Skip to main content Accessibility help
×
Home
  • Print publication year: 2014
  • Online publication date: October 2014

28 - Cocaine-related disorders

from Section 6 - Substance dependence and abuse

References

Abizaid, A., Mineur, Y.S., Roth, R.H., et al. (2011) Reduced locomotor responses to cocaine in ghrelin-deficient mice. Neuroscience 192: 500–506.
Agatsuma, S., Dang, M.T., Li, Y., and Hiroi, N. (2010) N-methyl-D-aspartic acid receptors on striatal neurons are essential for cocaine cue reactivity in mice. Biol Psychiatry 67: 778–780.
Airavaara, M., Planken, A., Gaddnas, H., et al. (2004) Increased extracellular dopamine concentrations and FosB/Delta FosB expression in striatal brain areas of heterozygous GDNF knockout mice. Eur J Neurosci 20: 2336–2344.
Allan, A.M., Galindo, R., Chynoweth, J., Engel, S.R., and Savage, D.D. (2001) Conditioned place preference for cocaine is attenuated in mice over-expressing the 5-HT3 receptor. Psychopharmacology 158: 18–27.
Altman, J., Everitt, B.J., Glautier, S., et al. (1996) The biological, social and clinical bases of drug addiction: commentary and debate. Psychopharmacology 125: 285–345.
Anderson, G.R., Cao, Y., Davidson, S., et al. (2010) R7BP complexes with RGS9–2 and RGS7 in the striatum differentially control motor learning and locomotor responses to cocaine. Neuropsychopharmacology 35: 1040–1050.
Arime, Y., Kasahara, Y., Hall, F.S., Uhl, G.R., and Sora, I. (2012) Cortico-subcortical neuromodulation involved in the amelioration of prepulse inhibition deficits in dopamine transporter knockout mice. Neuropsychopharmacology 37: 2522–2530.
Arora, D., Haluk, D.M., Kourrich, S., et al. (2010) Altered neurotransmission in the mesolimbic reward system of Girk mice. J Neurochem 114: 1487–1497.
Azar, M.R., Acar, N., Erwin, V.G., et al. (1998) Distribution and clearance of cocaine in brain is influenced by genetics. Pharmacol Biochem Behav 59: 637–640.
Bahi, A., Boyer, F., Chandrasekar, V., and Dreyer, J.L. (2008a) Role of accumbens BDNF and TrkB in cocaine-induced psychomotor sensitization, conditioned-place preference, and reinstatement in rats. Psychopharmacology 199: 169–182.
Bahi, A. and Dreyer, J.L. (2008) Overexpression of plasminogen activators in the nucleus accumbens enhances cocaine-, amphetamine- and morphine-induced reward and behavioral sensitization. Genes Brain Behav 7: 244–256.
Bahi, A., Kusnecov, A.W., and Dreyer, J.L. (2008b) Effects of urokinase-type plasminogen activator in the acquisition, expression and reinstatement of cocaine-induced conditioned-place preference. Behav Brain Res 191: 17–25.
Bailey, A., Yoo, J.H., Racz, I., Zimmer, A., and Kitchen, I. (2007) Preprodynorphin mediates locomotion and D2 dopamine and mu-opioid receptor changes induced by chronic “binge” cocaine administration. J Neurochem 102: 1817–1830.
Balda, M.A., Anderson, K.L., and Itzhak, Y. (2008) Differential role of the nNOS gene in the development of behavioral sensitization to cocaine in adolescent and adult B6;129S mice. Psychopharmacology 200: 509–519.
Balda, M.A., Anderson, K.L., and Itzhak, Y. (2009a) Development and persistence of long-lasting behavioral sensitization to cocaine in female mice: role of the nNOS gene. Neuropharmacology 56: 709–715.
Balda, M.A., Anderson, K.L., and Itzhak, Y. (2009b) The neuronal nitric oxide synthase (nNOS) gene contributes to the regulation of tyrosine hydroxylase (TH) by cocaine. Neurosci Lett 457: 120–124.
Barr, A.M., Lehmann-Masten, V., Paulus, M., et al. (2004) The selective serotonin-2A receptor antagonist M100907 reverses behavioral deficits in dopamine transporter knockout mice. Neuropsychopharmacology 29: 221–228.
Bateup, H.S., Santini, E., Shen, W., et al. (2010) Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci USA 107: 14845–14850.
Bebawy, D., Marquez, P., Samboul, S., et al. (2010) Orphanin FQ/nociceptin not only blocks but also reverses behavioral adaptive changes induced by repeated cocaine in mice. Biol Psychiatry 68: 223–230.
Becker, A., Grecksch, G., Kraus, J., et al. (2002) Rewarding effects of ethanol and cocaine in mu opioid receptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 365: 296–302.
Belknap, J.K., Phillips, T.J., and Otoole, L.A. (1992) Quantitative trait loci associated with brain-weight in the Bxd/Ty recombinant inbred mouse strains. Brain Res Bull 29: 337–344.
Bello, E.P., Mateo, Y., Gelman, D.M., et al. (2011) Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. Nat Neurosci 14: 1033–1038.
Belzung, C. and Barreau, S. (2000) Differences in drug-induced place conditioning between BALB/c and C57Bl/6 mice. Pharmacol Biochem Behav 65: 419–423.
Belzung, C., Scearce-Levie, K., Barreau, S., and Hen, R. (2000) Absence of cocaine-induced place conditioning in serotonin 1B receptor knock-out mice. Pharmacol Biochem Behav 66: 221–225.
Bergman, J., Madras, B.K., Johnson, S.E., and Spealman, R.D. (1989) Effects of cocaine and related drugs in nonhuman primates. III. Self-administration by squirrel monkeys. J Pharmacol Exp Ther 251: 150–155.
Bergstrom, H.C., Palmer, A.A., Wood, R.D., et al. (2003) Reverse selection for differential response to the locomotor stimulant effects of ethanol provides evidence for pleiotropic genetic influence on locomotor response to other drugs of abuse. Alcohol Clin Exper Res 27: 1535–1547.
Betancur, C., Cabrera, R., de Kloet, E.R., Pelaprat, D., and Rostene, W. (1998) Role of endogenous neurotensin in the behavioral and neuroendocrine effects of cocaine. Neuropsychopharmacology 19: 322–332.
Betancur, C., Lepee-Lorgeoux, I., Cazillis, M., et al. (2001) Neurotensin gene expression and behavioral responses following administration of psychostimulants and antipsychotic drugs in dopamine D(3) receptor deficient mice. Neuropsychopharmacology 24: 170–182.
Bird, M.K., Reid, C.A., Chen, F., et al. (2010) Cocaine-mediated synaptic potentiation is absent in VTA neurons from mGlu5-deficient mice. Int J Neuropsychopharmacol 13: 133–141.
Blanco, E., Bilbao, A., Luque-Rojas, M.J., et al. (2012) Attenuation of cocaine-induced conditioned locomotion is associated with altered expression of hippocampal glutamate receptors in mice lacking LPA1 receptors. Psychopharmacology 220: 27–42.
Boehme, R.E. and Ciaranello, R.D. (1981) Dopamine receptor-binding in inbred mice – strain differences in mesolimbic and nigrostriatal dopamine binding-sites. Proc Natl Acad Sci USA 78: 3255–3259.
Boeuf, J., Trigo, J.M., Moreau, P.H., et al. (2009) Attenuated behavioural responses to acute and chronic cocaine in GASP-1-deficient mice. Eur J Neurosci 30: 860–868.
Bosy, T.Z. and Ruth, J.A. (1989) Differential inhibition of synaptosomal accumulation of [H-3] monoamines by cocaine, tropacocaine and amphetamine in 4 inbred strains of mice. Pharmacol Biochem Behav 34: 165–172.
Bouvrais-Veret, C., Weiss, S., Hanoun, N., et al. (2008) Microtubule-associated STOP protein deletion triggers restricted changes in dopaminergic neurotransmission. J Neurochem 104: 745–756.
Boyer, C.S. and Petersen, D.R. (1991) Hepatic biochemical changes as a result of acute cocaine administration in the mouse. Hepatology 14: 1209–1216.
Boyer, C.S. and Petersen, D.R. (1992) Pharmacokinetic analysis of the metabolism of cocaine to norcocaine and N-hydroxynorcocaine in mice. Drug Metab Disp 20: 863–868.
Boyer, C.S., Ross, D., and Petersen, D.R. (1988) Sex and strain differences in the hepatotoxic response to acute cocaine administration in the mouse. J Biochem Toxicol 3: 295–307.
Boyle, A.E. and Gill, K.J. (2009) A verification of previously identified QTLs for cocaine-induced activation using a panel of B6. A chromosome substitution strains (CSS) and A/J × C57Bl/6J F2 mice. Psychopharmacology 207: 325–334.
Boyle, A.E.L. and Gill, K. (2001) Sensitivity of AXB/BXA recombinant inbred lines of mice to the locomotor activating effects of cocaine: a quantitative trait loci analysis. Pharmacogenetics 11: 255–264.
Brabant, C., Alleva, L., Grisar, T., et al. (2009) Effects of the H3 receptor inverse agonist thioperamide on cocaine-induced locomotion in mice: role of the histaminergic system and potential pharmacokinetic interactions. Psychopharmacology 202: 673–687.
Brabant, C., Kuschpel, A.S., and Picciotto, M.R. (2010) Locomotion and self-administration induced by cocaine in 129/OlaHsd mice lacking galanin. Behav Neurosci 124: 828–838.
Briand, L.A., Lee, F.S., Blendy, J.A., and Pierce, R.C. (2012) Enhanced extinction of cocaine seeking in brain-derived neurotrophic factor Val66Met knock-in mice. Eur J Neurosci 35: 932–939.
Briand, L.A., Vassoler, F.M., Pierce, R.C., Valentino, R.J., and Blendy, J.A. (2010) Ventral tegmental afferents in stress-induced reinstatement: the role of cAMP response element-binding protein. J Neurosci 30: 16149–16159.
Brown, R.M., Duncan, J.R., Stagnitti, M.R., Ledent, C., and Lawrence, A.J. (2012) mGlu5 and adenosine A2A receptor interactions regulate the conditioned effects of cocaine. Int J Neuropsychopharmacol 15: 995–1001.
Bruchas, M.R., Land, B.B., and Chavkin, C. (2010) The dynorphin/kappa opioid system as a modulator of stress-induced and pro-addictive behaviors. Brain Res 1314: 44–55.
Bruchas, M.R., Schindler, A.G., Shankar, H., et al. (2011) Selective p38alpha MAPK deletion in serotonergic neurons produces stress resilience in models of depression and addiction. Neuron 71: 498–511.
Brunk, I., Blex, C., Sanchis-Segura, C., et al. (2008) Deletion of Go2 alpha abolishes cocaine-induced behavioral sensitization by disturbing the striatal dopamine system. FASEB J 22: 3736–3746.
Caine, S.B. and Koob, G.F. (1993) Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science 260: 1814–1816.
Caine, S.B., Negus, S.S., Mello, N.K., and Bergman, J. (1999) Effects of dopamine D(1-like) and D(2-like) agonists in rats that self-administer cocaine. J Pharmacol Exp Ther 291: 353–360.
Caine, S.B., Negus, S.S., Mello, N.K., et al. (2002) Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J Neurosci 22: 2977–2988.
Caine, S.B., Thomsen, M., Barrett, A.C., et al. (2012) Cocaine self-administration in dopamine D3 receptor knockout mice. Exp Clin Psychopharmacol 20: 352–363.
Caine, S.B., Thomsen, M., Gabriel, K.I., et al. (2007) Lack of self-administration of cocaine in dopamine D1 receptor knock-out mice. J Neurosci 27: 13140–13150.
Carboni, E., Spielewoy, C., Vacca, C., et al. (2001) Cocaine and amphetamine increase extracellular dopamine in the nucleus accumbens of mice lacking the dopamine transporter gene. J Neurosci 21.
Carrigan, K.A. and Dykstra, L.A. (2007) Behavioral effects of morphine and cocaine in M1 muscarinic acetylcholine receptor-deficient mice. Psychopharmacology 191: 985–993.
Carta, A.R., Gerfen, C.R., and Steiner, H. (2000) Cocaine effects on gene regulation in the striatum and behavior: increased sensitivity in D3 dopamine receptor-deficient mice. Neuroreport 11: 2395–2399.
Castanon, N., Scearce-Levie, K., Lucas, J.J., Rocha, B., and Hen, R. (2000) Modulation of the effects of cocaine by 5-HT1B receptors: a comparison of knockouts and antagonists. Pharmacol Biochem Behav 67: 559–566.
Chausmer, A.L., Elmer, G.I., Rubinstein, M., et al. (2002) Cocaine-induced locomotor activity and cocaine discrimination in dopamine D2 receptor mutant mice. Psychopharmacology 163: 54–61.
Chen, L.P. and Xu, M. (2010) Dopamine D1 and D3 receptors are differentially involved in cue-elicited cocaine seeking. J Neurochem 114: 530–541.
Chen, R., Tilley, M.R., Wei, H., et al. (2006) Abolished cocaine reward in mice with a cocaine-insensitive dopamine transporter. Proc Natl Acad Sci USA 103: 9333–9338.
Chiamulera, C., Epping-Jordan, M.P., Zocchi, A., et al. (2001) Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat Neurosci 4: 873–874.
Chung, S., Hopf, F.W., Nagasaki, H., et al. (2009) The melanin-concentrating hormone system modulates cocaine reward. Proc Natl Acad Sci USA 106: 6772–6777.
Clarkson, C.W., Xu, Y.Q., Chang, C., and Follmer, C.H. (1996) Analysis of the ionic basis for cocaine’s biphasic effect on action potential duration in guinea-pig ventricular myocytes. J Mol and Cell Cardiol 28: 667–678.
Clifford, P.S., Rodriguez, J., Schul, D., et al. (2011) Attenuation of cocaine-induced locomotor sensitization in rats sustaining genetic or pharmacologic antagonism of ghrelin receptors. Addict Biol 17: 956–963.
Cox, A., Ackert-Bicknell, C.L., Dumont, B.L., et al. (2009) A new standard genetic map for the laboratory mouse. Genetics 182: 1335–1344.
Crabbe, J.C., Phillips, T.J., Buck, K.J., Cunningham, C.L., and Belknap, J.K. (1999) Identifying genes for alcohol and drug sensitivity: recent progress and future directions. Trends Neurosci 22: 173–179.
Crawley, J.N., Belknap, J.K., Collins, A., et al. (1997) Behavioral phenotypes of inbred mouse strains: implications and recommendations for molecular studies. Psychopharmacology 132: 107–124.
Crooks, K.R., Kleven, D.T., Rodriguiz, R.M., Wetsel, W.C., and McNamara, J.O. (2010) TrkB signaling is required for behavioral sensitization and conditioned place preference induced by a single injection of cocaine. Neuropharmacology 58: 1067–1077.
Crumb, W.J., Jr. and Clarkson, C.W. (1990) Characterization of cocaine-induced block of cardiac sodium channels. Biophys J 57: 589–599.
Darvas, M. and Palmiter, R.D. (2009) Restriction of dopamine signaling to the dorsolateral striatum is sufficient for many cognitive behaviors. Proc Natl Acad Sci USA 106: 14664–14669.
Darvasi, A. (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18: 19–24.
Dauge, V., Sebret, A., Beslot, F., Matsui, T., and Roques, B.P. (2001) Behavioral profile of CCK2 receptor-deficient mice. Neuropsychopharmacology 25: 690–698.
David, V., Gold, L.H., Koob, G.F., and Cazala, P. (2001) Anxiogenic-like effects limit rewarding effects of cocaine in BALB/cByJ mice. Neuropsychopharmacology 24: 300–318.
Davis, A.R., Shields, A.D., Brigman, J.L., et al. (2008) Yohimbine impairs extinction of cocaine-conditioned place preference in an alpha2-adrenergic receptor independent process. Learn Mem 15: 667–676.
De Jong, I.E.M., Oitzl, M.S., and de Kloet, E.R. (2007) Adrenalectomy prevents behavioural sensitisation of mice to cocaine in a genotype-dependent manner. Behav Brain Res 177: 329–339.
De Jong, I.E.M., Steenbergen, P.J., and De Kloet, E.R. (2008) Strain differences in the effects of adrenalectomy on the mibrain dopamine system: implication for behavioral sensitization to cocaine. Neuroscience 153: 594–604.
Defiebre, C.M., Ruth, J.A., and Collins, A.C. (1989) Differential sensitivity of long-sleep and short-sleep mice to high-doses of cocaine. Pharmacol Biochem Behav 34: 887–893.
Dencker, D., Weikop, P., Sorensen, G., et al. (2012) An allosteric enhancer of M(4) muscarinic acetylcholine receptor function inhibits behavioral and neurochemical effects of cocaine. Psychopharmacology 224: 277–287.
Deroche, V., Caine, S.B., Heyser, C.J., et al. (1997) Differences in the liability to self-administer intravenous cocaine between C57BL/6 x SJL and BALB/cByJ mice. Pharmacol Biochem Behav 57: 429–440.
Dickinson, S.D., Sabeti, J., Larson, G.A., et al. (1999) Dopamine D2 receptor-deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum. J Neurochem 72: 148–156.
Dietz, D.M., Sun, H., Lobo, M.K., et al. (2012) Rac1 is essential in cocaine-induced structural plasticity of nucleus accumbens neurons. Nat Neurosci 15: 891–896.
DiRocco, D.P., Scheiner, Z.S., Sindreu, C.B., Chan, G.C., and Storm, D.R. (2009) A role for calmodulin-stimulated adenylyl cyclases in cocaine sensitization. J Neurosci 29: 2393–2403.
Dixon, C.I., Morris, H.V., Breen, G., et al. (2010) Cocaine effects on mouse incentive-learning and human addiction are linked to alpha2 subunit-containing GABAA receptors. Proc Natl Acad Sci USA 107: 2289–2294.
Dluzen, D.E., Gao, X., Story, G.M., et al. (2001) Evaluation of nigrostriatal dopaminergic function in adult +/+ and +/– BDNF mutant mice. Exp Neurol 170: 121–128.
Doherty, J.M., Masten, V.L., Powell, S.B., et al. (2008) Contributions of dopamine D1, D2, and D3 receptor subtypes to the disruptive effects of cocaine on prepulse inhibition in mice. Neuropsychopharmacology 33: 2648–2656.
Donovan, D.M., Miner, L.L., Perry, M.P., et al. (1999) Cocaine reward and MPTP toxicity: alteration by regional variant dopamine transporter overexpression. Brain Res Mole Brain Res 73: 37–49.
Downing, C., Rodd-Henricks, K., Marley, R.J., and Dudek, B.C. (2003) Genetic variation in the psychomotor stimulant properties of cocaine in Mus musculus. Psychopharmacology 167: 159–166.
Drago, J., Gerfen, C.R., Westphal, H., and Steiner, H. (1996) D1 dopamine receptor-deficient mouse: cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience 74: 813–823.
Drerup, J.M., Hayashi, K., Cui, H., et al. (2010) Attention-deficit/hyperactivity phenotype in mice lacking the cyclin-dependent kinase 5 cofactor p35. Biol Psychiatry 68: 1163–1171.
Drouin, C., Darracq, L., Trovero, F., et al. (2002) Alpha1b-adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. J Neurosci 22: 2873–2884.
Duysen, E.G., Li, B., Carlson, M., et al. (2008) Increased hepatotoxicity and cardiac fibrosis in cocaine-treated butyrylcholinesterase knockout mice. Basic Clin Pharmacol Toxicol 103: 514–521.
Duysen, E.G. and Lockridge, O. (2011) Prolonged toxic effects after cocaine challenge in butyrylcholinesterase/plasma carboxylesterase double knockout mice: a model for butyrylcholinesterase-deficient humans. Drug Metab Dispos 39: 1321–1323.
Eisener-Dorman, A.F., Grabowski-Boase, L., and Tarantino, L.M. (2011) Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice. Behav Brain Funct 7: 29.
Elliot, E.E., Sibley, D.R., and Katz, J.L. (2003) Locomotor and discriminative-stimulus effects of cocaine in dopamine D5 receptor knockout mice. Psychopharmacology 169: 161–168.
Elmer, G.I., Gorelick, D.A., Goldberg, S.R., and Rothman, R.B. (1996) Acute sensitivity vs. context-specific sensitization to cocaine as a function of genotype. Pharmacol Biochem Behav 53: 623–628.
Engblom, D., Bilbao, A., Sanchis-Segura, C., et al. (2008) Glutamate receptors on dopamine neurons control the persistence of cocaine seeking. Neuron 59: 497–508.
Erwin, V.G., Womer, D.E., Campbell, A.D., and Jones, B.C. (1993) Pharmacogenetics of cocaine: II. Mesocorticolimbic and striatal dopamine and cocaine receptors in C57BL and DBA mice. Pharmacogenetics 3: 189–196.
Espana, R.A., Oleson, E.B., Locke, J.L., et al. (2010) The hypocretin-orexin system regulates cocaine self-administration via actions on the mesolimbic dopamine system. Eur J Neurosci 31: 336–348.
Fabre, V., Beaufour, C., Evrard, A., et al. (2000) Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12: 2299–2310.
Fadda, P., Bedogni, F., Fresu, A., et al. (2007) Reduction of corticostriatal glutamatergic fibers in basic fibroblast growth factor deficient mice is associated with hyperactivity and enhanced dopaminergic transmission. Biol Psychiatry 62: 235–242.
Fasano, S., D’Antoni, A., Orban, P.C., et al. (2009) Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) controls activation of extracellular signal-regulated kinase (ERK) signaling in the striatum and long-term behavioral responses to cocaine. Biol Psychiatry 66: 758–768.
Fienberg, A.A., Hiroi, N., Mermelstein, P.G., et al. (1998) DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 281: 838–842.
Filip, M., Alenina, N., Bader, M., and Przegalinski, E. (2010) Behavioral evidence for the significance of serotoninergic (5-HT) receptors in cocaine addiction. Addict Biol 15: 227–249.
Fox, M.A., Jensen, C.L., French, H.T., et al. (2008) Neurochemical, behavioral, and physiological effects of pharmacologically enhanced serotonin levels in serotonin transporter (SERT)-deficient mice. Psychopharmacology 201: 203–218.
Fox, M.A., Jensen, C.L., and Murphy, D.L. (2009) Tramadol and another atypical opioid meperidine have exaggerated serotonin syndrome behavioural effects, but decreased analgesic effects, in genetically deficient serotonin transporter (SERT) mice. Int J Neuropsychopharmacol 12: 1055–1065.
Fox, M.A., Stein, A.R., French, H.T., and Murphy, D.L. (2010) Functional interactions between 5-HT2A and presynaptic 5-HT1A receptor-based responses in mice genetically deficient in the serotonin 5-HT transporter (SERT). Br J Pharmacol 159: 879–887.
Frederick, A.L., Saborido, T.P., and Stanwood, G.D. (2012) Neurobehavioral phenotyping of G(alphaq) knockout mice reveals impairments in motor functions and spatial working memory without changes in anxiety or behavioral despair. Front Behav Neurosci 6: 29.
Gainetdinov, R.R., Bohn, L.M., Sotnikova, T.D., et al. (2003) Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. Neuron 38: 291–303.
Gainetdinov, R.R., Jones, S.R., and Caron, M.G. (1999a) Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol Psychiatry 46: 303–311.
Gainetdinov, R.R., Wetsel, W.C., Jones, S.R., et al. (1999b) Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283: 397–401.
Gaval-Cruz, M., Schroeder, J.P., Liles, L.C., Javors, M.A., and Weinshenker, D. (2008) Effects of disulfiram and dopamine beta-hydroxylase knockout on cocaine-induced seizures. Pharmacol Biochem Behav 89: 556–562.
George, F.R. and Ritz, M.C. (1990) Cocaine produces locomotor stimulation in Ss-mice but not Ls-mice – relationship to dopaminergic function. Psychopharmacology 101: 18–22.
Giardino, W.J., Mark, G.P., Stenzel-Poore, M.P., and Ryabinin, A.E. (2012) Dissociation of corticotropin-releasing factor receptor subtype involvement in sensitivity to locomotor effects of methamphetamine and cocaine. Psychopharmacology 219: 1055–1063.
Gilbert, J.G., Newman, A.H., Gardner, E.L., et al. (2005) Acute administration of SB-277011A, NGB 2904, or BP 897 inhibits cocaine cue-induced reinstatement of drug-seeking behavior in rats: role of dopamine D3 receptors. Synapse 57: 17–28.
Gill, K.J. and Boyle, A.E. (2003) Confirmation of quantitative trait loci for cocaine-induced activation in the AcB/BcA series of recombinant congenic strains. Pharmacogenetics 13: 329–338.
Giros, B., Jaber, M., Jones, S.R., Wightman, R.M., and Caron, M.G. (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379: 606–612.
Golden, G.T., Ferraro, T.N., Smith, G.G., et al. (2001) Acute cocaine-induced seizures: differential sensitivity of six inbred mouse strains. Neuropsychopharmacology 24: 291–299.
Gong, J.P., Onaivi, E.S., Ishiguro, H., et al. (2006) Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 1071: 10–23.
Gourley, S.L., Koleske, A.J., and Taylor, J.R. (2009) Loss of dendrite stabilization by the Abl-related gene (Arg) kinase regulates behavioral flexibility and sensitivity to cocaine. Proc Natl Acad Sci USA 106: 16859–16864.
Gourley, S.L., Olevska, A., Warren, M.S., Taylor, J.R., and Koleske, A.J. (2012) Arg kinase regulates prefrontal dendritic spine refinement and cocaine-induced plasticity. J Neurosci 32: 2314–2323.
Grahame, N.J. and Cunningham, C.L. (1995) Genetic differences in intravenous cocaine self-administration between C57BL/6J and DBA/2J mice. Psychopharmacology 122: 281–291.
Gregus, A.M., Tropea, T.F., Wang, Y., et al. (2010) Deletion of the GluR5 subunit of kainate receptors affects cocaine sensitivity and preference. Neurosci Lett 468: 186–189.
Hain, H.S., Crabbe, J.C., Bergeson, S.E., and Belknap, J.K. (2000) Cocaine-induced seizure thresholds: quantitative trait loci detection and mapping in two populations derived from the C57BL/6 and DBA/2 mouse strains. J Pharmacol Exp Ther 293: 180–187.
Hall, F.S., Centeno, M., Perona, M.T., et al. (2012) Effects of neurotensin gene knockout in mice on the behavioral effects of cocaine. Psychopharmacology 219: 35–45.
Hall, F.S., Drgonova, J., Goeb, M., and Uhl, G.R. (2003) Reduced behavioral effects of cocaine in heterozygous brain-derived neurotrophic factor (BDNF) knockout mice. Neuropsychopharmacology 28: 1485–1490.
Hall, F.S., Goeb, M., Li, X.F., Sora, I., and Uhl, G.R. (2004) mu-Opioid receptor knockout mice display reduced cocaine conditioned place preference but enhanced sensitization of cocaine-induced locomotion. Brain Res Mol Brain Res 121: 123–130.
Hall, F.S., Li, X.F., Randall-Thompson, J., et al. (2009) Cocaine-conditioned locomotion in dopamine transporter, norepinephrine transporter and serotonin transporter knockout mice. Neuroscience 162: 870–880.
Hall, F.S., Li, X.F., Sora, I., et al. (2002) Cocaine mechanisms: enhanced cocaine, fluoxetine and nisoxetine place preferences following monoamine transporter deletions. Neuroscience 115: 153–161.
Hanania, T., Gulley, J.M., Salaz, D.O., Larson, G.A., and Zahniser, N.R. (2004a) Role of the dopamine transporter in the differential cocaine-induced locomotor activation of inbred long-sleep and short-sleep mice. Neuropsychopharmacology 29: 1814–1822.
Hanania, T., McCreary, A.C., Haughey, H.M., Salaz, D.O., and Zahniser, N.R. (2002) MK-801-and ethanol-induced activity in inbred long-sleep and short-sleep mice: dopamine and serotonin systems. Eur J Pharmacol 457: 125–135.
Hanania, T., McCreary, A.C., Salaz, D.O., Lyons, A.M., and Zahniser, N.R. (2004b) Differential regulation of cocaine-induced locomotor activity in inbred long-sleep and short-sleep mice by dopamine and serotonin systems. Eur J Pharmacol 502: 221–231.
Hanania, T. and Zahniser, N.R. (2002) Locomotor activity induced by noncompetitive NMDA receptor antagonists versus dopamine transporter inhibitors: opposite strain differences in inbred long-sleep and short-sleep mice. Alcohol Clin Exp Res 26: 431–440.
Henricks, K.K., Miner, L.L., and Marley, R.J. (1997) Differential cocaine sensitivity between two closely related substrains of C57BL mice. Psychopharmacology 132: 161–168.
Hiroi, N., Brown, J.R., Haile, C.N., et al. (1997) FosB mutant mice: loss of chronic cocaine induction of Fos-related proteins and heightened sensitivity to cocaine’s psychomotor and rewarding effects. Proc Natl Acad Sci USA 94: 10397–10402.
Hiroi, N., Fienberg, A.A., Haile, C.N., et al. (1999) Neuronal and behavioural abnormalities in striatal function in DARPP-32-mutant mice. Eur J Neurosci 11: 1114–1118.
Hnasko, T.S., Chuhma, N., Zhang, H., et al. (2010) Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65: 643–656.
Hnasko, T.S., Sotak, B.N., and Palmiter, R.D. (2007) Cocaine-conditioned place preference by dopamine-deficient mice is mediated by serotonin. J Neurosci 27: 12484–12488.
Hollander, J.A., Pham, D., Fowler, C.D., and Kenny, P.J. (2012) Hypocretin-1 receptors regulate the reinforcing and reward-enhancing effects of cocaine: pharmacological and behavioral genetics evidence. Front Behav Neurosci 6: 47.
Holmes, A., Yang, R.J., Lesch, K.P., Crawley, J.N., and Murphy, D.L. (2003) Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28: 2077–2088.
Holst, B., Holliday, N.D., Bach, A., et al. (2004) Common structural basis for constitutive activity of the ghrelin receptor family. J Biol Chem 279: 53806–53817.
Homberg, J.R., De Boer, S.F., Raaso, H.S., et al. (2008) Adaptations in pre- and postsynaptic 5-HT(1A) receptor function and cocaine supersensitivity in serotonin transporter knockout rats. Psychopharmacology 200: 367–380.
Horger, B.A., Iyasere, C.A., Berhow, M.T., et al. (1999) Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J Neurosci 19: 4110–4122.
Horger, B.A., Taylor, J.R., Elsworth, J.D., and Roth, R.H. (1994) Preexposure to, but not cotreatment with, the neurotensin antagonist SR 48692 delays the development of cocaine sensitization. Neuropsychopharmacology 11: 215–222.
Hummel, M., Ansonoff, M.A., Pintar, J.E., and Unterwald, E.M. (2004) Genetic and pharmacological manipulation of mu opioid receptors in mice reveals a differential effect on behavioral sensitization to cocaine. Neuroscience 125: 211–220.
Ishiguro, H., Hall, F.S., Horiuchi, Y., et al. (2012) NrCAM-regulating neural systems and addiction-related behaviors. Addict Biol. doi: 10.1111/j.1369-1600.2012.00469.x.
Ishiguro, H., Liu, Q.R., Gong, J.P., et al. (2006) NrCAM in addiction vulnerability: positional cloning, drug-regulation, haplotype-specific expression, and altered drug reward in knockout mice. Neuropsychopharmacology 31: 572–584.
Isner, J.M., Estes, N.A.M., Thompson, P.D., et al. (1986) Acute cardiac events temporally related to cocaine abuse. New Engl J Med 315: 1438–1443.
Itzhak, Y., Ali, S.F., Martin, J.L., Black, M.D., and Huang, P.L. (1998a) Resistance of neuronal nitric oxide synthase-deficient mice to cocaine-induced locomotor sensitization. Psychopharmacology 140: 378–386.
Itzhak, Y., Martin, J.L., Black, M.D., and Huang, P.L. (1998b) The role of neuronal nitric oxide synthase in cocaine-induced conditioned place preference. Neuroreport 9: 2485–2488.
Itzhak, Y., Roger-Sanchez, C., Kelley, J.B., and Anderson, K.L. (2010) Discrimination between cocaine-associated context and cue in a modified conditioned place preference paradigm: role of the nNOS gene in cue conditioning. Int J Neuropsychopharmacol 13: 171–180.
Janowsky, A., Mah, C., Johnson, R.A., et al. (2001) Mapping genes that regulate density of dopamine transporters and correlated behaviors in recombinant inbred mice. J Pharmacol Exp Ther 298: 634–643.
Jasmin, L., Narasaiah, M., and Tien, D. (2006) Noradrenaline is necessary for the hedonic properties of addictive drugs. Vasc Pharmacol 45: 243–250.
Jeon, J., Dencker, D., Wortwein, G., et al. (2010) A subpopulation of neuronal M-4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J Neurosci 30: 2396–2405.
Jones, B.C., Campbell, A.D., Radcliffe, R.A., and Erwin, V.G. (1992) Psychomotor stimulant effect of cocaine is affected by genetic makeup and experimental history. Ann NY Acad Sci 654: 456–458.
Jones, B.C., Reed, C.L., Radcliffe, R.A., and Erwin, V.G. (1993) Pharmacogenetics of cocaine: I. Locomotor activity and self-selection. Pharmacogenetics 3: 182–188.
Jones, B.C., Tarantino, L.M., Rodriguez, L.A., et al. (1999a) Quantitative-trait loci analysis of cocaine-related behaviours and neurochemistry. Pharmacogenetics 9: 607–617.
Jones, J.D., Hall, F.S., Uhl, G.R., Rice, K., and Riley, A.L. (2009) Differential involvement of the norepinephrine, serotonin and dopamine reuptake transporter proteins in cocaine-induced taste aversion. Pharmacol Biochem Behav 93: 75–81.
Jones, J.D., Hall, F.S., Uhl, G.R., and Riley, A.L. (2010) Dopamine, norepinephrine and serotonin transporter gene deletions differentially alter cocaine-induced taste aversion. Pharmacol Biochem Behav 94: 580–587.
Jones, K.R., Farinas, I., Backus, C., and Reichardt, L.F. (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76: 989–999.
Jones, S.R., Gainetdinov, R.R., Hu, X.T., et al. (1999b) Loss of autoreceptor functions in mice lacking the dopamine transporter. Nat Neurosci 2: 649–655.
Kamens, H.M., Burkhart-Kasch, S., McKinnon, C.S., et al. (2005) Sensitivity to psychostimulants in mice bred for high and low stimulation to methamphetamine. Genes Brain Behav 4: 110–125.
Kaminski, R.M., Shippenberg, T.S., Witkin, J.M., and Rocha, B.A. (2005) Genetic deletion of the norepinephrine transporter decreases vulnerability to seizures. Neurosci Lett 382: 51–55.
Karasinska, J.M., George, S.R., Cheng, R., and O’Dowd, B.F. (2005) Deletion of dopamine D1 and D3 receptors differentially affects spontaneous behaviour and cocaine-induced locomotor activity, reward and CREB phosphorylation. Eur J Neurosci 22: 1741–1750.
Karlsson, R.M., Hefner, K.R., Sibley, D.R., and Holmes, A. (2008) Comparison of dopamine D1 and D5 receptor knockout mice for cocaine locomotor sensitization. Psychopharmacology 200: 117–127.
Katz, J.L., Chausmer, A.L., Elmer, G.I., et al. (2003) Cocaine-induced locomotor activity and cocaine discrimination in dopamine D4 receptor mutant mice. Psychopharmacology 170: 108–114.
Kheirbek, M.A., Beeler, J.A., Chi, W., Ishikawa, Y., and Zhuang, X. (2010) A molecular dissociation between cued and contextual appetitive learning. Learn Mem 17: 148–154.
Kimura, S., Bassett, A.L., Xi, H., and Myerburg, R.J. (1992) Early afterdepolarizations and triggered activity induced by cocaine. A possible mechanism of cocaine arrhythmogenesis. Circulation 85: 2227–2235.
Kiraly, D.D., Ma, X.M., Mazzone, C.M., et al. (2010) Behavioral and morphological responses to cocaine require kalirin7. Biol Psychiatry 68: 249–255.
Koff, J.M., Shuster, L., and Miller, L.G. (1994) Chronic cocaine administration is associated with behavioral sensitization and time-dependent changes in striatal dopamine transporter binding. J Pharmacol Exp Ther 268: 277–282.
Kong, H., Kuang, W., Li, S., and Xu, M. (2011) Activation of dopamine D3 receptors inhibits reward-related learning induced by cocaine. Neuroscience 176: 152–161.
Kovoor, A., Seyffarth, P., Ebert, J., et al. (2005) D2 dopamine receptors colocalize regulator of G-protein signaling 9–2 (RGS9–2) via the RGS9 DEP domain, and RGS9 knock-out mice develop dyskinesias associated with dopamine pathways. J Neurosci 25: 2157–2165.
Kreibich, A.S., Briand, L., Cleck, J.N., et al. (2009) Stress-induced potentiation of cocaine reward: a role for CRFR1 and CREB. Neuropsychopharmacology 34: 2609–2617.
Kuhar, M.J., Ritz, M.C., and Boja, J.W. (1991) The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 14: 299–302.
Kurtuncu, M., Battista, N., Uz, T., et al. (2008) Effects of cocaine in 5-lipoxygenase-deficient mice. J Neur Trans 115: 389–395.
Kuzmin, A. and Johansson, B. (2000) Reinforcing and neurochemical effects of cocaine: differences among C57, DBA, and 129 mice. Pharmacol Biochem Behav 65: 399–406.
Kwon, Y.G., Huang, H.B., Desdouits, F., et al. (1997) Characterization of the interaction between DARPP-32 and protein phosphatase 1 (PP-1): DARPP-32 peptides antagonize the interaction of PP-1 with binding proteins. Proc Natl Acad Sci USA 94: 3536–3541.
L’Hirondel, M., Cheramy, A., Godeheu, G., et al. (1998) Lack of autoreceptormediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice. Brain Res 792: 253–262.
Land, B.B., Bruchas, M.R., Schattauer, S., et al. (2009) Activation of the kappa opioid receptor in the dorsal raphe nucleus mediates the aversive effects of stress and reinstates drug seeking. Proc Natl Acad Sci USA 106: 19168–19173.
Le Foll, B., Frances, H., Diaz, J., Schwartz, J.C., and Sokoloff, P. (2002) Role of the dopamine D3 receptor in reactivity to cocaine-associated cues in mice. Eur J Neurosci 15: 2016–2026.
Li, B.J., Arime, Y., Hall, F.S., Uhl, G.R., and Sora, I. (2010) Impaired spatial working memory and decreased frontal cortex BDNF protein level in dopamine transporter knockout mice. Eur J Pharmacol 628: 104–107.
Li, Q., Wichems, C., Heils, A., Lesch, K.P., and Murphy, D.L. (2000) Reduction in the density and expression, but not G-protein coupling, of serotonin receptors (5-HT1A) in 5-HT transporter knock-out mice: gender and brain region differences. J Neurosci 20: 7888–7895.
Li, X., Hoffman, A.F., Peng, X.Q., et al. (2009) Attenuation of basal and cocaine-enhanced locomotion and nucleus accumbens dopamine in cannabinoid CB1-receptor-knockout mice. Psychopharmacology 204: 1–11.
Lu, L., Wang, X., Wu, P., et al. (2009) Role of ventral tegmental area glial cell line-derived neurotrophic factor in incubation of cocaine craving. Biol Psychiatry 66: 137–145.
Lucas, J.J., Segu, L., and Hen, R. (1997) 5-Hydroxytryptamine1B receptors modulate the effect of cocaine on c-fos expression: converging evidence using 5-hydroxytryptamine1B knockout mice and the 5-hydroxytryptamine1B/1D antagonist GR127935. Mol Pharmacol 51: 755–763.
Luo, Y., Good, C.H., Diaz-Ruiz, O., et al. (2010) NMDA receptors on non-dopaminergic neurons in the VTA support cocaine sensitization. PLoS ONE 5: e12141.
Lyons, W.E., Mamounas, L.A., Ricaurte, G.A., et al. (1999) Brain-derived neurotrophic factor-deficient mice develop aggressiveness and hyperphagia in conjunction with brain serotonergic abnormalities. Proc Natl Acad Sci USA 96: 15239–15244.
MacLaren, E.J. and Sikela, J.M. (2005) Cerebellar gene expression profiling and eQTL analysis in inbred mouse strains selected for ethanol sensitivity. Alcohol Clin Exp Res 29: 1568–1579.
Madras, B.K., Fahey, M.A., Bergman, J., Canfield, D.R., and Spealman, R.D. (1989) Effects of cocaine and related drugs in nonhuman primates. I. [3H]cocaine binding sites in caudate-putamen. J Pharmacol Exp Ther 251: 131–141.
Maiya, R., Zhou, Y., Norris, E.H., Kreek, M.J., and Strickland, S. (2009) Tissue plasminogen activator modulates the cellular and behavioral response to cocaine. Proc Natl Acad Sci USA 106: 1983–1988.
Malvaez, M., Mhillaj, E., Matheos, D.P., Palmery, M., and Wood, M.A. (2011) CBP in the nucleus accumbens regulates cocaine-induced histone acetylation and is critical for cocaine-associated behaviors. J Neurosci 31: 16941–16948.
Marazziti, D., Di Pietro, C., Mandillo, S., et al. (2011) Absence of the GPR37/PAEL receptor impairs striatal Akt and ERK2 phosphorylation, DeltaFosB expression, and conditioned place preference to amphetamine and cocaine. FASEB J 25: 2071–2081.
Marley, R.J., Arros, D.M., Henricks, K.K., Marley, M.E., and Miner, L.L. (1998) Sensitivity to cocaine and amphetamine among mice selectively bred for differential cocaine sensitivity. Psychopharmacology 140: 42–51.
Marley, R.J. and Goldberg, S.R. (1992) Pharmacogenetic assessment of the effects of carbamazepine on cocaine-kindled and cocaine-induced seizures. Brain Res 579: 43–49.
Marley, R.J., Witkin, J.M., and Goldberg, S.R. (1990) Genetic differences in the development of cocaine-kindled seizures. NIDA Res Monogr 105: 357–358.
Marley, R.J., Witkin, J.M., and Goldberg, S.R. (1991) Genetic factors influence changes in sensitivity to the convulsant properties of cocaine following chronic treatment. Brain Res 542: 1–7.
Marquez, P., Baliram, R., Dabaja, I., Gajawada, N., and Lutfy, K. (2008a) The role of beta-endorphin in the acute motor stimulatory and rewarding actions of cocaine in mice. Psychopharmacology 197: 443–448.
Marquez, P., Nguyen, A.T., Hamid, A., and Lutfy, K. (2008b) The endogenous OFQ/N/ORL-1 receptor system regulates the rewarding effects of acute cocaine. Neuropharmacology 54: 564–568.
Martin, B.J., Naughton, B.J., Thirtamara-Rajamani, K., et al. (2011) Dopamine transporter inhibition is necessary for cocaine-induced increases in dendritic spine density in the nucleus accumbens. Synapse 65: 490–496.
Mateo, Y., Budygin, E.A., John, C.E., Banks, M.L., and Jones, S.R. (2004) Voltammetric assessment of dopamine clearance in the absence of the dopamine transporter: no contribution of other transporters in core or shell of nucleus accumbens. J Neurosci Methods 140: 183–187.
Mathis, C., Bott, J.B., Candusso, M.P., Simonin, F., and Cassel, J.C. (2011) Impaired striatum-dependent behavior in GASP-1-knock-out mice. Genes Brain Behav 10: 299–308.
Mazei, M.S., Pluto, C.P., Kirkbride, B., and Pehek, E.A. (2002) Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat. Brain Res 936: 58–67.
McCarthy, L.E., Mannelli, P., Niculescu, M., et al. (2004) The distribution of cocaine in mice differs by age and strain. Neurotoxicol Teratol 26: 839–848.
McElligott, Z.A. and Winder, D.G. (2008) Alpha1-adrenergic receptor-induced heterosynaptic long-term depression in the bed nucleus of the stria terminalis is disrupted in mouse models of affective disorders. Neuropsychopharmacology 33: 2313–2323.
McGranahan, T.M., Patzlaff, N.E., Grady, S.R., Heinemann, S.F., and Booker, T.K. (2011) Alpha4beta2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief. J Neurosci 31: 10891–10902.
McPherson, C.S., Mantamadiotis, T., Tan, S.S., and Lawrence, A.J. (2010) Deletion of CREB1 from the dorsal telencephalon reduces motivational properties of cocaine. Cerebral Cortex 20: 941–952.
Mead, A.N., Katz, J.L., and Rocha, B.A. (2002a) Intravenous cocaine-induced activity in A/J and C57BL/6J mice: behavioral sensitization and conditioned activity. Neuropharmacology 42: 976–986.
Mead, A.N., Rocha, B.A., Donovan, D.M., and Katz, J.L. (2002b) Intravenous cocaine induced-activity and behavioural sensitization in norepinephrine-, but not dopamine-transporter knockout mice. Eur J Neurosci 16: 514–520.
Medvedev, I.O., Gainetdinov, R.R., Sotnikova, T.D., et al. (2005) Characterization of conditioned place preference to cocaine in congenic dopamine transporter knockout female mice. Psychopharmacology 180: 408–413.
Meyer, P.J., Meshul, C.K., and Phillips, T.J. (2009) Ethanol- and cocaine-induced locomotion are genetically related to increases in accumbal dopamine. Genes Brain Behav 8: 346–355.
Miller, L.L., Ward, S.J., and Dykstra, L.A. (2008) Chronic unpredictable stress enhances cocaine-conditioned place preference in type 1 cannabinoid receptor knockout mice. Behav Pharmacol 19: 575–581.
Miner, L.L. (1997) Cocaine reward and locomotor activity in C57BL/6J and 129/SvJ inbred mice and their F1 cross. Pharmacol Biochem Behav 58: 25–30.
Miner, L.L., Drago, J., Chamberlain, P.M., Donovan, D., and Uhl, G.R. (1995) Retained cocaine conditioned place preference in D1 receptor deficient mice. Neuroreport 6: 2314–2316.
Miner, L.L. and Marley, R.J. (1995a) Chromosomal mapping of loci influencing sensitivity to cocaine-induced seizures in Bxd recombinant inbred strains of mice. Psychopharmacology 117: 62–66.
Miner, L.L. and Marley, R.J. (1995b) Chromosomal mapping of the psychomotor stimulant effects of cocaine in Bxd recombinant inbred mice. Psychopharmacology 122: 209–214.
Moratalla, R., Xu, M., Tonegawa, S., and Graybiel, A.M. (1996) Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Proc Natl Acad Sci USA 93: 14928–14933.
Morice, E., Denis, C., Giros, B., and Nosten-Bertrand, M. (2004) Phenotypic expression of the targeted null-mutation in the dopamine transporter gene varies as a function of the genetic background. Eur J Neurosci 20: 120–126.
Morice, E., Denis, C., Giros, B., and Nosten-Bertrand, M. (2010) Evidence of long-term expression of behavioral sensitization to both cocaine and ethanol in dopamine transporter knockout mice. Psychopharmacology 208: 57–66.
Morris, H.V., Dawson, G.R., Reynolds, D.S., et al. (2008) Alpha2-containing GABA(A) receptors are involved in mediating stimulant effects of cocaine. Pharmacol Biochem Behav 90: 9–18.
Morse, A.C., Erwin, V.G., and Jones, B.C. (1993) Strain and housing affect cocaine self-selection and open-field locomotor activity in mice. Pharmacol Biochem Behav 45: 905–912.
Morse, A.C., Erwin, V.G., and Jones, B.C. (1995) Behavioral responses to low doses of cocaine are affected by genetics and experimental history. Physiol Behav 58: 891–897.
Murphy, D.L., Uhl, G.R., Holmes, A., et al. (2003) Experimental gene interaction studies with SERT mutant mice as models for human polygenic and epistatic traits and disorders. Genes Brain Behav 2: 350–364.
Narasimhaiah, R., Kamens, H.M., and Picciotto, M.R. (2009) Effects of galanin on cocaine-mediated conditioned place preference and ERK signaling in mice. Psychopharmacology 204: 95–102.
Navarro, G., Moreno, E., Aymerich, M., et al. (2010) Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine. Proc Natl Acad Sci USA 107: 18676–18681.
Nguyen, A.T., Marquez, P., Hamid, A., et al. (2012) The rewarding action of acute cocaine is reduced in beta-endorphin deficient but not in mu opioid receptor knockout mice. Eur J Pharmacol 686: 50–54.
Nonkes, L.J., Maes, J.H., and Homberg, J.R. (2013) Improved cognitive flexibility in serotonin transporter knockout rats is unchanged following chronic cocaine self-administration. Addict Biol 18: 434–440.
O’Brien, R.J., Xu, D., Petralia, R.S., et al. (1999) Synaptic clustering of AMPA receptors by the extracellular immediate-early gene product Narp. Neuron 23: 309–323.
O’Neill, B., Tilley, M.R., and Gu, H.H. (2013) Cocaine produces conditioned place aversion in mice with a cocaine-insensitive dopamine transporter. Genes Brain Behav 12: 34–38.
Ogawa, M., Miyakawa, T., Nakamura, K., et al. (2007) Altered sensitivities to morphine and cocaine in scaffold protein tamalin knockout mice. Proc Natl Acad Sci USA 104: 14789–14794.
Olson, K.R., Kearney, T.E., Dyer, J.E., Benowitz, N.L., and Blanc, P.D. (1993) Seizures associated with poisoning and drug overdose. Am J Emergency Med 11: 565–568.
Orsini, C., Bonito-Oliva, A., Conversi, D., and Cabib, S. (2005) Susceptibility to conditioned place preference induced by addictive drugs in mice of the C57BL/6 and DBA/2 inbred strains. Psychopharmacology 181: 327–336.
Pacchioni, A.M., Vallone, J., Worley, P.F., and Kalivas, P.W. (2009) Neuronal pentraxins modulate cocaine-induced neuroadaptations. J Pharmacol Exp Ther 328: 183–192.
Palmer, A.A., Verbitsky, M., Suresh, R., et al. (2005) Gene expression differences in mice divergently selected for methamphetamine sensitivity. Mamm Genome 16: 291–305.
Paneda, C., Huitron-Resendiz, S., Frago, L.M., et al. (2009) Neuropeptide S reinstates cocaine-seeking behavior and increases locomotor activity through corticotropin-releasing factor receptor 1 in mice. J Neurosci 29: 4155–4161.
Parsons, L.H., Koob, G.F., and Weiss, F. (1999) RU 24969, a 5-HT1B/1A receptor agonist, potentiates cocaine-induced increases in nucleus accumbens dopamine. Synapse 32: 132–135.
Parsons, L.H., Weiss, F., and Koob, G.F. (1998) Serotonin 1B receptor stimulation enhances cocaine reinforcement. J Neurosci 18: 10078–10089.
Peng, X.Q., Ashby, C.R., Jr., Spiller, K., et al. (2009) The preferential dopamine D3 receptor antagonist S33138 inhibits cocaine reward and cocaine-triggered relapse to drug-seeking behavior in rats. Neuropharmacology 56: 752–760.
Pentkowski, N.S., Cheung, T.H., Toy, W.A., et al. (2012) Protracted withdrawal from cocaine self-administration flips the switch on 5-HT(1B) receptor modulation of cocaine abuse-related behaviors. Biol Psychiatry 72: 396–404.
Pert, A., Post, R., and Weiss, S.R. (1990) Conditioning as a critical determinant of sensitization induced by psychomotor stimulants. NIDA Res Monogr 97: 208–241.
Philip, V.M., Duvvuru, S., Gomero, B., et al. (2010) High-throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains. Genes Brain Behav 9: 129–159.
Phillips, T.J., Huson, M.G., and McKinnon, C.S. (1998) Localization of genes mediating acute and sensitized locomotor responses to cocaine in BXD/Ty recombinant inbred mice. J Neurosci 18: 3023–3034.
Platt, D.M., Rowlett, J.K., and Spealman, R.D. (2000) Dissociation of cocaine-antagonist properties and motoric effects of the D1 receptor partial agonists SKF 83959 and SKF 77434. J Pharmacol Exp Ther 293: 1017–1026.
Puglisiallegra, S., Cestari, V., Cabib, S., and Castellano, C. (1994) Strain-dependent effects of post-training cocaine or nomifensine on memory storage involve both D-1 and D-2 dopamine-receptors. Psychopharmacology 115: 157–162.
Qian, Z., Gilbert, M.E., Colicos, M.A., Kandel, E.R., and Kuhl, D. (1993) Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361: 453–457.
Rahman, Z., Schwarz, J., Gold, S.J., et al. (2003) RGS9 modulates dopamine signaling in the basal ganglia. Neuron 38: 941–952.
Ralph, R.J., Paulus, M.P., Fumagalli, F., Caron, M.G., and Geyer, M.A. (2001) Prepulse inhibition deficits and perseverative motor patterns in dopamine transporter knock-out mice: differential effects of D1 and D2 receptor antagonists. J Neurosci 21: 305–313.
Redila, V.A. and Chavkin, C. (2008) Stress-induced reinstatement of cocaine seeking is mediated by the kappa opioid system. Psychopharmacology 200: 59–70.
Reith, M.E. and Selmeci, G. (1992) Cocaine binding sites in mouse striatum, dopamine autoreceptors, and cocaine-induced locomotion. Pharmacol Biochem Behav 41: 227–230.
Resnick, A., Homanics, G.E., Jung, B.J., and Peris, J. (1999) Increased acute cocaine sensitivity and decreased cocaine sensitization in GABA(A) receptor beta(3) subunit knockout mice. J Neurochem 73: 1539–1548.
Revel, F.G., Moreau, J.L., Gainetdinov, R.R., et al. (2011) TAAR1 activation modulates monoaminergic neurotransmission, preventing hyperdopaminergic and hypoglutamatergic activity. Proc Natl Acad Sci USA 108: 8485–8490.
Reyes, S., Kane, G.C., Miki, T., Seino, S., and Terzic, A. (2007) KATP channels confer survival advantage in cocaine overdose. Mol Psychiatry 12: 1060–1061.
Reyes, S., Kane, G.C., Zingman, L.V., Yamada, S., and Terzic, A. (2009) Targeted disruption of K-ATP channels aggravates cardiac toxicity in cocaine abuse. Clin Transl Sci 2: 361–365.
Rhodes, J.S., Hosack, G.R., Girard, I., et al. (2001) Differential sensitivity to acute administration of cocaine, GBR 12909, and fluoxetine in mice selectively bred for hyperactive wheel-running behavior. Psychopharmacology 158: 120–131.
Richard, E.M., Helbling, J.C., Tridon, C., et al. (2010) Plasma transcortin influences endocrine and behavioral stress responses in mice. Endocrinology 151: 649–659.
Riley, A.L. (2011) The paradox of drug taking: the role of the aversive effects of drugs. Physiol Behav 103: 69–78.
Ripley, T.L., Rocha, B.A., Oglesby, M.W., and Stephens, D.N. (1999) Increased sensitivity to cocaine, and over-responding during cocaine self-administration in tPA knockout mice. Brain Res 826: 117–127.
Ritz, M.C., Cone, E.J., and Kuhar, M.J. (1990) Cocaine inhibition of ligand-binding at dopamine, norepinephrine and serotonin transporters – a structure-activity study. Life Sci 46: 635–645.
Ritz, M.C., Lamb, R.J., Goldberg, S.R., and Kuhar, M.J. (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237: 1219–1223.
Robinson, S., Smith, D.M., Mizumori, S.J., and Palmiter, R.D. (2004) Firing properties of dopamine neurons in freely moving dopamine-deficient mice: effects of dopamine receptor activation and anesthesia. Proc Natl Acad Sci USA 101: 13329–13334.
Robinson, T.E. and Berridge, K.C. (2001) Incentive-sensitization and addiction. Addiction 96: 103–114.
Rocha, B.A., Ator, R., EmmettOglesby, M.W., and Hen, R. (1997) Intravenous cocaine self-administration in mice lacking 5-HT1B receptors. Pharmacol Biochem Behav 57: 407–412.
Rocha, B.A., Fumagalli, F., Gainetdinov, R.R., et al. (1998a) Cocaine self-administration in dopaminetransporter knockout mice. Nat Neurosci 1: 132–137.
Rocha, B.A., Goulding, E.H., O’Dell, L.E., et al. (2002) Enhanced locomotor, reinforcing, and neurochemical effects of cocaine in serotonin 5-hydroxytryptamine 2C receptor mutant mice. J Neurosci 22: 10039–10045.
Rocha, B.A., Odom, L.A., Barron, B.A., et al. (1998b) Differential responsiveness to cocaine in C57BL/6J and DBA/2J mice. Psychopharmacology 138: 82–88.
Rocha, B.A., Scearce-Levie, K., Lucas, J.J., et al. (1998c) Increased vulnerability to cocaine in mice lacking the serotonin-1B receptor. Nature 393: 175–178.
Rouge-Pont, F., Usiello, A., Benoit-Marand, M., et al. (2002) Changes in extracellular dopamine induced by morphine and cocaine: crucial control by D2 receptors. J Neurosci 22: 3293–3301.
Rubinstein, M., Phillips, T.J., Bunzow, J.R., et al. (1997) Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 90: 991–1001.
Ruiz-Durantez, E., Hall, S.K., Steffen, C., and Self, D.W. (2006) Enhanced acquisition of cocaine self-administration by increasing percentages of C57BL/6J genes in mice with a nonpreferring outbred background. Psychopharmacology 186: 553–560.
Ruth, J.A., Ullman, E.A., and Collins, A.C. (1988) An analysis of cocaine effects on locomotor activities and heart-rate in 4 inbred mouse strains. Pharmacol Biochem Behav 29: 157–162.
Salomon, L., Lanteri, C., Godeheu, G., et al. (2007) Paradoxical constitutive behavioral sensitization to amphetamine in mice lacking 5-HT2A receptors. Psychopharmacology 194: 11–20.
Schank, J.R., Liles, L.C., and Weinshenker, D. (2008) Norepinephrine signaling through beta-adrenergic receptors is critical for expression of cocaine-induced anxiety. Biol Psychiatry 63: 1007–1012.
Schank, J.R., Ventura, R., Puglisi-Allegra, S., et al. (2006) Dopamine beta-hydroxylase knockout mice have alterations in dopamine signaling and are hypersensitive to cocaine. Neuropsychopharmacology 31: 2221–2230.
Schlussman, S.D., Ho, A., Zhou, Y., Curtis, A.E., and Kreek, M.J. (1998) Effects of “binge” pattern cocaine on stereotypy and locomotor activity in C57BL/6J and 129/J mice. Pharmacol Biochem Behav 60: 593–599.
Schlussman, S.D., Zhang, Y., Kane, S., et al. (2003a) Locomotion, stereotypy, and dopamine D-1 receptors after chronic “binge” cocaine in C57BL/6J and 129/J mice. Pharmacol Biochem Behav 75: 123–131.
Schlussman, S.D., Zhang, Y., Yuferov, V., et al. (2003b) Acute “binge” cocaine administration elevates dynorphin mRNA in the caudate putamen of C57BL/6J but not 129/J mice. Brain Res 974: 249–253.
Schmidt, L.S., Miller, A.D., Lester, D.B., et al. (2010) Increased amphetamine-induced locomotor activity, sensitization, and accumbal dopamine release in M-5 muscarinic receptor knockout mice. Psychopharmacology 207: 547–558.
Schmidt, L.S., Thomsen, M., Weikop, P., et al. (2011) Increased cocaine self-administration in M4 muscarinic acetylcholine receptor knockout mice. Psychopharmacology 216: 367–378.
Scott, A.W., Griffin, S.A., and Luedtke, R.R. (1995) Genetic polymorphisms at the rat and murine loci coding for dopamine D2-like receptors. Brain Res Mol Brain Res 29: 347–357.
Seeman, P., Hall, F.S., and Uhl, G. (2007) Increased dopamine D2High receptors in knockouts of the dopamine transporter and the vesicular monoamine transporter may contribute to spontaneous hyperactivity and dopamine supersensitivity. Synapse 61: 573–576.
Seiden, L.S. and Sabol, K.E. (1993) Amphetamine – effects on catecholamine systems and behavior. Ann Rev Pharmacol Toxicol 33: 639–677.
Serafine, K.M., Briscione, M.A., Rice, K.C., and Riley, A.L. (2012) Dopamine mediates cocaine-induced conditioned taste aversions as demonstrated with cross-drug preexposure to GBR 12909. Pharmacol Biochem Behav 102: 269–274.
Sharkey, J., Glen, K.A., Wolfe, S., and Kuhar, M.J. (1988a) Cocaine binding at sigma receptors. Eur J Pharmacol 149: 171–174.
Sharkey, J., Ritz, M.C., Schenden, J.A., Hanson, R.C., and Kuhar, M.J. (1988b) Cocaine inhibits muscarinic cholinergic receptors in heart and brain. J Pharmacol Exp Ther 246: 1048–1052.
Shen, H.W., Hagino, Y., Kobayashi, H., et al. (2004) Regional differences in extracellular dopamine and serotonin assessed by in vivo microdialysis in mice lacking dopamine and/or serotonin transporters. Neuropsychopharmacology 29: 1790–1799.
Shimosato, K., Saito, T., and Marley, R.J. (1994) Genotype-specific blockade of cocaine-induced weight loss by the protein synthesis inhibitor, anisomycin. Life Sci 55: PL293–PL299.
Shippenberg, T.S., Hen, R., and He, M. (2000) Region-specific enhancement of basal extracellular and cocaine-evoked dopamine levels following constitutive deletion of the serotonin(1B) receptor. J Neurochem 75: 258–265.
Shuster, L., Yu, G., and Bates, A. (1977) Sensitization to cocaine stimulation in mice. Psychopharmacology 52: 185–190.
Smolen, A. and Marks, M.J. (1991) Genetic selections for nicotine and cocaine sensitivity in mice. J Addict Dis 10: 7–28.
Soliman, F., Glatt, C.E., Bath, K.G., et al. (2010) A genetic variant BDNF polymorphism alters extinction learning in both mouse and human. Science 327: 863–866.
Song, R., Yang, R.F., Wu, N., et al. (2012) YQA14: a novel dopamine D3 receptor antagonist that inhibits cocaine self-administration in rats and mice, but not in D3 receptor-knockout mice. Addict Biol 17: 259–273.
Sora, I., Hall, F.S., Andrews, A.M., et al. (2001) Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. Proc Natl Acad Sci USA 98: 5300–5305.
Sora, I., Wichems, C., Takahashi, N., et al. (1998) Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice. Proc Natl Acad Sci USA 95: 7699–7704.
Sorensen, G., Jensen, M., Weikop, P., et al. (2012) Neuropeptide Y Y5 receptor antagonism attenuates cocaine-induced effects in mice. Psychopharmacology 222: 565–577.
Sorensen, G. and Woldbye, D.P. (2012) Mice lacking neuropeptide Y show increased sensitivity to cocaine. Synapse 66: 840–843.
Spealman, R.D., Madras, B.K., and Bergman, J. (1989) Effects of cocaine and related drugs in nonhuman primates. II. Stimulant effects on schedule-controlled behavior. J Pharmacol Exp Ther 251: 142–149.
Stoker, A.K., Olivier, B., and Markou, A. (2012) Involvement of metabotropic glutamate receptor 5 in brain reward deficits associated with cocaine and nicotine withdrawal and somatic signs of nicotine withdrawal. Psychopharmacology 221: 317–327.
Takahashi, N., Miner, L.L., Sora, I., et al. (1997) VMAT2 knockout mice: heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad Sci USA 94: 9938–9943.
Thanos, P.K., Bermeo, C., Rubinstein, M., et al. (2010a) Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors. J Psychopharmacol 24: 897–904.
Thanos, P.K., Habibi, R., Michaelides, M., et al. (2010b) Dopamine D4 receptor (D4R) deletion in mice does not affect operant responding for food or cocaine. Behav Brain Res 207: 508–511.
Thomas, M.J., Kalivas, P.W., and Shaham, Y. (2008) Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br J Pharmacol 154: 327–342.
Thompson, B.J., Jessen, T., Henry, L.K., et al. (2011) Transgenic elimination of high-affinity antidepressant and cocaine sensitivity in the presynaptic serotonin transporter. Proc Natl Acad Sci USA 108: 3785–3790.
Thompson, D., Martini, L., and Whistler, J.L. (2010) Altered ratio of D1 and D2 dopamine receptors in mouse striatum is associated with behavioral sensitization to cocaine. PLoS ONE 5: e11038.
Thomsen, M. and Caine, S.B. (2006) Cocaine self-administration under fixed and progressive ratio schedules of reinforcement: comparison of C57BL/6J, 129X1/SvJ, and 129S6/SvEvTac inbred mice. Psychopharmacology 184: 145–154.
Thomsen, M. and Caine, S.B. (2011) Psychomotor stimulant effects of cocaine in rats and 15 mouse strains. Exp Clin Psychopharmacol 19: 321–341.
Thomsen, M., Conn, P.J., Lindsley, C., et al. (2010) Attenuation of cocaine’s reinforcing and discriminative stimulus effects via muscarinic M1 acetylcholine receptor stimulation. J Pharmacol Exp Ther 332: 959–969.
Thomsen, M., Hall, F.S., Uhl, G.R., and Caine, S.B. (2009a) Dramatically decreased cocaine self-administration in dopamine but not serotonin transporter knock-out mice. J Neurosci 29: 1087–1092.
Thomsen, M., Han, D.D., Gu, H.H., and Caine, S.B. (2009b) Lack of cocaine self-administration in mice expressing a cocaine-insensitive dopamine transporter. J Pharmacol Exp Ther 331: 204–211.
Thomsen, M., Lindsley, C.W., Conn, P.J., et al. (2012) Contribution of both M(1) and M (4) receptors to muscarinic agonist-mediated attenuation of the cocaine discriminative stimulus in mice. Psychopharmacology 220: 673–685.
Tilley, M.R., Cagniard, B., Zhuang, X., et al. (2007) Cocaine reward and locomotion stimulation in mice with reduced dopamine transporter expression. BMC Neurosci 8: 42.
Tilley, M.R. and Gu, H.H. (2008) Dopamine transporter inhibition is required for cocaine-induced stereotypy. Neuroreport 19: 1137–1140.
Tilley, M.R., O’Neill, B., Han, D.D., and Gu, H.H. (2009) Cocaine does not produce reward in absence of dopamine transporter inhibition. Neuroreport 20: 9–12.
Tirelli, E. and Witkin, J.M. (1994) Verticalization of behavior elicited by dopaminergic mobilization is qualitatively different between C57bl/6j and Dba/2j mice. Psychopharmacology 116: 191–200.
Tolliver, B.K., Belknap, J.K., Woods, W.E., and Carney, J.M. (1994) Genetic analysis of sensitization and tolerance to cocaine. J Pharmacol Exp Ther 270: 1230–1238.
Tolliver, B.K. and Carney, J.M. (1994a) Comparison of cocaine and GBR 12935: effects on locomotor activity and stereotypy in two inbred mouse strains. Pharmacol Biochem Behav 48: 733–739.
Tolliver, B.K. and Carney, J.M. (1994b) Sensitization to stereotypy in DBA/2J but not C57BL/6J mice with repeated cocaine. Pharmacol Biochem Behav 48: 169–173.
Trocello, J.M., Rostene, W., Melik-Parsadaniantz, S., et al. (2011) Implication of CCR2 chemokine receptor in cocaine-induced sensitization. J Mol Neurosci 44: 147–151.
Tyhon, A., Lakaye, B., Adamantidis, A., and Tirelli, E. (2008) Amphetamine- and cocaine-induced conditioned place preference and concomitant psychomotor sensitization in mice with genetically inactivated melanin-concentrating hormone MCH(1) receptor. Eur J Pharmacol 599: 72–80.
Uhl, G.R., Drgon, T., Johnson, C., et al. (2008) “Higher order” addiction molecular genetics: convergent data from genome-wide association in humans and mice. Biochem Pharmacol 75: 98–111.
Uhl, G.R., Hall, F.S., and Sora, I. (2002) Cocaine, reward, movement and monoamine transporters. Mol Psychiatry 7: 21–26.
Uys, J.D., Knackstedt, L., Hurt, P., et al. (2011) Cocaine-induced adaptations in cellular redox balance contributes to enduring behavioral plasticity. Neuropsychopharmacology 36: 2551–2560.
Van Sickle, M.D., Duncan, M., Kingsley, P.J., et al. (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310: 329–332.
Vanderschuren, L.J.M.J. and Kalivas, P.W. (2000) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology 151: 99–120.
Vargas-Irwin, C., van den Oord, E.J.C.G., Beardsley, P.M., and Robles, J.R. (2006) A method for analyzing strain differences in acquisition of IV cocaine self-administration in mice. Behav Genet 36: 525–535.
Vialou, V., Feng, J., Robison, A.J., et al. (2012) Serum response factor and cAMP response element binding protein are both required for cocaine induction of DeltaFosB. J Neurosci 32: 7577–7584.
Vialou, V., Maze, I., Renthal, W., et al. (2010) Serum response factor promotes resilience to chronic social stress through the induction of DeltaFosB. J Neurosci 30: 14585–14592.
Villegier, A.S., Salomon, L., Granon, S., et al. (2010) Alpha7 and beta2 nicotinic receptors control monoamine-mediated locomotor response. Neuroreport 21: 1085–1089.
Vorel, S.R., Ashby, C.R., Jr., Paul, M., et al. (2002) Dopamine D3 receptor antagonism inhibits cocaine-seeking and cocaine-enhanced brain reward in rats. J Neurosci 22: 9595–9603.
Vranjkovic, O., Hang, S., Baker, D.A., and Mantsch, J.R. (2012) Beta-adrenergic receptor mediation of stress-induced reinstatement of extinguished cocaine-induced conditioned place preference in mice: roles for beta1 and beta2 adrenergic receptors. J Pharmacol Exp Ther 342: 541–551.
Walters, C.L. and Blendy, J.A. (2001) Different requirements for cAMP response element binding protein in positive and negative reinforcing properties of drugs of abuse. J Neurosci 21: 9438–9444.
Wang, Y.M., Gainetdinov, R.R., Fumagalli, F., et al. (1997) Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron 19: 1285–1296.
Ward, S.J. and Walker, E.A. (2009) Sex and cannabinoid CB1 genotype differentiate palatable food and cocaine self-administration behaviors in mice. Behav Pharmacol 20: 605–613.
Warren, M.S., Bradley, W.D., Gourley, S.L., et al. (2012) Integrin beta1 signals through Arg to regulate postnatal dendritic arborization, synapse density, and behavior. J Neurosci 32: 2824–2834.
Wei, H., Hill, E.R., and Gu, H.H. (2009) Functional mutations in mouse norepinephrine transporter reduce sensitivity to cocaine inhibition. Neuropharmacology 56: 399–404.
Wells, L., Opacka-Juffry, J., Fisher, D., et al. (2012) In vivo dopaminergic and behavioral responses to acute cocaine are altered in adenosine A(2A) receptor knockout mice. Synapse 66: 383–390.
Welter, M., Vallone, D., Samad, T.A., et al. (2007) Absence of dopamine D2 receptors unmasks an inhibitory control over the brain circuitries activated by cocaine. Proc Natl Acad Sci USA 104: 6840–6845.
Wiener, H.L. and Reith, M.E.A. (1990) Correlation between cocaine-induced locomotion and cocaine disposition in the brain among 4 inbred strains of mice. Pharmacol Biochem Behav 36: 699–701.
Witkin, J.M., Baez, M., Yu, J.L., Barton, M.E., and Shannon, H.E. (2007) Constitutive deletion of the serotonin-7 (5-HT7) receptor decreases electrical and chemical seizure thresholds. Epilep Res 75: 39–45.
Witkin, J.M., Baez, M., Yu, J., and Eiler, W.J., 2nd. (2008a) mGlu5 receptor deletion does not confer seizure protection to mice. Life Sci 83: 377–380.
Witkin, J.M., Levant, B., Zapata, A., Kaminski, R., and Gasior, M. (2008b) The dopamine D3/D2 agonist (+)-PD-128,907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin -9-ol)] protects against acute and cocaine-kindled seizures in mice: further evidence for the involvement of D3 receptors. J Pharmacol Exp Ther 326: 930–938.
Wojnar, M., Brower, K.J., Strobbe, S., et al. (2009) Association between Val66Met brain-derived neurotrophic factor (BDNF) gene polymorphism and post-treatment relapse in alcohol dependence. Alcohol Clin Exp Res 33: 693–702.
Womer, D.E., Jones, B.C., and Erwin, V.G. (1994) Characterization of dopamine transporter and locomotor effects of cocaine, Gbr-12909, Epidepride, and Sch-23390 in C57bl and Dba mice. Pharmacol Biochem Behav 48: 327–335.
Xi, Z.X. and Gardner, E.L. (2007) Pharmacological actions of NGB 2904, a selective dopamine D3 receptor antagonist, in animal models of drug addiction. CNS Drug Rev 13: 240–259.
Xi, Z.X., Gilbert, J.G., Pak, A.C., et al. (2005) Selective dopamine D3 receptor antagonism by SB-277011A attenuates cocaine reinforcement as assessed by progressive-ratio and variable-costvariable-payoff fixed-ratio cocaine self-administration in rats. Eur J Neurosci 21: 3427–3438.
Xi, Z.X., Newman, A.H., Gilbert, J.G., et al. (2006) The novel dopamine D3 receptor antagonist NGB 2904 inhibits cocaine’s rewarding effects and cocaine-induced reinstatement of drug-seeking behavior in rats. Neuropsychopharmacology 31: 1393–1405.
Xi, Z.X., Peng, X.Q., Li, X., et al. (2011) Brain cannabinoid CB(2) receptors modulate cocaine’s actions in mice. Nat Neurosci 14: 1160–1166.
Xu, F., Gainetdinov, R.R., Wetsel, W.C., et al. (2000a) Mice lacking the norepinephrine transporter are supersensitive to psychostimulants. Nat Neurosci 3: 465–471.
Xu, M., Guo, Y., Vorhees, C.V., and Zhang, J. (2000b) Behavioral responses to cocaine and amphetamine administration in mice lacking the dopamine D1 receptor. Brain Res 852: 198–207.
Xu, M., Hu, X.T., Cooper, D.C., et al. (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79: 945–955.
Xu, M., Koeltzow, T.E., Santiago, G.T., et al. (1997) Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron 19: 837–848.
Xu, T.X., Sotnikova, T.D., Liang, C.Y., et al. (2009) Hyperdopaminergic tone erodes prefrontal long-term potential via a D-2 receptor-operated protein phosphatase gate. J Neurosci 29: 14086–14099.
Yamaguchi, T., Sheen, W., and Morales, M. (2007) Glutamatergic neurons are present in the rat ventral tegmental area. Eur J Neurosci 25: 106–118.
Yamaguchi, T., Wang, H.L., Li, X., Ng, T.H., and Morales, M. (2011) Mesocorticolimbic glutamatergic pathway. J Neurosci 31: 8476–8490.
Yamamoto, H., Kamegaya, E., Hagino, Y., et al. (2007) Genetic deletion of vesicular monoamine transporter-2 (VMAT2) reduces dopamine transporter activity in mesencephalic neurons in primary culture. Neurochem Int 51: 237–244.
Yamashita, M., Fukushima, S., Shen, H.W., et al. (2006) Norepinephrine transporter blockade can normalize the prepulse inhibition deficits found in dopamine transporter knockout mice. Neuropsychopharmacology 31: 2132–2139.
Yamashita, M., Sakakibara, Y., Hall, F.S., et al. (2013) Impaired cliff avoidance reaction in dopamine transporter knockout mice. Psychopharmacology 227: 741–749.
Yang, J., Wu, J., Kowalska, M.A., et al. (2000) Loss of signaling through the G protein, Gz, results in abnormal platelet activation and altered responses to psychoactive drugs. Proc Natl Acad Sci USA 97: 9984–9989.
Yavich, L., Forsberg, M.M., Karayiorgou, M., Gogos, J.A., and Mannisto, P.T. (2007) Site-specific role of catechol-O-methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J Neurosci 27: 10196–10209.
Ye, R. and Blakely, R.D. (2011) Natural and engineered coding variation in antidepressant-sensitive serotonin transporters. Neuroscience 197: 28–36.
Yoo, J.H., Yang, E.M., Lee, S.Y., et al. (2003) Differential effects of morphine and cocaine on locomotor activity and sensitization in mu-opioid receptor knockout mice. Neurosci Lett 344: 37–40.
Zachariou, V., Benoit-Marand, M., Allen, P.B., et al. (2002) Reduction of cocaine place preference in mice lacking the protein phosphatase 1 inhibitors DARPP 32 or Inhibitor 1. Biol Psychiatry 51: 612–620.
Zachariou, V., Caldarone, B.J., Weathers-Lowin, A., et al. (2001) Nicotine receptor inactivation decreases sensitivity to cocaine. Neuropsychopharmacology 24: 576–589.
Zachariou, V., Sgambato-Faure, V., Sasaki, T., et al. (2006) Phosphorylation of DARPP-32 at threonine-34 is required for cocaine action. Neuropsychopharmacology 31: 555–562.
Zhang, D.S., Zhang, L., Lou, D.W., et al. (2002a) The dopamine D1 receptor is a critical mediator for cocaine-induced gene expression. J Neurochem 82: 1453–1464.
Zhang, D.S., Zhang, L., Tang, Y., et al. (2005) Repeated cocaine administration induces gene expression changes through the dopamine D1 receptors. Neuropsychopharmacology 30: 1443–1454.
Zhang, L., Lou, D.W., Jiao, H.Y., et al. (2004) Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors. J Neurosci 24: 3344–3354.
Zhang, X., Bearer, E.L., Boulat, B., et al. (2010) Altered neurocircuitry in the dopamine transporter knockout mouse brain. PLoS ONE 5: e11506.
Zhang, Y., Mantsch, J.R., Schlussman, S.D., Ho, A., and Kreek, M.J. (2002b) Conditioned place preference after single doses or “binge” cocaine in C57BL/6J and 129/J mice. Pharmacol Biochem Behav 73: 655–662.
Zhang, Y., Svenningsson, P., Picetti, R., et al. (2006) Cocaine self-administration in mice is inversely related to phosphorylation at Thr34 (protein kinase A site) and Ser130 (kinase CK1 site) of DARPP-32. J Neurosci 26: 2645–2651.
Zhuang, X., Oosting, R.S., Jones, S.R., et al. (2001) Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci USA 98: 1982–1987.