Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-10T06:34:13.835Z Has data issue: false hasContentIssue false

10 - Modelling the mitotic oscillator driving the cell division cycle

Published online by Cambridge University Press:  26 February 2010

Albert Goldbeter
Affiliation:
Université Libre de Bruxelles
Get access

Summary

The eukaryotic cell cycle is driven by a biochemical oscillator

Few cellular processes are as crucial as that governing cell division. The tight control of cell division indeed plays a prominent role in development and differentiation, while unrestrained proliferation is associated with the cancerous state. The control of the eukaryotic cell division cycle therefore represents a central issue in cell biology (for reviews of recent experimental advances, see the special issues of Science, 246:603-640 (1989) and of the Journal of Cell Science, Suppl. 12 (1989), as well as volume LVI of Cold Spring Harbor Symposium on Quantitative Biology (1991), and Cross et al., 1989; Hunter, 1992; Norbury & Nurse, 1992; Murray & Hunt, 1993; Heichman & Roberts, 1994; King, Jackson & Kirschner, 1994; Nurse, 1994; Peter & Herskowitz, 1994; Sherr, 1994). The cell cycle is classically portrayed as a sequence of phases (fig. 10.1): following mitosis (M) come, successively, the Gx phase leading to the S phase of DNA replication, and the G2 phase, which separates the latter from the next M phase; sometimes cells stay in a quiescent phase, Go, prior to their entry into Gt. The fact that in dividing cells mitosis recurs at regular intervals (whose duration, varying with the cell type, ranges from 10 min up to 24 h or even more) has for a long time raised the possibility that the cell cycle is driven by a continuous biochemical oscillator.

Type
Chapter
Information
Biochemical Oscillations and Cellular Rhythms
The Molecular Bases of Periodic and Chaotic Behaviour
, pp. 409 - 456
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×