Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2014
  • Online publication date: October 2014

4 - Effective local Langlands correspondence

Related content

Powered by UNSILO
[1] J., Arthur and L., Clozel, Simple algebras, base change, and the advanced theory of the trace formula, Annals of Math. Studies, vol. 120, Princeton University Press, 1989.
[2] C.J., Bushnell and G., Henniart, Local tame lifting for GL(n) I: simple characters, Publ. Math. IHES 83 (1996), 105–233.
[3] C.J., Bushnell, Local Rankin-Selberg convolution for GL(n): divisibility of the conductor, Math. Ann. 321 (2001), 455–461.
[4] C.J., Bushnell, On certain dyadic representations. Appendix to H. Kim and F. Shahidi, Functorial products for GL(2) × GL(3) and functorial symmetric cube for GL(2), Annals of Math. (2) 155 (2002), 883–893.
[5] C.J., Bushnell, Local tame lifting for GL(n) IV: simple characters and base change, Proc. London Math. Soc. 87 (2003), 337–362.
[6] C.J., Bushnell, Local tame lifting for GL(n) III: explicit base change and Jacquet-Langlands correspondence, J. reine angew. Math. 508 (2005), 39–100.
[7] C.J., Bushnell, The essentially tame local Langlands correspondence, I J. Amer. Math. Soc. 18 (2005), 685–710.
[8] C.J., Bushnell, The essentially tame local Langlands correspondence, II: totally ramified representations, Compositio Mathematica 141 (2005), 979–1011.
[9] C.J., Bushnell, The local Langlands Conjecture for GL(2) Grundlehren der mathematischen Wissenschaften, vol. 335, Springer, 2006.
[10] C.J., Bushnell, The essentially tame local Langlands correspondence, III: the general case, Proc. London Math. Soc. (3) 101 (2010), 497–553.
[11] C.J., Bushnell, The essentially tame local Jacquet-Langlands correspondence, Pure App. Math. Quarterly 7 (2011), 469–538.
[12] C.J., Bushnell, Explicit functorial correspondences for level zero representations of p-adic linear groups, J. Number Theory 131 (2011), 309–331.
[13] C.J., Bushnell, To an effective local Langlands correspondence, Memoirs Amer. Math. Soc., to appear. arXiv:1103.5316.
[14] C.J., Bushnell, Modular local Langlands correspondence for GLn, Int. Math. Res. Not. (2013), doi: 10.1093/imrn/rnt063.
[15] C.J., Bushnell and P.C., Kutzko, The admissible dual of GL(N) via compact open subgroups, Annals of Math. Studies, vol. 129, Princeton University Press, 1993.
[16] G., Glauberman, Correspondences of characters for relatively prime operator groups, Canadian J. Math. 20 (1968), 1465–1488.
[17] J.A., Green, The characters of the finite general linear groups, Trans. Amer. Math. Soc. 80 (1955), 402–447.
[18] M., Harris and R., Taylor, On the geometry and cohomology of some simple Shimura varieties, Annals of Math. Studies, vol. 151, Princeton University Press, 2001.
[19] G., Henniart, La conjecture locale de Langlands pour GL(3), Mém. Soc. Math. France, nouvelle série 11/12 (1984).
[20] G., Henniart, Caractérisation de la correspondance de Langlands locale par les facteurs ε de paires, Invent. Math. 113 (1993), 339–356.
[21] G., Henniart, Une preuve simple des conjectures locales de Langlands pour GLn sur un corps p-adique, Invent. Math. 139 (2000), 439–455.
[22] G., Henniart and R., Herb, Automorphic induction for GL(n) (over local nonarchimedean fields), Duke Math. J. 78 (1995), 131–192.
[23] G., Henniart and B., Lemaire, Changement de base et induction automorphe pour GLn en caractéristique non nulle, Mém. Soc. Math. France 108 (2010).
[24] H., Jacquet, I.I., Piatetskii-Shapiro and J.A., Shalika, Rankin-Selberg convolutions, Amer. J. Math. 105 (1983), 367–483.
[25] J.-L., Kim, Supercuspidal representations: an exhaustion theorem, J. Amer. Math. Soc. 20 (2007), 273–320.
[26] P.C., Kutzko, The Langlands conjecture for GL2 of a local field, Annals of Math. 112 (1980), 381–412.
[27] G., Laumon, M., Rapoport and U., Stuhler, D-elliptic sheaves and the Langlands correspondence, Invent. Math. 113 (1993), 217–338.
[28] C., Mœglin, Sur la correspondance de Langlands-Kazhdan, J. Math. Pures et Appl. (9) 69 (1990), 175–226.
[29] A., Moy and G., Prasad, Unrefined minimal K -types for p-adic groups, Invent. Math. 116 (1994), 393-408.
[30] I., Reiner, Maximal orders, Oxford University Press, 2003.
[31] V., Sécherre and S., Stevens, Représentations lisses de GLm(D), IV: représentations supercuspidales. J. Inst. Math. Jussieu 7 (2008), 527–574.
[32] F., Shahidi, Fourier transforms of intertwining operators and Plancherel measures for GL(n), Amer. J. Math. 106 (1984), 67–111.
[33] A., Silberger and E.-W., Zink, An explicit matching theorem for level zero discrete series of unit groups of р-adic simple algebras, J. reine angew. Math. 585 (2005), 173–235.
[34] S.A.R., Stevens, The supercuspidal representations of p-adic classical groups, Invent. Math. 172 (2008), 289–352.
[35] J., Tits, Reductive groups over local fields, Automorphic forms, representations and L-functions (A., Borel and W., Casselman, eds.), Proc. Symp. Pure Math.,vol. 33(1), Amer. Math. Soc., 1979, pp. 29–69.
[36] J.-K., Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14 (2001), 579–622.