Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-21T17:13:35.579Z Has data issue: false hasContentIssue false

Chapter 2 - Mating Strategies

from Part I - Systematics, Ecology, and Behavior

Published online by Cambridge University Press:  16 November 2020

Vincenzo Penteriani
Affiliation:
Spanish Council of Scientific Research (CSIC)
Mario Melletti
Affiliation:
WPSG (Wild Pig Specialist Group) IUCN SSC
Get access

Summary

The mating system and mating strategies of a species refer to the behavioral strategies used to obtain reproductive partners and ensure reproductive success. Common determining factors of mating systems and strategies are: the manner of mate acquisition, the number of mates obtained by an individual, as well as the absence or presence and duration of parental care. In mammals, the energetic investments in gametes and rearing offspring are typically larger for females than for males. Mate selection is thus a much more important decision for females than for the rather indiscriminate males. This dichotomy results in sexual selection, which in turn is determined by male–male competition for access to females, as well as female mate choice. Because receptive females are generally considered the limiting resource in reproduction, males face intrasexual competition for mates. In a multitude of mammalian species, including bears, this has resulted in pronounced sexual size dimorphism and polygamous mating systems. Despite common characteristics (e.g. sexual size dimorphism, polygamy), variation in mating systems and strategies occur among bear populations and species.

Type
Chapter
Information
Bears of the World
Ecology, Conservation and Management
, pp. 21 - 35
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, M. (1980). Odour-producing organs of mammals. Symposia of the Zoological Society of London 45: 5786.Google Scholar
Amstrup, S. C. & DeMaster, D. P. (2003). Polar bear, Ursus maritimus. Wild Mammals of North America: Biology, Management, and Conservation 2: 587610.Google Scholar
Andersson, M. (1994). Sexual selection. Princeton, NJ: Princeton University Press.Google Scholar
Appleton, R. D., Van Horn, R. C., Noyce, K. V., et al. (2018). Phenotypic plasticity in the timing of reproduction in Andean bears. Journal of Zoology 305: 196202.Google Scholar
Bellemain, E., Swenson, J. E. & Taberlet, P. (2006a). Mating strategies in relation to sexually selected infanticide in a non-social carnivore: the brown bear. Ethology 112: 238246.Google Scholar
Bellemain, E., Zedrosser, A., Manel, S., et al. (2006b). The dilemma of female mate selection in the brown bear, a species with sexually selected infanticide. Proceedings of the Royal Society B 273: 283291.Google Scholar
Birkhead, T. R. & Møller, A. P. (1993). Sexual selection and the temporal separation of reproductive events: sperm storage data from reptiles, birds and mammals. Biological Journal of the Linnean Society 50(4): 295311.Google Scholar
Boone, W. R., Catlin, J. C., Casey, K. J., et al. (1998). Bears as induced ovulators: a preliminary study. Ursus 10: 503505.Google Scholar
Boone, W. R., Keck, B. B., Catlin, J. C., et al. (2004). Evidence that bears are induced ovulators. Theriogenology 61: 11631169.Google Scholar
Bromaghin, J. F., McDonald, T. L., Stirling, I., et al. (2015). Polar bear population dynamics in the southern Beaufort Sea during a period of sea ice decline. Ecological Applications 25: 634651.CrossRefGoogle ScholarPubMed
Castellanos, A. & Vasquez, D. (2017). Kinship relations in a multi-generational Andean bear (Tremarctos ornatus) family in North Ecuador. International Bear News 26: 2425.Google Scholar
Castellanos, A., Ascanta, M. & Jackson, D. (2018). Does Rebecca, a seasoned Andean bear mother, show seasonal birthing patterns? International Bear News 27: 5758.Google Scholar
Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. (2012). A hypothetico-deductive approach to assessing the social function of chemical signalling in a non-territorial solitary carnivore. PLoS ONE 7: e35404.Google Scholar
Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. (2014). Scent-marking investment and motor patterns are affected by the age and sex of wild brown bears. Animal Behaviour 94: 107116.Google Scholar
Concannon, P. (2009). Endocrinologic control of normal canine ovarian function. Reproduction in Domestic Animals 44: 315.Google Scholar
Connor, T., Hull, V. & Liu, J. (2016). Telemetry research on elusive wildlife: a synthesis of studies on giant pandas. Integrative Zoology 11: 295307.Google Scholar
Costello, C. M., Creel, S. R., Kalinowski, S. T., Vu, N. V. & Quigley, H. B. (2009). Determinants of male reproductive success in American black bears. Behavioral Ecology and Sociobiology 64: 125.Google Scholar
Craighead, J. J., Sumner, J. S. & Mitchell, J. A. (1995). The grizzly bears of Yellowstone: Their ecology in the Yellowstone Ecosystem, 1959–1992. Washington, DC: Island Press.Google Scholar
Crudge, B., Lees, C., Hunt, M., et al. (2019). Sun bears: Global status review and conservation action plan, 2019–2028. IUCN SSC Bear Specialist Group.Google Scholar
Czetwertynski, S. M., Boyce, M. S. & Schmiegelow, F. K. (2007). Effects of hunting on demographic parameters of American black bears. Ursus 18: 118.CrossRefGoogle Scholar
Dahle, B. & Swenson, J. E. (2003). Seasonal range size in relation to reproductive strategies in brown bears Ursus arctos. Journal of Animal Ecology 72: 660667.CrossRefGoogle ScholarPubMed
Davoli, F., Cozzo, M., Angeli, F., Groff, C. & Randi, E. (2018). Infanticide in brown bear: a case-study in the Italian Alps – genetic identification of perpetrator and implications in small populations. Nature Conservation 25: 5575.CrossRefGoogle Scholar
Derocher, A. E. & Stirling, I. (1994). Age-specific reproductive performance of female polar bears. Journal of Zoology 234: 527536.Google Scholar
Derocher, A. E. & Stirling, I. (1996). Aspects of survival in juvenile polar bears. Canadian Journal of Zoology 74: 12461252.Google Scholar
Derocher, A. E. & Wiig, Ø. (1999a). Infanticide and cannibalism of juvenile polar bears (Ursus maritimus) in Svalbard. Arctic 52: 307310.Google Scholar
Derocher, A. E. & Wiig, Ø. (1999b). Observation of adoption in polar bears (Ursus maritimus). Arctic 52: 413415.Google Scholar
Derocher, A. E., Lunn, N. J. & Stirling, I. (2004). Polar bears in a warming climate. Integrative and Comparative Biology 44: 163176.Google Scholar
Derocher, A. E., Andersen, M., Wiig, Ø. & Aars, J. (2010). Sexual dimorphism and the mating ecology of polar bears (Ursus maritimus) at Svalbard. Behavioral Ecology and Sociobiology 64: 939946.Google Scholar
Durrant, B., Czekala, N., Olson, M., et al. (2002). Papanicolaou staining of exfoliated vaginal epithelial cells facilitates the prediction of ovulation in the giant panda. Theriogenology 57: 18551864.CrossRefGoogle ScholarPubMed
Ebensperger, L. A. (1998). Strategies and counterstrategies to infanticide in mammals. Biological Reviews 73: 321346.Google Scholar
Edwards, M. A. & Derocher, A. E. (2015). Mating-related behaviour of grizzly bears inhabiting marginal habitat at the periphery of their North American range. Behavioural Processes 111: 7583.Google Scholar
Elfström, M., Zedrosser, A., Jerina, K., et al. (2014). Does despotic behavior or food search explain the occurrence of problem bears in Europe? Journal of Wildlife Management 78(5): 881893.Google Scholar
Emlen, S. T. & Oring, L. W. (1977). Ecology, sexual selection and the evolution of mating systems. Science 197: 215223.Google Scholar
Enciso, M. A. & Guimarães, M. A. B. V. (2013). Knowing the reproductive endocrinology in the female Andean bear through non-invasive methods. International Bear News 22: 3334.Google Scholar
Erickson, A. W., Nellor, J. & Petrides, G. A. (1964). The black bear in Michigan. Michigan State University Agriculture Experiment Station East Lansing Research Bulletin 4: 1102.Google Scholar
Fernández-Gil, A. (2013). Behavior and conservation of large carnivores in human-dominated landscapes. Brown bears and wolves in the Cantabrian Mountains. PhD thesis, University of Oviedo, Spain.Google Scholar
Fernández-Gil, A., Naves, J. & Delibes, M. (2006). Courtship of brown bears Ursus arctos in northern Spain: phenology, weather, habitat and durable mating areas. Wildlife Biology 12: 367373.Google Scholar
Filipczyková, E., Heitkönig, I. M. A., Castellanos, A., Hantson, W. & Steyaert, S. M. J. G. (2017). Marking behavior of Andean bears in an Ecuadorian cloud forest: a pilot study. Ursus 27(2): 122128.CrossRefGoogle Scholar
Fortin, J. K., Rode, K. D., Hilderbrand, G. V., et al. (2016). Impacts of human recreation on brown bears (Ursus arctos): a review and new management tool. PLoS ONE 11: e0141983.Google Scholar
Frederick, C., Kyes, R., Hunt, K., et al. (2010). Methods of estrus detection and correlates of the reproductive cycle in the sun bear (Helarctos malayanus). Theriogenology 74: 11211135.Google Scholar
Frederick, C., Hunt, K. E., Kyes, R., Collins, D. & Wasser, S. K. (2012). Reproductive timing and aseasonality in the sun bear (Helarctos malayanus). Journal of Mammalogy 93: 522531.Google Scholar
Frederick, C., Hunt, K., Kyes, R., et al. (2013). Social influences on the estrous cycle of the captive sun bear (Helarctos Malayanus). Zoo Biology 32: 581591.Google Scholar
Fredriksson, G. M. & Wich, S. A. (2006). Frugivory in sun bears (Helarctos malayanus) is linked to El Niño-related fluctuations in fruiting phenology, East Kalimantan, Indonesia. Biological Journal of the Linnean Society 89: 489508.Google Scholar
Fredriksson, G. M., Danielsen, L. S. & Swenson, J. E. (2007). Impacts of El Niño related drought and forest fires on sun bear fruit resources in lowland dipterocarp forest of East Borneo. Biodiversity and Conservation 16: 18231838.CrossRefGoogle Scholar
Friebe, A., Evans, A. L., Arnemo, J. M., et al. (2014). Factors affecting date of implantation, parturition, and den entry estimated from activity and body temperature in free-ranging brown bears. PLoS ONE 9(7): e101410.Google Scholar
Garcia‐Rangel, S. (2012). Andean bear Tremarctos ornatus natural history and conservation. Mammal Review 42: 85119.Google Scholar
Garshelis, D. L. (2009). Family Ursidae (bears). In: Wilson, D. E. & Mittermeier, R.A. (Eds.), Handbook of the mammals of the world, Vol. 1 – Carnivores (pp. 448497). Barcelona: Lynx Edicions.Google Scholar
Garshelis, D. L. & Hellgren, E. C. (1994). Variation in reproductive biology of male black bears. Journal of Mammalogy 75: 175188.Google Scholar
Garshelis, D. L., Joshi, A. R., Smith, J. L. & Rice, C. G. (1999). Sloth bear conservation action plan in bears: Status survey and conservation action plan (pp. 225240). Gland: International Union for the Conservation of Nature and Natural Resources.Google Scholar
Gittleman, J. L. (1994). Are the pandas successful specialists or evolutionary failures? BioScience 44: 456464.Google Scholar
Gopal, R. (1991). Ethological observations on the sloth bear (Melursus ursinus). Indian Forester 117: 915920.Google Scholar
Gosselin, J., Zedrosser, A., Swenson, J. E. & Pelletier, F. (2015). The relative importance of direct and indirect effects of hunting mortality on the population dynamics of brown bears. Proceedings of the Royal Society B: Biological Sciences 282: 20141840.Google Scholar
Gosselin, J., Leclerc, M., Zedrosser, A., et al. (2017). Hunting promotes sexual conflict in brown bears. Journal of Animal Ecology 86: 3542.Google Scholar
Hamer, D. & Herrero, S. (1990). Courtship and use of mating areas by grizzly bears in the Front Ranges of Banff National Park, Alberta. Canadian Journal of Zoology 68: 26952697.Google Scholar
Hertel, A. G., Bischof, R., Langval, O., et al. (2018). Berry production drives bottom-up effects on body mass and reproductive success in an omnivore. Oikos 127(2): 197207.Google Scholar
Himelright, B. M., Moore, J. M., Gonzales, R. L., et al. (2014). Sequential ovulation and fertility of polyoestrus in American black bears (Ursus americanus). Conservation Physiology 2: cou051.Google Scholar
Hrdy, S. B. (1979). Infanticide among animals: a review, classification, and examination of the implications for the reproductive strategies of females. Ethology and Sociobiology 1: 1340.Google Scholar
Hunter, L. & Barrett, P.. (2019). Carnivores of the world. Second edition. Princeton, NJ: Princeton University Press.Google Scholar
Iibuchi, R., Nakano, N., Nakamura, T., et al. (2009). Change in body weight of mothers and neonates and in milk composition during denning period in captive Japanese black bears (Ursus thibetanus japonicus). Japanese Journal of Veterinary Research 57: 1322.Google Scholar
Jonkel, C. & Cowan, I. (1971). The black bear in the spruce-fir forest. Wildlife Monographs 27: 357.Google Scholar
Joshi, A. R. (1996). The home range, feeding habits, and social organization of sloth bears (Melursus ursinus) in Royal Chitwan National Park, Nepal. PhD thesis, University of Minnesota, Minneapolis, USA.Google Scholar
Joshi, A. R., Smith, J. L. D. & Garshelis, D. L. (1999). Sociobiology of the myrmecophagous sloth bear in Nepal. Canadian Journal of Zoology 77(11): 16901704.Google Scholar
Kaczensky, P., Knauer, F., Krze, B., et al. (2003). The impact of high speed, high volume traffic axes on brown bears in Slovenia. Biological Conservation 111: 191204.Google Scholar
Katayama, A., Tsubota, T., Yamada, F., Kita, I. & Tiba, T. (1996). Reproductive evaluation of Japanese black bears (Selenarctos thiberanus japonicus) by observation of the ovary and uterus. Japanese Journal of Zoo Wildlife Medicine 1: 2632.Google Scholar
Kleiner, J. D., Van Horn, R. C., Swenson, J. E. & Steyaert, S. M. J. G. (2018). Rub-tree selection by Andean bears in the Peruvian dry forest. Ursus 29(1): 5866.CrossRefGoogle Scholar
Kolenosky, G. B. (1990). Reproductive biology of black bears in east-central Ontario. Bears: Their Biology and Management 8: 385392.Google Scholar
Komatsu, T., Tsubota, T., Kishimoto, M., Amasaki, S. & Tiba, T. (1994). Puberty and stem cell for the initiation and resumption of spermatogenesis in the male Japanese black bear (Selenarctos thibetanus japonicus). Journal of Reproduction and Development 40: j65j71.Google Scholar
Kovach, A. I. & Powell, R. A. (2003). Effects of body size on male mating tactics and paternity in black bears, Ursus americanus. Canadian Journal of Zoology 81: 12571268.Google Scholar
Kozakai, C., Yamazaki, K., Nemoto, Y., et al. (2013). Fluctuation of daily activity time budgets of Japanese black bears: relationship to sex, reproductive status, and hardmast availability. Journal of Mammalogy 94: 351360.Google Scholar
Krofel, M., Filacorda, S. & Jerina, K. (2010). Mating-related movements of male brown bears on the periphery of an expanding population. Ursus 21: 2330.Google Scholar
Kurt, F. & Jayasuriya, A. (1968). Notes on a dead bear. Loris 11: 182183.Google Scholar
Lamb, C. T., Mowat, G., Gilbert, S. L., et al. (2017). Density-dependent signaling: an alternative hypothesis on the function of chemical signaling in a non-territorial solitary carnivore. PLoS ONE 12: e0184176.Google Scholar
Larivière, S. (2001). Ursus americanus. Mammalian Species 647: 111.Google Scholar
Laurie, A. & Seidensticker, J. (1977). Behavioural ecology of the sloth bear (Melursus ursinus). Journal of Zoology 182(2): 187204.Google Scholar
Leclerc, M., Frank, S. C., Zedrosser, A., Swenson, J. E. & Pelletier, F. (2017). Hunting promotes spatial reorganization and sexually selected infanticide. Scientific Reports 7: 45222.Google Scholar
LeCount, A. L. (1987). Causes of black bear cub mortality. Bears: Their Biology and Management 7: 7582.Google Scholar
Liu, D., Wei, R., Zhang, G., et al. (2008). Male panda (Ailuropoda melanoleuca) urine contains kinship information. Chinese Science Bulletin 53: 27932800.Google Scholar
Martin-Wintle, M. S., Shepherdson, D., Zhang, G., et al. (2015). Free mate choice enhances conservation breeding in the endangered giant panda. Nature Communications 6: 10125.Google Scholar
Martin-Wintle, M. S., Shepherdson, D., Zhang, G., et al. (2017). Do opposites attract? Effects of personality matching in breeding pairs of captive giant pandas on reproductive success. Biological Conservation 207: 2737.Google Scholar
Mauritzen, M., Derocher, A. E. & Wiig, Ø. (2001). Space-use strategies of female polar bears in a dynamic sea ice habitat. Canadian Journal of Zoology 79: 17041713.Google Scholar
McLellan, B. N. (2005). Sexually selected infanticide in grizzly bears: the effects of hunting on cub survival. Ursus 16(2): 141156.Google Scholar
McLellan, B. N. (2015). Some mechanisms underlying variation in vital rates of grizzly bears on a multiple use landscape. Journal of Wildlife Management 79: 749765.Google Scholar
McLoughlin, P. D., Ferguson, S. H. & Messier, F. (2000). Intraspecific variation in home range overlap with habitat quality: a comparison among brown bear populations. Evolutionary Ecology 14: 3960.Google Scholar
Mead, R. A. (1993). Embryonic diapause in vertebrates. Journal of Experimental Zoology 266: 629641.Google Scholar
Molnár, P. K., Derocher, A. E., Lewis, M. A. & Taylor, M. K. (2008). Modelling the mating system of polar bears: a mechanistic approach to the Allee effect. Proceedings of the Royal Society B – Biological Sciences 275: 217226.Google Scholar
Moore, J. A., Xu, R., Frank, K., Draheim, H. & Scribner, K. T. (2015). Social network analysis of mating patterns in American black bears (Ursus americanus). Molecular Ecology 24: 40104022.Google Scholar
Muller-Schwarze, D. (2006). Chemical ecology of vertebrates. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Nakamura, S., Yokoyama, M., Katayama, A., Morimitsu, Y. & Saita, E. (2011). Growth pattern and its characteristics of outer morphology of Asiatic black bear. Wildlife Monograph of Hyogo 3: 107116.Google Scholar
Ngoprasert, D., Reed, D. H., Steinmetz, R. & Gale, G. A. (2012). Density estimation of Asian bears using photographic capture–recapture sampling based on chest marks. Ursus 23(2): 117133.Google Scholar
Nie, Y.-G., Zhang, Z.-J., Swaisgood, R. R. & Wei, F.-W. (2012a). Effects of season and social interaction on fecal testosterone metabolites in wild male giant pandas: implications for energetics and mating strategies. European Journal of Wildlife Research 58: 235241.Google Scholar
Nie, Y., Swaisgood, R. R., Zhang, Z., Liu, X. & Wie, F. (2012b). Reproductive competition and fecal testosterone in wild male giant pandas (Ailuropoda melanoleuca). Behavioral Ecology and Sociobiology 66: 721730.Google Scholar
Nie, Y., Speakman, J. R., Wu, Q., et al. (2015). Exceptionally low daily energy expenditure in the bamboo-eating giant panda. Science 349: 171174.Google Scholar
Norris, T. (1969). Ceylon sloth bear. International Wildlife 12: 300303.Google Scholar
Oi, T., Ohnishi, N., Yamada, F. & Kitahara, E. (2008). Characteristics of sex-age composition of Asian black bears killed as nuisances in Kyoto. Mammalian Science 48: 1724.Google Scholar
Okano, T., Nakamura, S., Nakashita, R., et al. (2006). Incidence of ovulation without coital stimuli in captive Japanese black bears (Ursus thibetanus japonicus) based on serum progesterone profiles. Journal of Veterinary Medical Science 68: 11331137.Google Scholar
Ombrello, T. A., Chinnici, N. L. & Huffman, J.E. (2016). Multiple paternities in American black bears from New Jersey. Journal of the Pennsylvania Academy of Science 90: 2124.Google Scholar
Owen, M. A., Swaisgood, R. R., Slocomb, C., et al. (2015). An experimental investigation of chemical communication in the polar bear. Journal of Zoology 295: 3643.Google Scholar
Pan, W. (2014). A chance for lasting survival: Ecology and behavior of wild giant pandas. Washington, DC: Smithsonian Institution Scholarly Press.Google Scholar
Penteriani, V., López-Bao, J. V., Bettega, C., et al. (2017). Consequences of brown bear viewing tourism: a review. Biological Conservation 206: 169180.Google Scholar
Penteriani, V., Delgado, M. D. M., Krofel, M., et al. (2018). Evolutionary and ecological traps for brown bears Ursus arctos in human-modified landscapes. Mammal Review 48: 180193.CrossRefGoogle Scholar
Peyton, B. (1980). Ecology, distribution, and food habits of spectacled bears, Tremarctos ornatus, in Peru. Journal of Mammalogy 61: 639652.Google Scholar
Phillips, W. W. A. (1984). Manual of the mammals of Sri Lanka (pp. 290296). Wildlife and Nature Protection Society of Sri Lanka.Google Scholar
Prater, S. H. (1965). The book of Indian animals. Bombay: Bombay Natural History Society.Google Scholar
Puschmann, V. W., Schuppel, K. F. & Kronberger, H. (1977). Detection of blastocyst in uterine lumen of Indian bear (Melursus u. ursinus). In: Ippen, R. & Schrader, H. D. (Eds.) Sickness in zoos (pp. 389391). Berlin: Akademie Verlag.Google Scholar
Ramsay, M. A. & Stirling, I. (1986). On the mating system of polar bears. Canadian Journal of Zoology 64: 21422151.CrossRefGoogle Scholar
Ramsay, M. A. & Stirling, I. (1988). Reproductive biology and ecology of female polar bears (Ursus maritimus). Journal of Zoology 214: 601634.Google Scholar
Ratnayeke, S., van Manen, F. T. & Padmalal, U. (2007). Home ranges and habitat use of sloth bears Melursus ursinus inornatus in Wasgomuwa National Park, Sri Lanka. Wildlife Biology 13: 272284.Google Scholar
Richardson, E. S. (2014). The mating system and life history of the polar bear. PhD dissertation, University of Alberta, Edmonton.Google Scholar
Rosell, F., Jojola, S. M., Ingdal, K., et al. (2011). Brown bears possess anal sacs and secretions may code for sex. Journal of Zoology 283: 143152.Google Scholar
Rosenthal, M. & Haggerty, C. (1989). Proceedings of the first international symposium on the spectacled bear. Chicago: Lincoln Park Zoo.Google Scholar
Rosenthal, R. A. (1999). International studbook for the spectacled bear (Tremarctos ornatus). Chicago: The Lincoln Park Zoological Society.Google Scholar
Rosing-Asvid, A., Born, E. W. & Kingsley, M. C. S. (2002). Age at sexual maturity of males and timing of the mating season of polar bears (Ursus maritimus) in Greenland. Polar Biology 25: 878883.Google Scholar
Schaller, G. B., Hu, J., Pan, W. & Zhu, J. (1985). The giant pandas of wolong. Chicago: University of Chicago Press.Google Scholar
Schwartz, C. C., Keating, K. A., Reynolds, H. V., et al. (2003). Reproductive maturation and senescence in the female brown bear. Ursus 14(2): 109119.Google Scholar
Schwartz, C. C., Haroldson, M. A., White, G. C., et al. (2006). Temporal, spatial, and environmental influences on the demographics of grizzly bears in the greater Yellowstone Ecosystem. Wildlife Monographs 161: 168.Google Scholar
Schwarzenberger, F., Fredriksson, G., Schaller, K. & Kolter, L. (2004). Fecal steroid analysis for monitoring reproduction in the sun bear (Helarctos malayanus). Theriogenology 62: 16771692.Google Scholar
Sergiel, A., Naves, J., Kujawski, P., et al. (2017). Histological, chemical and behavioural evidence of pedal communication in brown bears. Scientific Reports 7: 1052.Google Scholar
Shimozuru, M., Shirane, Y., Tsuruga, H., et al. (2019). Incidence of multiple paternity and inbreeding in high-density brown bear populations on the Shiretoko Peninsula, Hokkaido, Japan. Journal of Heredity 110(3): 321331.Google Scholar
Smith, T. G. & Aars, J. (2015). Polar bears (Ursus maritimus) mating during late June on the pack ice of northern Svalbard, Norway. Polar Research 34: 25786.Google Scholar
Spady, T. J., Lindburg, D. G. & Durrant, B. S. (2007). Evolution of reproductive seasonality in bears. Mammal Review 37: 2153.Google Scholar
Stenhouse, G., Boulanger, J., Lee, J., et al. (2005). Grizzly bear associations along the eastern slopes of Alberta. Ursus 16(1): 3140.Google Scholar
Steyaert, S. M. J. G., Endrestøl, A., Hackländer, K., Swenson, J. E. & Zedrosser, A. (2012). The mating system of the brown bear Ursus arctos. Mammal Review 42: 1234.Google Scholar
Steyaert, S. M. J. G., Swenson, J. E. & Zedrosser, A. (2014). Litter loss triggers estrus in a nonsocial seasonal breeder. Ecology and Evolution 4: 300310.Google Scholar
Steyaert, S. M. J. G., Leclerc, M., Pelletier, F., et al. (2016). Human shields mediate sexual conflict in a top predator. Proceedings of the Royal Society B: Biological Sciences 283: 20160906.Google Scholar
Stirling, I., Spencer, C. & Andriashek, D. (2016). Behavior and activity budgets of wild breeding polar bears (Ursus maritimus). Marine Mammal Science 32: 1337.CrossRefGoogle Scholar
Stone, I. R. & Derocher, A. E. (2007). An incident of polar bear infanticide and cannibalism on Phippsoya, Svalbard. Polar Record 43: 171173.Google Scholar
Swaisgood, R. R., Lindburg, D. G. & Zhang, H. (2002). Discrimination of oestrous status in giant pandas (Ailuropoda melanoleuca) via chemical cues in urine. Journal of Zoology 257: 381386.Google Scholar
Swenson, J. E., Sandegren, F., Söderberg, A., et al. (1997). Infanticide caused by hunting of male bears. Nature 386: 450451.Google Scholar
Tattoni, C., Bragalanti, N., Groff, C. & Rovero, F. (2015). Patterns in the use of rub trees by the Eurasian brown bear. Hystrix, the Italian Journal of Mammalogy 26: 118124.Google Scholar
Tibbetts, E. A. & Dale, J. (2007). Individual recognition: it is good to be different. Trends in Ecology and Evolution 22: 529537.CrossRefGoogle ScholarPubMed
Trivers, R. L. (1972). Parental investment and sexual selection. In: Campbell, B. G. (Ed.), Sexual selection and the descent of man 1871–1971 (pp. 136179). Chicago: Aldine.Google Scholar
Tsubota, T. & Kanagawa, H. (1993). Morphological characteristics of the ovary, uterus and embryo during the delayed implantation period in the Hokkaido brown bear (Ursus arctos yesoensis). Journal of Reproduction and Development 39: 325331.Google Scholar
Tsubota, T., Howell-Skalla, L., Boone, W. R., Garshelis, D. L. & Bahr, J. M. (1998). Serum progesterone, oestradiol, luteinizing hormone and prolactin profiles in the female black bear (Ursus americanus). Animal Reproduction Science 53: 107118.Google Scholar
Vaisefeld, M. A. & Chestin, I. E. (1993). Bears: brown bear, polar bear, Asian black bear. Distribution, ecology, use and protection. Moscow: Nauka.Google Scholar
Wei, W., Swaisgood, R. R., Owen, M. A., et al. (2019). The role of den quality in giant panda conservation. Biological Conservation 231: 1892196.Google Scholar
Wiig, Ø., Gjertz, I., Hansson, R. & Thomassen, J. (1992). Breeding behaviour of polar bears in Hornsund, Svalbard. Polar Record 28: 157159.Google Scholar
Wong, S., Servheen, C., Ambu, L. & Norhayati, A. (2005). Impacts of fruit production cycles on Malayan sun bears and bearded pigs in lowland tropical forest of Sabah, Malaysian Borneo. Journal of Tropical Ecology 21: 627639.Google Scholar
Yamamoto, K., Tsubota, T. & Kita, I. (1998). Observation of sexual behavior of captive Japanese black bears, Ursus tibetanus japonicus. Journal of Reproduction and Development 44: j13j18.Google Scholar
Yamamoto, T., Tamatani, H., Tanaka, J., et al. (2012). Multiple paternity in Asian black bear Ursus thibetanus (Ursidae, Carnivora) determined by microsatellite analysis. Mammalia 77: 215217.Google Scholar
Yamane, M., Yamamoto, Y., Tsujimoto, T. & Osawa, T. (2009). Relationship between uterine morphology and peripheral concentrations of sex steroid hormone in wild Japanese black bears (Ursus thibetanus japonicus). Animal Reproduction Science 113: 251262.Google Scholar
Yamazaki, K. (2017). Challenges in management and conservation of Asian black bears in Japan. Tokyo: University of Tokyo Press.Google Scholar
Yoganand, K. (2005). Behavioural ecology of sloth bear (Melursus ursinus) in Panna National Park, Central India. PhD Thesis. Saurashtra University, India.Google Scholar
Yoganand, K., Rice, C. G. & Johnsingh, A. J. T. (2013). Sloth bear: Melursus ursinus. In: Johnsingh, A. J. T. & Manjrekar, N. (Eds.), Mammals of South Asia (pp. 438456). Telangana, India: Orient Blackswan pvt. Ltd.Google Scholar
Zedrosser, A., Bellemain, E., Taberlet, P. & Swenson, J. E. (2007). Genetic estimates of annual reproductive success in male brown bears: the effects of body size, age, internal relatedness and population density. Journal of Animal Ecology 76: 368375.Google Scholar
Zeyl, E., Aars, J., Ehrich, D., Bachmann, L. & Wiig, Ø. (2009). The mating system of polar bears: a genetic approach. Canadian Journal of Zoology 87: 11951209.Google Scholar
Zhang, H., Li, D., Wang, C. & Hull, V. (2009). Delayed implantation in giant pandas: the first comprehensive empirical evidence. Reproduction 138: 979986.Google Scholar
Zhang, Z., Swaisgood, R. R., Zhang, S., et al. (2011). Old-growth forest is what giant pandas really need. Biology Letters 7(3): 403406.Google Scholar
Zhang, Z., Sheppard, J. K., Swaisgood, R. R., et al. (2014). Ecological scale and seasonal heterogeneity in the spatial behaviors of giant pandas. Integrative Zoology 9: 4660.Google Scholar
Zhu, L., Wu, Q., Dai, J., Zhang, S. & Wei, F. (2011). Evidence of cellulose metabolism by the giant panda gut microbiome. Proceedings of the National Academy of Sciences 108: 1771417719.Google Scholar
Zhu, X., Lindburg, D. G., Pan, W., Forney, K. A. & Wang, D. (2001). The reproductive strategy of giant pandas: infant growth and development and mother-infant relationships. Journal of Zoology 253: 141155.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×