M., Fisher, R. A. & Lawler, S. D. (1985). Karyotypic analysis and chromosome polymorphisms in four choriocarcinoma cell lines. Cancer Genet. Cytogenet., 16, 251–9.CrossRefGoogle ScholarPubMed
Shi, Y. F., Xie, X., Zhao, C. L.et al. (1996). Lack of mutation in tumor-suppressor gene p53 in gestational trophoblastic tumors. Br. J. Cancer, 73, 1216–19.CrossRefGoogle Scholar
Shigematsu, T., Kamura, T., Arima, T., Wake, N. & Nakano, H. (2000). DNA polymorphism analysis of a pure non-gestational choriocarcinoma of the ovary: case report. Eur. J. Gynaecol. Oncol., 21, 153–4.Google ScholarPubMed
Shih, I. M. & Kurman, R. (1998a). Ki67 labelling in the differential diagnosis of exaggerated placental site reaction, placental site trophoblastic tumor and choriocarcinoma. Hum. Pathol., 29, 27–33.CrossRefGoogle Scholar
Shih, I. M. & Kurman, R. (1998b). Epithelioid trophoblastic tumor: a neoplasm distinct from choriocarcinoma and placental site trophoblastic tumor simulating carcinoma. Am. J. Surg. Pathol., 22, 1393–1403.CrossRefGoogle Scholar
Shih, I. M. & Kurman, R. (2001a). The pathology of intermediate trophoblast, tumors and tumor-like lesions. Int. J. Gynecol. Pathol., 20, 31–47.CrossRefGoogle Scholar
Shih, I. M. & Kurman, R. (2001b). Placental site trophoblastic tumor. Past as prologue. Gynecol. Oncol., 82, 413–14.CrossRefGoogle Scholar
Shitabata, P. K. & Rutgers, J. L. (1994). The placental site nodule: an immunohistochemical study. Hum. Pathol., 25, 1295–30.CrossRefGoogle ScholarPubMed
Silva, E. G., Tornos, C., Lage, J.et al. (1993). Multiple nodules of intermediate trophoblast following hydatidiform moles. Int. J. Gynecol. Pathol., 12, 324–32.CrossRefGoogle ScholarPubMed
Sunde, L., Vejerslev, L. O., Jensen, M. P.et al. (1993). Genetic analysis of repeated, biparental, diploid, hydatidiform moles. Cancer Genet. Cytogenet., 66, 16–22.CrossRefGoogle ScholarPubMed
Surani, M. A. H., Barton, S. C. & Norris, M. L. (1984). Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature, 308, 548–50.CrossRefGoogle ScholarPubMed
Surti, U., Szulman, A. E., Wagner, K., Leppert, M. & O'Brien, S. J. (1986). Tetraploid partial hydatidiform moles: two cases with a triple paternal contribution and a 92,XXXY karyotype. Hum. Genet., 72, 15–21.CrossRefGoogle Scholar
Suryanarayan, K., O'Hanlan, K. A., Surti, U.et al. (1998). Nongestational choriocarcinoma in the postpartum period: a case report. J. Pediatr. Hematol. Oncol, 20, 169–73.CrossRefGoogle ScholarPubMed
Suzuki, T., Goto, S., Nawa, A.et al. (1993). Identification of the pregnancy responsible for gestational trophoblastic disease by DNA analysis. Obstet. Gynecol., 82, 629–34.Google ScholarPubMed
Szulman, A. E. & Surti, U. (1978a). The syndromes of hydatidiform mole. I. Cytogenetic and morphological correlations. Am. J. Obstet. Gynecol., 131, 665–71.CrossRefGoogle Scholar
Szulman, A. E. & Surti, U. (1978b). The syndromes of hydatidiform mole. II. Morphologic evolution of the complete and partial mole. Am. J. Obstet. Gynecol., 132, 20–7.CrossRefGoogle Scholar
Takahashi, H., Kanazawa, K., Ikarashi, T., Sudo, N. & Tanaka, K. (1990). Discrepancy in the diagnoses of hydatidiform mole by macroscopic findings and the deoxyribonucleic acid fingerprint method. Am. J. Obstet. Gynecol., 163, 112–13.CrossRefGoogle ScholarPubMed
Takahashi, K., Kobayashi, T. & Kanayama, N. (2000). p57 KIP2 regulates the proper development of labyrinthine spongiotrophoblasts. Mol. Hum. Reprod., 6, 1019–25.CrossRefGoogle ScholarPubMed
The International Human Genome Sequencing Consortium. (2001). Initial Sequencing and analysis of the human genome. Nature, 409, 860–921.CrossRef
Toguchida, J., Ishizaki, K., Sasaki, M. S.et al. (1989). Preferential mutation of paternally derived RB gene as the initial event in sporadic osteosarcoma. Nature, 338, 156–8.CrossRefGoogle ScholarPubMed
Tuncer, Z. S., Vegh, G. L., Fulop, V.et al. (2000). Expression of epidermal growth factor receptor-related family products in gestational trophoblastic diseases and normal placenta and its relationship with development of postmolar tumor. Gynecol. Oncol., 77, 389–93.CrossRefGoogle ScholarPubMed
Kaa, C. A., Hanselaar, A. G. J. M, Hopman, A. H. N.et al. (1993). DNA cytometric and interphase cytogenetic analyses of paraffin-embedded hydatidiform moles and hydropic abortions. J. Pathol., 170, 229–38.Google ScholarPubMed
Vassilakos, P. & Kajii, T. (1976). Hydatidiform mole: two entities. Lancet, i, 259.CrossRefGoogle Scholar
Vassilakos, P., Riotton, G. & Kajii, T. (1977). Hydatidiform mole: a morphological and cytogenetic study with some clinical considerations. Am. J. Obstet. Gynecol., 127, 167–70.CrossRefGoogle Scholar
Vejerslev, L. O., Dissing, J., Hansen, H. E. & Poulsen, H. (1987a). Hydatidiform mole: genetic origin in polyploid conceptuses. Hum. Genet., 76, 11–19.CrossRefGoogle Scholar
Vejerslev, L. O., Fisher, R. A., Surti, U. & Wake, N. (1987b). Hydatidiform mole: cytogenetically unusual cases and their implications for the present classification. Am. J. Obstet. Gynecol., 157, 180–4.CrossRefGoogle Scholar
Vejerslev, L., Sunde, L., Hansen, B. F.et al. (1991). Hydatidiform mole and foetus with normal karyotype: support of a separate entity. Obstet. Gynecol., 77, 868–74.Google ScholarPubMed
Wake, N., Takagi, N. & Sasaki, M. (1978). Androgenesis as a cause of hydatidiform mole. J. Natl. Cancer Inst., 60, 51–7.CrossRefGoogle ScholarPubMed
Wake, N., Tanaka, K.-I., Chapman, V., Matsui, S. & Sandberg, A. A. (1981). Chromosomes and cellular origin of choriocarcinoma. Cancer Res., 41, 3137–43.Google ScholarPubMed
Wake, N., Seki, T., Fujita, H.et al. (1984). Malignant potential of homozygous and heterozygous complete moles. Cancer Res., 44, 1226–30.Google ScholarPubMed
Wake, N., Fujino, T., Hoshi, S.et al. (1987). The propensity to malignancy of dispermic heterozygous moles. Placenta, 8, 319–26.CrossRefGoogle ScholarPubMed
Wake, N., Arima, T. & Matsuda, T. (1998). Involvement of IGF2 and H19 imprinting in choriocarcinoma development. Int. J. Gynaecol. Obstet., 60, S1–8.CrossRefGoogle ScholarPubMed
Wallace, D. C., Surti, U., Adams, C. W. & Szulman, A. E. (1982). Complete moles have paternal chromosomes but maternal mitochondrial DNA. Hum. Genet., 61, 145–7.CrossRefGoogle ScholarPubMed
Walsh, C., Miller, S. J., Flam, F., Fisher, R. A. & Ohlsson, R. (1995). Paternally-derived H19 is differentially expressed in malignant and non-malignant trophoblast. Cancer Res., 55, 1111–16.Google Scholar
Walter, J. & Paulsen, M. (2003). Imprinting and disease. Semin. Cell. Dev. Biol., 14, 101–10.CrossRefGoogle ScholarPubMed
Weaver, D. T., Fisher, R. A., Newlands, E. S. & Paradinas, F. J. (2000). Amniotic tissue in complete moles can be androgenetic. J. Pathol., 191, 67–70.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Wong, S. Y., Ngan, H. Y., Chan, C. C. & Cheung, A. N. (1999). Apoptosis in gestational trophoblastic disease is correlated with clinical outcome and Bcl-2 expression but not Bax expression. Mod. Pathol., 12, 1025–33.Google Scholar
World Health Organization Scientific Group (1983). Gestational trophoblastic diseases. Technical Report Series 692.
Wu, F. Y. (1973). Recurrent hydatidiform mole. A case report of nine consecutive molar pregnancies. Obstet. Gynecol., 41, 200–4.Google ScholarPubMed
Xue, W. C., Guan, X. Y., Ngan, H. Y.et al. (2002). Malignant placental site trophoblastic tumor: a cytogenetic study using comparative genomic hybridization and chromosome in situ hybridization. Cancer, 94, 2288–94.CrossRefGoogle ScholarPubMed
Yang, Y. H., Kwak, H. M., Park, T. K., Kim, C. K. & Lee, Y. B. (1986). Comparative cytogenetic and clinicopathologic studies on gestational trophoblastic neoplasia, especially hydatidiform mole. Yonsei Med. J., 27, 250–60.CrossRefGoogle ScholarPubMed
Yang, X., Zhang, Z., Jia, C.et al. (2002). The relationship between expression of c-ras, c-erbB-2, nm23, and p53 gene products and development of trophoblastic tumor and their predictive significance for the malignant transformation of complete hydatidiform mole. Gynecol. Oncol., 85, 438–44.CrossRefGoogle ScholarPubMed
Young, R. H. & Scully, R. E. (1984). Placental-site trophoblastic tumor: current status. Clin. Obstet. Gynecol., 27, 248–58.CrossRefGoogle ScholarPubMed
Young, R. H., Kurman, R. J. & Scully, R. E. (1990). Placental site nodules and plaques: a clinicopathologic analysis of 20 cases. Am. J. Surg. Pathol., 14, 1001–9.CrossRefGoogle ScholarPubMed
Zaragoza, M. V., Keep, D., Genest, D. R., Hassold, T. & Redline, R. W. (1997). Early complete hydatidiform moles contain inner cell mass derivatives. Am. J. Med. Genet., 70, 273–7.3.0.CO;2-I>CrossRefGoogle ScholarPubMed
Zaragoza, M. V., Surti, U., Redline, R. W.et al. (2000). Parental origin and phenotype of triploidy in spontaneous abortions: predominance of diandry and association with the partial hydatidiform mole. Am. J. Hum. Genet., 66, 1807–20.CrossRefGoogle ScholarPubMed
Zhang, P., McGinniss, M. J., Sawai, S. & Benirschke, K. (2000). Diploid/triploid mosaic placenta with foetus. Towards a better understanding of ‘partial moles’. Early Hum. Dev., 60, 1–11.CrossRefGoogle ScholarPubMed
Bourc'his, D., Xu, G. L., Lin, C. S., Bollman, B. & Bestor, T. H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science, 294, 2536–9.CrossRefGoogle ScholarPubMed
Fisher, R. A., Hodges, M. D., Rees, H. C.et al. (2002). The maternally transcribed gene p57KIP2 (CDNK1C) is abnormally expressed in both androgenetic and biparental complete hydatidiform moles. Hum. Mol. Genet., 11, 3267–72.CrossRefGoogle Scholar
Helwani, M. N., Seoud, M., Zahed, L.et al. (1999). A familial case of recurrent hydatidiform molar pregnancies with biparental genomic contribution. Hum. Genet., 105, 112–15.CrossRefGoogle ScholarPubMed
Kim, S. J., Bae, S. N., Kim, J. H.et al. (1998). Epidemiology and time trends of gestational trophoblastic disease in Korea. Int. J. Gynaecol. Obstet., 60(Suppl 1), S33–8.CrossRefGoogle ScholarPubMed
Kircheisen, R. & Ried, T. (1994). Hydatidiform moles. Hum. Reprod., 9, 1783–5.CrossRefGoogle ScholarPubMed
Makrydimas, G., Sebire, N. J., Thornton, S. E.et al. (2002). Complete hydatidiform mole and normal live birth: a novel case of confined placental mosaicism: case report. Hum. Reprod., 17, 2459–63.CrossRefGoogle ScholarPubMed
Matsui, H., Iitsuka, Y., Yamazawa, K.et al. (2003). Changes in the incidence of molar pregnancies. A population-based study in Chiba Prefecture and Japan between 1974 and 2000. Hum. Reprod., 18, 172–5.CrossRefGoogle ScholarPubMed
McLaren, A. (1976). Mammalian Chimeras. Cambridge: Cambridge University Press.
Moglabey, Y. B., Kircheisen, R., Seoud, M.et al. (1999). Genetic mapping of a maternal locus responsible for familial hydatidiform moles. Hum. Mol. Genet., 8, 667–71.CrossRefGoogle ScholarPubMed
Sebire, N. J., Foskett, M., Paradinas, F. J.et al. (2002). Twin pregnancies with complete hydatidiform mole and coexistent normal foetus: pregnancy outcome and risk of persistent trophoblastic disease. Lancet, 359, 2165–6.CrossRefGoogle Scholar
Surani, M. A. H., Barton, S. C. & Norris, M. L. (1987). Influence of parental chromosomes on spatial specificity in androgenetic ↔ parthenogenetic chimaeras in the mouse. Nature, 326, 395–7.CrossRefGoogle ScholarPubMed
Tham, B. W., Everard, J. E., Tidy, J. A., Drew, D. & Hancock, B. W. (2003). Gestational trophoblastic disease in the Asian population of Northern England and North Wales. Br. J. Obstet. Gynaecol., 110, 555–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×