Skip to main content Accessibility help
  • Print publication year: 2016
  • Online publication date: December 2016

14 - Biochar Applications to Agricultural Soils in Temperate Climates – More Than Carbon Sequestration?

from Part IV - Biochar Application as a Soil Amendment



Biochar as a boon for soil fertility in the tropics still has to show that it is able to provide the same benefits to soils in temperate regions. Here an Austrian study with the objective to analyze the extent of benefits that biochar application offers to agricultural soils in Europe beyond its role as a carbon sequestration strategy is presented. Based on hypothesis testing, several potential benefits of biochar were examined in a series of lab analyses, greenhouse and field experiments. Three hypotheses could be confirmed: biochar can protect groundwater by reducing the nitrate migration in seepage water; biochar can mitigate atmospheric greenhouse gas accumulation by reducing soil N2O emissions; and biochar can improve soil physical properties by increasing water storage capacity. One hypothesis was only partly confirmed: biochar supports the thriving of soil microorganisms only in specific soil and climate settings. Two hypotheses were refuted: biochar does not generally provide nutrients to plants except when produced from specific feedstocks or by combining it with mineral or organic fertilizers; the cost-effectiveness of biochar application is not given under current production costs if the existing benefits of biochar are not transferable to financial value.

Alho, C. F. B. V., Cardoso, A. D., Alves, B. J. R. and Novotny, E. H. (2012). Biochar and soil nitrous oxide emissions. Pesquisa Agropecuaria Brasileira, 47, pp. 722725.
Ameloot, N., Neve, S., Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y. N., Prins, W., Bouckaert, L. and Sleutel, S. (2013). Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology & Biochemistry, 57, pp. 401410.
Anders, E., Watzinger, A., Rempt, F., Kitzler, B., Wimmer, B., Zehetner, F., Stahr, K., Zechmeister-Boltenstern, S. and Soja, G. (2013). Biochar affects the structure rather than the total biomass of microbial communities in temperate soils. Agricultural and Food Science, 22, pp. 404423.
Angst, T. E., Patterson, C. J., Reay, D. S., Anderson, P., Peshkur, T. A. and Sohi, S. P. (2013). Biochar diminishes nitrous oxide and nitrate leaching from diverse nutrient sources. Journal of Environmental Quality, 42, pp. 672682.
Bolan, N., Adriano, D. and Curtin, D. (2003). Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability, Advances in Agronomy, 78, pp. 216272.
Brunauer, S., Emmett, P. H. and Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, pp. 309331.
Bruun, E. W., Ambus, P., Egsgaard, H. and Hauggaard-Nielsen, H. (2012). Effects of slow and fast pyrolysis biochar on soil C and N turnover dynamics. Soil Biology & Biochemistry, 46, pp. 7379.
Bücker, J. (2012). Effects of biochar on leachate characteristics and crop production of mustard (Sinapis alba) and barley (Hordeum vulgare) in a micro-lysimeter experiment on three agricultural soils in Austria. Diploma thesis, BTU Cottbus/Germany.
Burt, R. (2004). Soil Survey Laboratory Methods Manual. Soil survey investigations report, 42. Washington, DC: USDA-NRCS.
Calvelo Pereira, R., Muetzel, S., Camps Arbestain, M., Bishop, P. Hina, K. and Hedley, M. (2014). Assessment of the influence of biochar on rumen and silage fermentation: a laboratory-scale experiment. Animal Feed Science and Technology, 196, pp. 2231.
Cascarosa, E., Boldrin, A. and Astrup, T. (2013). Pyrolysis and gasification of meat-and-bone-meal: energy balance and GHG accounting. Waste Management, 33, pp. 25012508.
Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A. and Joseph, S. (2008). Using poultry litter biochars as soil amendments. Australian Journal of Soil Research, 46, pp. 437444.
Chu, G. M., Jung, C. K., Kim, H. Y., Ha, J. H., Kim, J. H., Jung, M. S., Lee, S. J., Song, Y., Ibrahim, R. I. H., Cho, J. H., Lee, S. S. and Song, Y. M. (2013). Effects of bamboo charcoal and bamboo vinegar as antibiotic alternatives on growth performance, immune responses and fecal microflora population in fattening pigs. Animal Science Journal, 84, pp. 113120.
Clough, T. J., Bertram, J. E., Ray, J. L., Condron, L. M., O’Callaghan, M., Sherlock, R. R. and Wells, N. S. (2010). Unweathered wood biochar impact on nitrous oxide emissions from a bovine-urine-amended pasture soil. Soil Science Society of America Journal, 74, pp. 852860.
Cornelissen, G., Martinsen, V., Shitumbanuma, V., Alling, V., Breedveld, G. D., Rutherford, D. W., Sparrevik, M., Hale, S. E., Obia, A. and Mulder, J. (2013). Biochar effect on maize yield and soil characteristics in five conservation farming sites in Zambia. Agronomy, 3, pp. 256274.
Crane-Droesch, A., Abiven, S., Jeffery, S. and Torn, M. S. (2013). Heterogeneous global crop yield response to biochar: a meta-regression analysis. Environmental Research Letters, 8, open access nr. 044049 (8 pp.).
Dai, Z. M., Meng, J., Muhammad, N., Liu, X. M., Wang, H. Z., He, Y., Brookes, P. C. and Xu, J. M. (2013). The potential feasibility for soil improvement, based on the properties of biochars pyrolyzed from different feedstocks. Journal of Soils and Sediments, 13, pp. 9891000.
Dempster, D. N., Gleeson, D. B., Solaiman, Z. M., Jones, D. L. and Murphy, D. V. (2012). Decreased soil microbial biomass and nitrogen mineralization with Eucalyptus biochar addition to a coarse textured soil. Plant and Soil, 354, pp. 311324.
European Commission (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy.
Fang, Y., Singh, B. and Singh, B. P. (2015). Effect of temperature on biochar priming effects and its stability in soils. Soil Biology & Biochemistry, 80, pp. 136145.
Frostegård, Å., Tunlid, A. and Bååth, E. (1991). Microbial biomass measured as total lipid phosphate in soils of different organic content. Journal of Microbiological Methods, 14, pp. 151163.
Fujita, H., Honda, K., Iwakiri, R., Guruge, K. S., Yamanaka, N. and Tanimura, N. (2012). Suppressive effect of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like polychlorinated biphenyls transfer from feed to eggs of laying hens by activated carbon as feed additive. Chemosphere, 88, pp. 820827.
Galinato, S. P., Yoder, J. K. and Granatstein, D. (2011). The economic value of biochar in crop production and carbon sequestration, Energy Policy, 39, pp. 63446350.
Glaser, B., Lehmann, J. and Zech, W. (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biology Fertility Soils, 35, pp. 219230.
Glaser, B. and Birk, J. J. (2012). State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Indio). Geochimica et Cosmochimica Acta, 82, pp. 3951.
Hamer, U., Marschner, B., Brodowski, S. and Amelung, W. (2004). Interactive priming of black carbon and glucose mineralization. Organic Geochemistry, 35, pp. 823830.
Hammes, K., Torn, M. S., Lapenas, A. G. and Schmidt, M. W. I. (2008). Centennial black carbon turnover observed in a Russian steppe soil. Biogeosciences, 5, pp. 13391350.
Hansen, H. H., Storm, I. M. L. D. and Sell, A. M. (2012). Effect of biochar on in vitro rumen methane production. Acta Agriculturae Scandinavica, Section A – Animal Science, 62, pp. 305309.
Harsono, S. S., Grundman, P., Lau, L. H., Hansen, A., Salleh, M. A. M., Meyer-Aurich, A., Idris, A. and Ghazi, T. I. M. (2013). Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches. Resources Conservation and Recycling, 77, pp. 108115.
Hass, A., Gonzalez, J. M., Lima, I. M., Godwin, H. W., Halvorson, J. J. and Boyer, D. G. (2012). Chicken manure biochar as liming and nutrient source for acid Appalachian soil. Journal of Environmental Quality, 41, pp. 10961106.
Huwig, A., Freimund, S., Kappeli, O. and Dutler, H. (2001). Mycotoxin detoxication of animal feed by different adsorbents. Toxicology Letters, 122, pp. 179188.
Jeffery, S., Verheijen, F., van der Velde, M. and Bastos, A. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture Ecosystems Environment, 144, pp. 175187.
Jouany, J. P. (2007). Methods for preventing, decontaminating and minimizing the toxicity of mycotoxins in feeds. Animal Feed Science and Technology, 137, pp. 342362.
Kammann, C. I., Linsel, S., Goessling, J. W. and Koyro, H. W. (2011). Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations. Plant and Soil, 345, pp. 195210.
Kammann, C., Ratering, S., Eckhard, C. and Muller, C. (2012). Biochar and hydrochar effects on greenhouse gas (carbon dioxide, nitrous oxide, and methane) fluxes from soils. Journal of Environmental Quality, 41, pp. 10521066.
Karer, J., Wimmer, B., Zehetner, F., Kloss, S. and Soja, G. (2013). Biochar application to temperate soils: effects on nutrient uptake and crop yield under field conditions. Agricultural and Food Science, 22, pp. 390403.
Klinglmüller, M. (2013). Effects of biochar on greenhouse gas fluxes from agricultural soils and resulting greenhouse gas abatement costs – an Austrian case study. Masters thesis, University for Natural Resources and Life Sciences, Vienna, Austria.
Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M. H. and Soja, G. (2012). Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. Journal of Environmental Quality, 41, pp. 9901000.
Kloss, S., Zehetner, F., Wimmer, B., Buecker, J., Rempt, F. and Soja, G. (2014a). Biochar application to temperate soils: effects on soil fertility and crop growth under greenhouse conditions. Journal of Plant Nutrition and Soil Science, 177, pp. 315.
Kloss, S., Zehetner, F., Oburger, E., Buecker, J., Kitzler, B., Wenzel, W. W., Wimmer, B. and Soja, G. (2014b). Trace element concentrations in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soils. Science of the Total Environment, 481, pp. 498508.
Kloss, S., Zehetner, F., Buecker, J., Oburger, E., Wenzel, W. W., Enders, A., Lehmann, J. and Soja, G. (2015). Trace element biogeochemistry in the soil-water-plant system of a temperate agricultural soil amended with different biochars. Environmental Science and Pollution Research, 22, pp. 45134526.
Klute, A. (1986). Water retention: laboratory methods. In: Klute, A. (ed.) Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods. Agronomy Monograph 9, 2nd Edition. Madison, WI: American Society of Agronomy, Soil Science of America, pp. 635662.
Lehmann, J., Czimczik, C., Laird, D. and Sohi, S. (2009). Stability of biochar in the soil. In: Lehmann, J. and Joseph, S. (eds.) Biochar for Environmental Management. London: Earthscan, pp. 183205.
Lehmann, J., Kern, D. C., German, L. A., McCann, J., Martins, G. C. and Moreira, A. (2003). Soil fertility and production potential. In: Lehmann, J., Kern, D. C., Glaser, B. and Woods, W. (eds.) Amazonian Dark Earths: Origin, Properties, Management. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 105124.
Liu, J., Schulz, H., Brandl, S., Miehtke, H., Huwe, B. and Glaser, B. (2012). Short-term effect of biochar and compost on soil fertility and water status of a Dystric Cambisol in NE Germany under field conditions. Journal of Plant Nutrition and Soil Science, 175, pp. 698707.
Major, J., Lehmann, J., Rondon, M. and Goodale, C. (2010). Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Global Change Biology, 16, pp. 13661379.
Marris, E. (2006). Black is the new green, Nature, 442, pp. 624626.
Marschner, P. and Rengel, Z. (2012). Nutrient availability in soils. In: Marschner, P. (ed.) Marschner’s Mineral Nutrition of Higher Plants. 3rd Edition. Amsterdam: Elsevier, pp. 315330.
Matovic, D. (2011). Biochar as a viable carbon sequestration option: global and Canadian perspective. Energy, 36, pp. 20112016.
McHenry, M. P. (2010). Carbon-based stock feed additives: a research methodology that explores ecologically delivered C biosequestration, alongside live weights, feed use efficiency, soil nutrient retention, and perennial fodder plantations. Journal of the Science of Food and Agriculture, 90, pp. 183187.
Mendez, A., Terradillos, M. and Gasco, G. (2013). Physicochemical and agronomic properties of biochar from sewage sludge pyrolysed at different temperatures. Journal of Analytical and Applied Pyrolysis, 102, pp. 124130.
Nguyen, B. T., Lehmann, J., Kinyangi, J., Smernik, R., Riha, S. J. and Engelhard, M. H. (2008). Long-term black carbon dynamics in cultivated soil. Biogeochemistry, 89, pp. 295308.
Novak, J. M., Busscher, W. J., Watts, D. W., Laird, D. A., Ahmedna, M. A. and Niandou, M. A. S. (2010). Short-term CO(2) mineralization after additions of biochar and switchgrass to a Typic Kandiudult. Geoderma, 154, pp. 281288.
Petter, F. A., Madari, B. E., da Silva, M. A. S., Carneiro, M. A. C., Carvalho, M. T. de M., MarimonJr., B. H. and Pacheco, L. P. (2012). Soil fertility and upland rice yield after biochar application in the Cerrado. Pesquisa Agropecuária Brasileira, 47, pp. 699706.
Purakayastha, T. J., Kumari, S. and Pathak, H. (2015). Characterisation, stability, and microbial effects of four biochars produced from crop residues. Geoderma, 239240, pp. 293303.
Rolston, D. E. (1986). Gas flux. In: Klute, A. (ed.) Methods of Soil Analysis. Part 1. Madison, WI: Soil Science Society of America and American Society of Agronomy, pp. 11031119.
Saarnio, S., Heimonen, K. and Kettunen, R. (2013). Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake. Soil Biology and Biochemistry, 58, pp. 99106.
Schulz, H., Dunst, G. and Glaser, B. (2013). Positive effects of composted biochar on plant growth and soil fertility. Agronomy for Sustainable Development, 33, pp. 817827.
Shabangu, S., Woolf, D., Fisher, E. M., Angenent, L. T. and Lehmann, J. (2014). Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. Fuel, 117, pp. 742748.
Slavich, P. G., Sinclair, K., Morris, S. G., Kimber, S. W. L., Downie, A. and Van Zwieten, L. (2013). Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant and Soil, 366, pp. 213227.
Spokas, K. A., Novak, J. M., Stewart, C. E., Cantrell, K. B., Uchimiya, M., DuSaire, M. G. and Ro, K. S. (2011). Qualitative analysis of volatile organic compounds on biochar. Chemosphere, 85, pp. 869882.
Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., Boateng, A. A., Lima, I. M., Lamb, M. C., McAloon, A. J., Lentz, R. D. and Nichols, K. A. (2012). Biochar: a synthesis of its agronomic impact beyond carbon sequestration. Journal of Environmental Quality, 41, pp. 973989.
Stewart, C. E., Zheng, J. Y., Botte, J. and Cotrufo, M. F. (2013). Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. Global Change Biology Bioenergy, 5, pp. 153164.
Tabatabai, M. A. and Bremner, J. M. (1991). Automated instruments for determination of total carbon, nitrogen, and sulfur in soils by combustion techniques. In: Smith, K. A. (ed.). Soil Analysis. New York: Marcel Dekker, pp. 261286.
Taghizadeh-Toosi, A., Clough, T. J., Condron, L. M., Sherlock, R. R., Anderson, C. R. and Craigie, R. A. (2011). Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. Journal of Environmental Quality, 40, pp. 468476.
Tammeorg, P., Simojoki, A., Mäkelä, P., Stoddard, F. L., Alakukku, L. and Helenius, J. (2014). Biochar application to a fertile sandy clay loam in boreal conditions: effects on soil properties and yield formation of wheat, turnip rape and faba bean. Plant and Soil, 374, pp. 89107.
Thayn, J. B., Price, K. P. and Woods, W. I. (2011). Locating Amazonian Dark Earths (ADE) using vegetation vigour as a surrogate for soil type. International Journal of Remote Sensing, 32, pp. 67136729.
UNEP, United Nations Environment Programme (2013). Black soil, black gold. TUNZA, 9, pp. 1415.
Vassilev, N., Martos, E., Mendes, G., Martos, V. and Vassileva, M. (2013). Biochar of animal origin: a sustainable solution to the global problem of high-grade rock phosphate scarcity? Journal of the Science of Food and Agriculture, 93, pp. 17991804.
Ventura, M., Sorrenti, G., Panzacchi, P., George, E. and Tonon, G. (2013). Biochar reduces short-term nitrate leaching from a horizon in an apple orchard. Journal of Environmental Quality, 42, pp. 7682.
Wang, L., Butterly, C. R., Wang, Y., Herath, H. M. S. K., Xi, Y. G. and Xiao, X. J. (2014). Effect of crop residue biochar on soil acidity amelioration in strongly acidic tea garden soils. Soil Use and Management, 30, pp. 119128.
Watzinger, A., Feichtmair, S., Kitzler, B., Zehetner, F., Kloss, S., Wimmer, B., Zechmeister-Boltenstern, S. and Soja, G. (2014). Soil microbial communities responded to biochar application in temperate soils and slowly metabolized 13C labelled biochar as revealed by 13C PLFA analyses – results from a short term incubation and pot experiment. European Journal of Soil Science, 65, pp. 4051.
Xiang, S.-R., Doyle, A., Holden, P. A. and Schimel, J. P. (2008). Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology and Biochemistry, 40, pp. 22812289.
Yao, Y., Gao, B., Zhang, M., Inyang, M. and Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89, pp. 14671471.
Zheng, H., Wang, Z. Y., Deng, X., Herbert, S. and Xing, B. S. (2013). Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma, 206, pp. 3239.