[1] M., Fujita, P. R., Krugman, and A. J., Venables, The Spatial Economy: Cities, Regions, and International Trade, MIT Press, 2001.
[2] H. A., Makse, S., Havlin, and H. E., Stanley, “Modelling urban growth patterns,” Nature, vol. 377, no. 6550, pp. 608–612, 1995.
[3] M., Batty, “The size, scale, and shape of cities,” Science, vol. 319, no. 5864, pp. 769–771, 2008.
[4] G. F., Frasco, J., Sun, H. D., Rozenfeld, and D., Ben-Avraham, “Spatially distributed social complex networks,” Physical Review X, vol. 4, no. 1, p. 011008, 2014.
[5] L., Bettencourt and G., West, “A unified theory of urban living,” Nature, vol. 467, no. 7318, pp. 912–913, 2010.
[6] L. M., Bettencourt, “The origins of scaling in cities,” Science, vol. 340, no. 6139, pp. 1438– 1441, 2013.
[7] M., Batty, The New Science of Cities, MIT Press, 2013.
[8] M., Barthelemy, “Spatial networks,” Physics Reports, vol. 499, no. 1, pp. 1–101, 2011.
[9] B., Hillier, A., Leaman, P., Stansall, and M., Bedford, “Space syntax,” Environment and Planning B: Planning and Design, vol. 3, no. 2, pp. 147–185, 1976.
[10] B., Jiang and C., Claramunt, “Topological analysis of urban street networks,” Environment and Planning B, vol. 31, no. 1, pp. 151–162, 2004.
[11] M., Rosvall, A., Trusina, P., Minnhagen, and K., Sneppen, “Networks and cities: an information perspective,” Physical Review Letters, vol. 94, no. 2, p. 028701, 2005.
[12] S., Porta, P., Crucitti, and V., Latora, “The network analysis of urban streets: a primal approach,” arXiv preprint physics/0506009, 2005.
[13] S., Porta, P., Crucitti, and V., Latora, “The network analysis of urban streets: a dual approach,” Physica A: Statistical Mechanics and its Applications, vol. 369, no. 2, pp. 853–866, 2006.
[14] A., Cardillo, S., Scellato, V., Latora, and S., Porta, “Structural properties of planar graphs of urban street patterns,” Physical Review E, vol. 73, no. 6, p. 066107, 2006.
[15] S., Lämmer, B., Gehlsen, and D., Helbing, “Scaling laws in the spatial structure of urban road networks,” Physica A: Statistical Mechanics and its Applications, vol. 363, no. 1, pp. 89–95, 2006.
[16] M., Barthelemy and A., Flammini, “Modeling urban street patterns,” Physical Review Letters, vol. 100, no. 13, p. 138702, 2008.
[17] M., Barthélemy and A., Flammini, “Co-evolution of density and topology in a simple model of city formation,” Networks and Spatial Economics, vol. 9, no. 3, pp. 401–425, 2009.
[18] M., Fialkowski and A., Bitner, “Universal rules for fragmentation of land by humans,” Landscape Ecology, vol. 23, no. 9, pp. 1013–1022, 2008.
[19] E., Strano, V., Nicosia, V., Latora, S., Porta, and M., Barthélemy, “Elementary processes governing the evolution of road networks,” Scientific Reports, vol. 2, 2012.
[20] M., Barthelemy, P., Bordin, H., Berestycki, and M., Gribaudi, “Self-organization versus topdown planning in the evolution of a city,” Scientific Reports, vol. 3, 2013.
[21] A. P., Masucci, K., Stanilov, and M., Batty, “Limited urban growth: London's street network dynamics since the 18th century,” PLoS One, vol. 8, no. 8, p. e69469, 2013.
[22] T., Courtat, C., Gloaguen, and S., Douady, “Mathematics and morphogenesis of cities: A geometrical approach,” Physical Review E, vol. 83, no. 3, p. 036106, 2011.
[23] “OpenStreetMap (OSM) is a collaborative project to create a free editable map of the world,” http://www.openstreetmap.org.
[24] C., Roth, S. M., Kang, M., Batty, and M., Barthelemy, “A long-time limit for world subway networks,” Journal of The Royal Society Interface, vol. 9, pp. 2540–2550, 2012.
[25] L., Benguigui, “The fractal dimension of some railway networks,” Journal de Physique I, vol. 2, no. 4, pp. 385–388, 1992.
[26] K. S., Kim, L., Benguigui, and M., Marinov, “The fractal structure of Seoul's public transportation system,” Cities, vol. 20, no. 1, pp. 31–39, 2003.
[27] D., Levinson, “Density and dispersion: the co-development of land use and rail in london,” Journal of Economic Geography, vol. 8, no. 1, pp. 55–77, 2008.
[28] D., Levinson, “Network structure and city size,” PloS one, vol. 7, no. 1, p. e29721, 2012.
[29] S., Derrible and C., Kennedy, “Network analysis of world subway systems using updated graph theory,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2112, no. 1, pp. 17–25, 2009.
[30] W. R., Black, “An iterative model for generating transportation networks,” Geographical Analysis, vol. 3, no. 3, pp. 283–288, 1971.
[31] R., Louf, P., Jensen, and M., Barthelemy, “Emergence of hierarchy in cost-driven growth of spatial networks,” Proceedings of the National Academy of Sciences, vol. 110, no. 22, pp. 8824–8829, 2013.
[32] F., Xie and D., Levinson, “Topological evolution of surface transportation networks,” Computers, Environment and Urban Systems, vol. 33, no. 3, pp. 211–223, 2009.
[33] R., Louf, C., Roth, and M., Barthelemy, “Scaling in transportation networks,” PloS one, vol. 9, no. 7, p. e102007, 2014.
[34] I., Rhee, M., Shin, S., Hong, et al., “On the levy-walk nature of human mobility,” IEEE/ACM Transactions on Networking (TON), vol. 19, no. 3, pp. 630–643, 2011.
[35] A., Noulas, S., Scellato, R., Lambiotte, M., Pontil, and C., Mascolo, “A tale of many cities: universal patterns in human urban mobility,” PLos One, vol. 7, no. 5, p. e37027, 2012.
[36] R., Gallotti, A., Bazzani, and S., Rambaldi, “Toward a statistical physics of human mobility,” Int. J. Mod. Phys. C, vol. 23, no. 9, 2012.
[37] C., Coffey, A., Pozdnoukhov, and F., Calabrese, “Time of arrival predictability horizons for public bus routes,” in Proceedings of the 4th ACM SIGSPATIAL International Workshop on Computational Transportation Science, ACM, 2011, pp. 1–5.
[38] X., Liang, X., Zheng, W., Lv, T., Zhu, and K., Xu, “The scaling of human mobility by taxis is exponential,” Physica A: Statistical Mechanics and its Applications, vol. 391, no. 5, pp. 2135–2144, 2012.
[39] C., Song, Z., Qu, N., Blumm, and A.-L., Barabási, “Limits of predictability in human mobility,” Science, vol. 327, no. 5968, pp. 1018–1021, 2010.
[40] R., Gallotti, A., Bazzani, M., Degli Esposti, and S., Rambaldi, “Entropicmeasures of individual mobility patterns,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2013, no. 10, p. P10022, 2013.
[41] J. P., Bagrow and Y.-R., Lin, “Mesoscopic structure and social aspects of human mobility,” PLos One, vol. 7, no. 5, p. e37676, 2012.
[42] Y., Zheng, Q., Li, Y., Chen, X., Xie, and W.-Y., Ma, “Understanding mobility based on gps data,” in Proceedings of the 10th international conference on Ubiquitous computing, ACM, 2008, pp. 312–321.
[43] A., Bazzani, B., Giorgini, S., Rambaldi, R., Gallotti, and L., Giovannini, “Statistical laws in urban mobility from microscopic GPS data in the area of florence,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2010, no. 05, p. P05001, 2010.
[44] L., Pietronero, E., Tosatti, V., Tosatti, and A., Vespignani, “Explaining the uneven distribution of numbers in nature: the laws of Benford and zipf,” Physica A: Statistical Mechanics and its Applications, vol. 293, no. 1, pp. 297–304, 2001.
[45] R., Gallotti, “Statistical physics and modeling of human mobility,” Ph.D. dissertation, University of Bologna, 2013.
[46] R., Kölbl and D., Helbing, “Energy laws in human travel behaviour,” New Journal of Physics, vol. 5, no. 1, p. 48, 2003.
[47] F., Asgari, V., Gauthier, and M., Becker, “A survey on human mobility and its applications,” arXiv preprint arXiv:1307.0814, 2013.
[48] C., Roth, S. M., Kang, M., Batty, and M., Barthelemy, “Structure of urban movements: polycentric activity and entangled hierarchical flows,” PLos One, vol. 6, no. 1, p. e15923, 2011.
[49] B., Hawelka, I., Sitko, E., Beinat, et al., “Geo-located twitter as proxy for global mobility patterns,” Cartography and Geographic Information Science, vol. 41, no. 3, pp. 260–271, 2014.
[50] J.-P., Onnela, J., Saramäki, J., Hyvönen, et al., “Structure and tie strengths in mobile communication networks,” Proceedings of the National Academy of Sciences, vol. 104, no. 18, pp. 7332–7336, 2007.
[51] R., Lambiotte, V. D., Blondel, C., de Kerchove, et al., “Geographical dispersal of mobile communication networks,” Physica A: Statistical Mechanics and its Applications, vol. 387, no. 21, pp. 5317–5325, 2008.
[52] M. C., Gonzalez, C. A., Hidalgo, and A.-L., Barabasi, “Understanding individual human mobility patterns,” Nature, vol. 453, no. 7196, pp. 779–782, 2008.
[53] K. S., Kung, K., Greco, S., Sobolevsky, and C., Ratti, “Exploring universal patterns in human home-work commuting from mobile phone data,” PLos One, vol. 9, no. 6, p. e96180, 2014.
[54] V., Soto and E., Frias-Martinez, “Robust land use characterization of urban landscapes using cell phone data,” in Proceedings of the 1st Workshop on Pervasive Urban Applications, in conjunction with 9th Int. Conf. Pervasive Computing, 2011.
[55] T., Pei, S., Sobolevsky, C., Ratti, et al., “A new insight into land use classification based on aggregated mobile phone data,” International Journal of Geographical Information Science, vol. 28, no. 9, pp. 1988–2007, 2014.
[56] S., Sobolevsky, M., Szell, R., Campari, et al., “Delineating geographical regions with networks of human interactions in an extensive set of countries,” PLos One, vol. 8, no. 12, p. e81707, 2013.
[57] A., Anas, R., Arnott, and K. A., Small, “Urban spatial structure,” Journal of Economic Literature, pp. 1426–1464, 1998.
[58] A., Bertaud and S., Malpezzi, “The spatial distribution of population in 48 world cities: Implications for economies in transition,” Center for Urban Land Economics Research, University of Wisconsin, 2003.
[59] Y.-H., Tsai, “Quantifying urban form: compactness versus’ sprawl’,” Urban Studies, vol. 42, no. 1, pp. 141–161, 2005.
[60] M., Guérois and D., Pumain, “Built-up encroachment and the urban field: a comparison of forty european cities,” Environment and planning. A, vol. 40, no. 9, p. 2186, 2008.
[61] N., Schwarz, “Urban form revisited – selecting indicators for characterising european cities,” Landscape and Urban Planning, vol. 96, no. 1, pp. 29–47, 2010.
[62] S., Berroir, H., Mathian, T., Saint-Julien, and L., Sanders, “The role of mobility in the building of metropolitan polycentrism,” in Modelling Urban Dynamics, ISTE-Wiley, 2011, pp. 1–25.
[63] F. Le, Néchet, “Urban spatial structure, daily mobility and energy consumption: a study of 34 european cities,” Cybergeo: European Journal of Geography, 2012.
[64] R. H. M., Pereira, V., Nadalin, L., Monasterio, and P. H., Albuquerque, “Urban centrality: a simple index,” Geographical Analysis, vol. 45, no. 1, pp. 77–89, 2013.
[65] C., Ratti, S., Williams, D., Frenchman, and R., Pulselli, “Mobile landscapes: using location data from cell phones for urban analysis,” Environment and Planning B: Planning and Design, vol. 33, no. 5, pp. 727–748, 2006.
[66] T., Louail, M., Lenormand, O. G. C., Ros, et al., “From mobile phone data to the spatial structure of cities,” Scientific Reports, vol. 4, 2014.
[67] R., Louf and M., Barthelemy, “Modeling the polycentric transition of cities,” Physical Review Letters, vol. 111, no. 19, p. 198702, 2013.
[68] V., Frias-Martinez, V., Soto, H., Hohwald, and E., Frias-Martinez, “Characterizing urban landscapes using geolocated tweets,” in Privacy, Security, Risk and Trust (PASSAT), 2012 International Conference on and 2012 International Confernece on Social Computing (SocialCom), IEEE, 2012, pp. 239–248.
[69] M., Lenormand, M., Picornell, O. G., Cantú-Ros, et al., “Cross-checking different sources of mobility information,” PLos One, vol. 9, no. 8, p. e105184, 2014.
[70] P. W., Newman and J. R., Kenworthy, “Gasoline consumption and cities: a comparison of us cities with a global survey,” Journal of the American Planning Association, vol. 55, no. 1, pp. 24–37, 1989.
[71] D., Pumain, F., Paulus, C., Vacchiani-Marcuzzo, and J., Lobo, “An evolutionary theory for interpreting urban scaling laws,” Cybergeo: European Journal of Geography, 2006.
[72] L. M., Bettencourt, J., Lobo, D., Helbing, C., Kühnert, and G. B., West, “Growth, innovation, scaling, and the pace of life in cities,” Proceedings of the National Academy of Sciences, vol. 104, no. 17, pp. 7301–7306, 2007.
[73] H., Samaniego and M. E., Moses, “Cities as organisms: allometric scaling of urban road networks,” Journal of Transport and Land Use, vol. 1, no. 1, pp. 21–39, 2008.
[74] H. D., Rozenfeld, D., Rybski, J. S., Andrade, et al., “Laws of population growth,” Proceedings of the National Academy of Sciences, vol. 105, no. 48, pp. 18 702–18 707, 2008.
[75] W., Pan, G., Ghoshal, C., Krumme, M., Cebrian, and A., Pentland, “Urban characteristics attributable to density-driven tie formation,” Nature Communications, vol. 4, 2013.
[76] R., Louf and M., Barthelemy, “How congestion shapes cities: from mobility patterns to scaling,” Scientific Reports, vol. 4, 2014.
[77] M., Fujita and H., Ogawa, “Multiple equilibria and structural transition of non-monocentric urban configurations,” Regional Science and Urban Economics, vol. 12, no. 2, pp. 161–196, 1982.
[78] R., Louf and M., Barthelemy, “Scaling: lost in the smog,” arXiv preprint arXiv:1410.4964, 2014.