Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-l4ctd Total loading time: 0 Render date: 2024-09-22T16:29:36.972Z Has data issue: false hasContentIssue false

9 - Properties and distances of celestial objects

Published online by Cambridge University Press:  05 June 2012

Hale Bradt
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

What we learn in this chapter

The information content in the radiation recorded in observations allows astronomers to derive the properties of celestial objects. The ranges of the values of these properties are found to be “astronomically” large. Luminosities are derived from measured fluxes and distances. The solar luminosity, 3.8 × 1026 W, is a benchmark reference; that of a bright quasar is 1013 times larger. The mass of the moon, earth, or of a galaxy can be determined by tracking the motion of one or more orbiting objects. The sun's mass, 1.99 × 1030 kg, is also a standard reference; the (Milky Way) Galaxy is > 1011 times more massive. The virial theorem is used to obtain the masses of clusters of galaxies. Temperatures can be defined for thermal sources, wherein the matter and radiation are in, or approximately in, thermal equilibrium. The temperatures of a hot gas may be determined in a variety of ways that may yield different values. Thus astronomers refer to kinetic, color, effective, excitation, and ionization temperatures. The last is obtained from spectral observations with the aid of the Saha equation.

The distance to a celestial object is not an intrinsic property but it is required to find intrinsic quantities. Ancient astronomers used geometry to learn the earth size and distance to the moon. The mean earth–sun distance is defined as the astronomical unit (AU). 1.00 AU =1.496 × 1011 m. […]

Type
Chapter
Information
Astronomy Methods
A Physical Approach to Astronomical Observations
, pp. 253 - 297
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×