Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-25T00:44:33.332Z Has data issue: false hasContentIssue false

10 - Flight Behaviour of an Introduced Parasite Affects its Galápagos Island Hosts: Philornis downsi and Darwin's Finches

from Part II - Behavioural Interactions Between Invaders and Native Species

Published online by Cambridge University Press:  27 October 2016

Judith S. Weis
Affiliation:
Rutgers University, New Jersey
Daniel Sol
Affiliation:
National Spanish Research Council (CSIC)
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alizon, S. and Van Baalen, M. (2008). Multiple infections, immune dynamics, and the evolution of virulence. The American Naturalist, 172, E150E168.CrossRefGoogle ScholarPubMed
Aluja, M., Cabrera, M., Guillen, J., Celedonio, H. and Ayora, F. (1989). Behaviour of Anastrepha ludens, A. obliqua and A. serpentina (Diptera: Tephritidae) on a wild mango tree (Mangifera indica) harbouring three McPhail traps. International Journal of Tropical Insect Science, 10, 309318.CrossRefGoogle Scholar
Bateman, A.J. (1948). Intra-sexual selection in Drosophila. Heredity, 2, 349368.CrossRefGoogle ScholarPubMed
Berger-Tal, O., Polak, T., Oron, A., et al. (2011). Integrating animal behavior and conservation biology: a conceptual framework. Behavioral Ecology, arq224.CrossRefGoogle Scholar
Birtele, D. and Hardersen, S. (2012). Analysis of vertical stratification of Syrphidae (Diptera) in an oak-hornbeam forest in northern Italy. Ecological Research, 27, 755763.CrossRefGoogle Scholar
Brearley, G., Rhodes, J., Bradley, A., et al. (2013). Wildlife disease prevalence in human‐modified landscapes. Biological Reviews, 88, 427442.CrossRefGoogle ScholarPubMed
Bulgarella, M., Quiroga, M.A., Dregni, J.S., et al. (2015). Philornis downsi (Diptera: Muscidae), an avian nest parasite invasive to the Galápagos Islands, in mainland Ecuador. Annals of the Entomological Society of America, sav026.CrossRefGoogle Scholar
Caro, T. (1999). The behaviour–conservation interface. Trends in Ecology and Evolution, 14, 366369.CrossRefGoogle ScholarPubMed
Caro, T. and Riggio, J. (2014). Conservation and behavior of Africa's ‘Big Five’. Current Zoology, 60(4), 486499.CrossRefGoogle Scholar
Caro, T. and Sherman, J. (2011). Endangered species and a threatened discipline: behavioural ecology. Trends in Ecology and Evolution, 26, 111118.CrossRefGoogle Scholar
Causton, C.E., Peck, S.B., Sinclair, B.J., et al. (2006). Alien insects: threats and implications for the conservation of the Galápagos Islands. Annals of the Entomological Society of America, 99, 121143.CrossRefGoogle Scholar
Causton, C., Cunninghame, F. and Tapia, W. (2013). Management of the avian parasite Philornis downsi in the Galápagos Islands: a collaborative and strategic action plan. In Galápagos Report 2011–2012. Puerto Ayora, Galapagos, Ecuador: GNPS, GCREG, CDF and GC, pp. 167173.Google Scholar
Cimadom, A., Ulloa, A., Meidl, P., et al. (2014). Invasive parasites, habitat change and heavy rainfall reduce breeding success in Darwin's finches. PLoS ONE, 9, e107518.CrossRefGoogle ScholarPubMed
Collett, T. and Land, M. (1975). Visual control of flight behaviour in the hoverfly Syritta pipiens L. Journal of Comparative Physiology, 99, 166.CrossRefGoogle Scholar
Daly, E.W. and Johnson, P.T. (2011). Beyond immunity: quantifying the effects of host anti-parasite behavior on parasite transmission. Oecologia, 165, 10431050.CrossRefGoogle ScholarPubMed
Deem, S., Jiménez-Uzcátegui, G. and Ziemmeck, F. (2011). CDF checklist of Galapagos zoopathogens and parasites. In Galápagos Report 2011–2012. Puerto Ayora, Galapagos, Ecuador: GNPS, GCREG, CDF and GC.Google Scholar
DeVries, P.J., Murray, D. and Lande, R. (1997). Species diversity in vertical, horizontal, and temporal dimensions of a fruit‐feeding butterfly community in an Ecuadorian rainforest. Biological Journal of the Linnean Society, 62, 343364.CrossRefGoogle Scholar
Dudaniec, R.Y. and Kleindorfer, S. (2006). The effects of the parasitic flies Philornis (Diptera, Muscidae) on birds. EMU, 106, 1320.CrossRefGoogle Scholar
Dudaniec, R.Y., Hallas, G. and Kleindorfer, S. (2005). Blood and intestinal parasitism in Darwin's finches: negative and positive findings. Acta Zoologica Sinica, 51, 507512.Google Scholar
Dudaniec, R.Y., Kleindorfer, S. and Fessl, B. (2006). Effects of the introduced ectoparasite Philornis downsi on haemoglobin level and nestling survival in Darwin's small ground finch (Geospiza fuliginosa). Austral Ecology, 31, 8894.CrossRefGoogle Scholar
Dudaniec, R.Y., Fessl, B. and Kleindorfer, S. (2007). Interannual and interspecific variation on intensity of the parasitic fly, Philornis downsi, in Darwin's finches. Biological Conservation, 139, 325332.CrossRefGoogle Scholar
Dudaniec, R.Y., Gardner, M.G., Donellan, S. and Kleindorfer, S. (2008). Genetic variation in the invasive avian parasite, Philornis downsi (Diptera, Muscidae) on the Galápagos archipelago. BMC Ecology, 8, 13.CrossRefGoogle ScholarPubMed
Dudaniec, R.Y., Gardner, M.G. and Kleindorfer, S. (2010). Offspring genetic structure reveals mating and nest infestation behaviour of an invasive parasitic fly (Philornis downsi) of Galápagos birds. Biological Invasions, 12, 581592.CrossRefGoogle Scholar
Duffy, M.A. and Sivars‐Becker, L. (2007). Rapid evolution and ecological host–parasite dynamics. Ecology Letters, 10, 4453.CrossRefGoogle ScholarPubMed
Dvorak, M., Fessl, B., Nemeth, E., Kleindorfer, S. and Tebbich, S. (2012). Distribution and abundance of Darwin's finches and other land birds on Santa Cruz Island, Galápagos: evidence for declining populations. Oryx, 46, 7886.CrossRefGoogle Scholar
Fessl, B., Couri, M. and Tebbich, S. (2001). Philornis downsi Dodge and Aitken, new to the Galápagos Islands, (Diptera, Muscidae). Studia Dipterologica, 8, 317322.Google Scholar
Fessl, B., Kleindorfer, S. and Tebbich, S. (2006a). An experimental study on the effects of an introduced parasite in Darwin's finches. Biological Conservation, 127, 5561.CrossRefGoogle Scholar
Fessl, B., Sinclair, B.J. and Kleindorfer, S. (2006b). The life cycle of Philornis downsi (Diptera: Muscidae) parasitizing Darwin's finches and its impacts on nestling survival. Parasitology, 133, 739747.CrossRefGoogle ScholarPubMed
Fessl, B., Young, H.G., Young, R.P., et al. (2010). How to save the rarest Darwin's finch from extinction: the mangrove finch on Isabela Island. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 10191030.CrossRefGoogle ScholarPubMed
Fowler, K. and Partridge, L. (1989). A cost of mating in female fruitflies. Nature, 338, 760761.CrossRefGoogle Scholar
Galligan, T.H. and Kleindorfer, S. (2009). Naris and beak malformation caused by the parasitic fly, Philornis downsi (Diptera: Muscidae), in Darwin's small ground finch, Geospiza fuliginosa (Passeriformes: Emberizidae). Biological Journal of the Linnean Society, 98, 9.CrossRefGoogle Scholar
Gersabeck, E.F. and Merritt, R.W. (1983). Vertical and temporal aspects of Alsynite® panel sampling for adult Stomoxys calcitrans (L.)(Diptera: Muscidae). Florida Entomologist, 66, 222227.CrossRefGoogle Scholar
Gottdenker, N.L., Walsh, T., Jiménez-Uzcátegui, G., et al. (2008). Causes of mortality of wild birds submitted to the Charles Darwin Research Station, Santa Cruz, Galápagos, Ecuador from 2002–2004. Journal of Wildlife Diseases, 44, 10241031.CrossRefGoogle Scholar
Grant, P.R. and Grant, B.R. (2008). How and Why Species Multiply: The Radiation of Darwin's Finches. Princeton, NJ: Princeton University Press.Google Scholar
Grant, P.R., Grant, B.R., Petren, K. and Keller, L.F. (2005). Extinction behind our backs: the possible fate of one of the Darwin's finch species on Isla Floreana, Galápagos. Biological Conservation, 122, 499503.CrossRefGoogle Scholar
Herczeg, T., Blahó, M., Száz, D., et al. (2014). Seasonality and daily activity of male and female tabanid flies monitored in a Hungarian hill-country pasture by new polarization traps and traditional canopy traps. Parasitology Research, 113, 110.CrossRefGoogle Scholar
Huber, S.K. (2008). Effects of the introduced parasite Philornis downsi on nestling growth and mortality in the medium ground finch (Geospiza fortis). Biological Conservation, 141, 601609.CrossRefGoogle Scholar
Huber, S.K., Owen, J.P., Koop, J.A., et al. (2010). Ecoimmunity in Darwin's finches: Invasive parasites trigger acquired immunity in the medium ground finch (Geospiza fortis). PLoS ONE, 5, e8605.CrossRefGoogle ScholarPubMed
Irvin, N., Wratten, S., Frampton, C., et al. (1999). The phenology and pollen feeding of three hover fly (Diptera: Syrphidae) species in Canterbury, New Zealand. New Zealand Journal of Zoology, 26, 105115.CrossRefGoogle Scholar
Kaltz, O. and Shykoff, J. A. (1998). Local adaptation in host–parasite systems. Heredity, 81, 361370.CrossRefGoogle Scholar
Kawecki, T.J. and Ebert, D. (2004). Conceptual issues in local adaptation. Ecology Letters, 7, 12251241.CrossRefGoogle Scholar
Kilpatrick, A.M. (2011). Globalization, land use, and the invasion of West Nile virus. Science, 334, 323327.CrossRefGoogle ScholarPubMed
Kleindorfer, S. (2007a). Nesting success in Darwin's small tree finch (Camarhynchus parvulus): Evidence of female preference for older males and more concealed nests. Animal Behaviour, 74, 795804.CrossRefGoogle Scholar
Kleindorfer, S. (2007b). The ecology of clutch size variation in Darwin's small ground finch Geospiza fuliginosa: comparison between lowland and highland habitats. Ibis, 149, 730741.CrossRefGoogle Scholar
Kleindorfer, S. and Dudaniec, R.Y. (2006). Increasing prevalence of avian poxvirus in Darwin's finches and its effect on male pairing success. Journal of Avian Biology, 37, 6976.CrossRefGoogle Scholar
Kleindorfer, S. and Dudaniec, R.Y. (2009). Love thy neighbour? Social nesting pattern, host mass and nest size affect ectoparasite intensity in Darwin's tree finches. Behavioural Ecology and Sociobiology, 63, 731739.CrossRefGoogle Scholar
Kleindorfer, S. and Dudaniec, R.Y. (2016). Host-parasite ecology, behavior and genetics: a review of the introduced fly parasite Philornis downsi and its Darwin's finch hosts. BMC Zoology, 1:1.CrossRefGoogle Scholar
Kleindorfer, S., Peters, K.J., Custance, G., Dudaniec, R.Y. and O'Connor, J.A. (2014a). Changes in Philornis infestation behavior threaten Darwin's finch survival. Current Zoology, 60, 542550.CrossRefGoogle Scholar
Kleindorfer, S., O'Connor, J.A., Dudaniec, R.Y., et al. (2014b). Species collapse via hybridization in Darwin's tree finches. The American Naturalist, 183, 325341.CrossRefGoogle ScholarPubMed
Kleindorfer, S. and Sulloway, F.J. (2016). Naris deformation in Darwin's Finches: Experimental and historical evidence for a post-1960s arrival of the parasite Philornis downsi. Global Ecology and Conservation, 7, 122131.CrossRefGoogle Scholar
Knutie, S.A., Koop, J.A., French, S.S. and Clayton, D.H. (2013). Experimental test of the effect of introduced hematophagous flies on corticosterone levels of breeding Darwin's finches. General and Comparative Endocrinology, 193, 6871.CrossRefGoogle ScholarPubMed
Knutie, S.A., Mcnew, S.M., Bartlow, A.W., Vargas, D.A. and Clayton, D.H. (2014). Darwin's finches combat introduced nest parasites with fumigated cotton. Current Biology, 24, R355R356.CrossRefGoogle ScholarPubMed
Koop, J.a.H., Huber, S.K., Laverty, S.M. and Clayton, D.H. (2011). Experimental demonstration of the fitness consequences of an introduced parasite of Darwin's finches. PLoS ONE, 6, e19706.CrossRefGoogle ScholarPubMed
Koop, J.A., Le Bohec, C. and Clayton, D.H. (2013). Dry year does not reduce invasive parasitic fly prevalence or abundance in Darwin's finch nests. Reports Parasitology, 3, 1117.CrossRefGoogle Scholar
Kovaliski, J., Sinclair, R., Mutze, G., et al. (2014). Molecular epidemiology of rabbit haemorrhagic disease virus in Australia: when one became many. Molecular Ecology, 23, 408420.CrossRefGoogle ScholarPubMed
Land, M. and Eckert, H. (1985). Maps of the acute zones of fly eyes. Journal of Comparative Physiology A, 156, 525538.CrossRefGoogle Scholar
Maguire, D.Y., Robert, K., Brochu, K., et al. (2014). Vertical stratification of beetles (Coleoptera) and flies (Diptera) in temperate forest canopies. Environmental Entomology, 43, 917.CrossRefGoogle Scholar
Mavoungou, J.F., Kohagne, T.L., Acapovi‐Yao, G.L., et al. (2013). Vertical distribution of Stomoxys spp. (Diptera: Muscidae) in a rainforest area of Gabon. African Journal of Ecology, 51, 147153.CrossRefGoogle Scholar
McCallum, H. (2008). Tasmanian devil facial tumour disease: lessons for conservation biology. Trends in Ecology and Evolution, 23, 631637.CrossRefGoogle ScholarPubMed
Morales, V. (2013). Endoparásitos en varios pinzones de Darwin e cautiverio y pinzones silvestres en la isla Santa Cruz, Provincia Insular Galápagos, Ecuador-2008. Repositorio Digital Universidad Politecnica Salesiana.Google Scholar
Nelson, X.J. (2014). Animal behavior can inform conservation policy, we just need to get on with the job – or can it? Current Zoology, 60, 479485.CrossRefGoogle Scholar
O'Connor, J.A., Dudaniec, R.Y. and Kleindorfer, S. (2010a). Parasite infestation in Galápagos birds: contrasting two elevational habitats between islands. Journal of Tropical Ecology, 26, 285292.CrossRefGoogle Scholar
O'Connor, J.A., Robertson, J. and Kleindorfer, S. (2010b). Video analysis of host–parasite interactions in Darwin's finch nests. Oryx, 44, 588594.CrossRefGoogle Scholar
O'Connor, J.A., Sulloway, F.J. and Kleindorfer, S. (2010c). Avian population survey in the Floreana Highlands: Is the medium tree finch declining in remnant patches of Scalesia forest? Bird Conservation International, 20, 343353.CrossRefGoogle Scholar
O'Connor, J.A., Sulloway, F.J., Robertson, J. and Kleindorfer, S. (2010d). Philornis downsi parasitism is the primary cause of nestling mortality in the critically endangered Darwin's medium tree finch (Camarhynchus pauper). Biodiversity and Conservation, 19, 853866.CrossRefGoogle Scholar
O'Connor, J.A., Robertson, J. and Kleindorfer, S. (2014). Darwin's finch begging intensity does not honestly signal need in parasitised nests. Ethology, 120, 228237.CrossRefGoogle Scholar
Palestis, B.G. (2014). The role of behavior in tern conservation. Current Zoology, 60, 500514.CrossRefGoogle Scholar
Parker, P.G., Buckles, E.L., Farrington, H., et al. (2011). 110 years of avipoxvirus in the Galápagos Islands. PLoS ONE, 6, e15989.CrossRefGoogle ScholarPubMed
Peters, K.J. (2016). Unravelling the Dynamics of Hybridisation and its Implications for Ecology and Conservation of Darwin’s Tree Finches. Adelaide: Flinders University, School of Biological Sciences, p. 207.Google Scholar
Peters, K.J. and Kleindorfer, S. (2015). Divergent foraging behavior in a hybrid zone: Darwin's tree finches (Camarhynchus spp.) on Floreana Island. Current Zoology, 61, 181190.CrossRefGoogle Scholar
Quiroga, M.A., Reboreda, J.C. and Beltzer, A.H. (2012). Host use by Philornis sp. in a passerine community in central Argentina. Revista Mexicana de Biodiversidad, 83, 110116.CrossRefGoogle Scholar
Roberts, D. (1985). Vertical distribution of flying black-flies (Diptera: Simuliidae) in Central Nigeria. Tropical Medicine and Parasitology: Official Organ of Deutsche Tropenmedizinische Gesellschaft and of Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ), 36, 102104.Google ScholarPubMed
Santiago-Alarcon, D., Tanksley, S.M. and Parker, P.G. (2006). Morphological variation and genetic structure of Galápagos Dove (Zenaida galapagoensis) populations: issues in conservation for the Galápagos bird fauna. The Wilson Journal of Ornithology, 118, 194207.CrossRefGoogle Scholar
Sulloway, F.J. and Kleindorfer, S. (2013). Adaptive divergence in Darwin's small ground finch (Geospiza fuliginosa): divergent selection along a cline. Biological Journal of the Linnean Society, 110, 4559.CrossRefGoogle Scholar
Svensson, E.I., Runemark, A., Verzijden, M.N. and Wellenreuther, M. (2014). Sex differences in developmental plasticity and canalization shape population divergence in mate preferences. Proceedings of the Royal Society B: Biological Sciences, 281, 20141636.CrossRefGoogle ScholarPubMed
Swanson, D., Adler, P. and Malmqvist, B. (2012). Spatial stratification of host‐seeking Diptera in boreal forests of northern Europe. Medical and Veterinary Entomology, 26, 5662.CrossRefGoogle ScholarPubMed
Takahashi, Y. and Watanabe, M. (2010). Female reproductive success is affected by selective male harassment in the damselfly Ischnura senegalensis. Animal Behaviour, 79, 211216.CrossRefGoogle Scholar
Thiel, T., Whiteman, N.K., Tirapé, A., et al. (2005). Characterization of canarypox-like viruses infecting endemic birds in the Galápagos Islands. Journal of Wildlife Diseases, 41, 342353.CrossRefGoogle ScholarPubMed
Van Gossum, H., Stoks, R. and De Bruyn, L. (2001). Frequency-dependent male mate harassment and intra-specific variation in its avoidance by females of the damselfly Ischnura elegans. Behavioral Ecology and Sociobiology, 51, 6975.Google Scholar
Van Hennekeler, K., Jones, R., Skerratt, L., Muzari, M. and Fitzpatrick, L. (2011). Meteorological effects on the daily activity patterns of tabanid biting flies in northern Queensland, Australia. Medical and Veterinary Entomology, 25, 1724.CrossRefGoogle ScholarPubMed
Villa, S.M., Le Bohec, C., Koop, J.A., Proctor, H.C. and Clayton, D.H. (2013). Diversity of feather mites (Acari: Astigmata) on Darwin's finches. The Journal of Parasitology, 99, 756762.CrossRefGoogle ScholarPubMed
Wiedenfeld, D.A., Jimènez, G., Fessl, B., Kleindorfer, S. and Valerezo, J.C. (2007). Distribution of the introduced parasitic fly Philornis downsi (Diptera, Muscidae) in the Galápagos Islands. Pacific Conservation Biology, 13, 1419.CrossRefGoogle Scholar
Wigby, S. and Chapman, T. (2005). Sex peptide causes mating costs in female Drosophila melanogaster. Current Biology, 15, 316321.CrossRefGoogle ScholarPubMed
Wikelski, M., Foufopoulos, J., Vargas, H. and Snell, H. (2004). Galápagos birds and diseases: invasive pathogens as threats for island species. Ecology and Society, 9, 5.CrossRefGoogle Scholar
Zeil, J. (1983). Sexual dimorphism in the visual system of flies: the free flight behaviour of male Bibionidae (Diptera). Journal of Comparative Physiology, 150, 395412.CrossRefGoogle Scholar
Zeil, J. (1986). The territorial flight of male houseflies (Fannia canicularis L.). Behavioral Ecology and Sociobiology, 19, 213219.CrossRefGoogle Scholar
Zylberberg, M., Lee, K.A., Klasing, K.C. and Wikelski, M. (2012). Increasing avian pox prevalence varies by species, and with immune function, in Galápagos finches. Biological Conservation, 153, 7279.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×