Skip to main content Accessibility help
  • Print publication year: 2012
  • Online publication date: December 2012

3 - Ground-based opportunities for astrometry

from Part I - Astrometry in the twenty-first century



Chapter 1 surveys the opportunities and challenges for astrometry in the twenty-first century (van Altena 2008) while Chapter 2 discusses space satellites primarily designed for astrometry. We now review the situation for ground-based astrometry, since it is often mistakenly stated that there is no longer any need to pursue ground-based research once satellites are operating. It is certainly true that the levels of precision and accuracy projected for Gaia and others are far beyond what can be achieved from the ground. However, there are also consequences of the fairly small aperture size and short flight durations that impose constraints on the limiting magnitudes and our ability to study long-term perturbations. In this chapter we will explore those areas of research using astrometric techniques that will be able to make important contributions to our understanding of the Universe in the coming years, even with high-accuracy satellites such as Gaia operating.

Radio astrometry

It is likely that radio astrometry observations (see Chapter 12 for a detailed discussion of radio astrometry and interferometry) will continue to be made primarily from the ground due to the difficulty and cost of launching large objects into space. Since the diffraction limit of a telescope is inversely proportional to the wavelength and radio wavelengths are about 103 to 105 times longer than those of visible light, no high-resolution imaging or high-precision angular measures can be performed with a single radio telescope.

Related content

Powered by UNSILO
Andrei, A. H., Souchay, J., Zacharias, N., et al. (2009). The large quasar reference frame (LQRF). An optical representation of the ICRS. A&A, 505, 385.
Boboltz, D. A., Fey, A. L., Puatua, W. K., et al. (2007). Very large array plus Pie Town astrometry of 46 radio stars. AJ, 133, 906.
Charlot, P., Boboltz, D. A., Fey, A. L., et al. (2010). The Celestial Reference Frame at 24 and 43 GHz. II. Imaging. AJ, 139, 1713.
Dinescu, D. I., Girard, T. M., van Altena, W. F., and Lopez, C. E. (2005). Absolute proper motion of the Sagittarius dwarf galaxy and of the outer regions of the MilkyWay Bulge. ApJ, 618, L25.
Fey, A., Gordon, D., and Jacobs, C. S., eds. (2009). The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. IERS Technical Note No. 35.
Genzel, R., Eckart, A., Ott, T., and Eisenhauer, F. (1997). On the nature of the dark mass in the centre of the Milky Way. MNRAS, 291, 219.
Ghez, A. M., Salim, S., Weinberg, N., et al. (2008). Probing the properties of the Milky Way's central supermassive black hole with stellar orbits. Proc. IAU Symp., 248, 52.
Han, I. (1989). The accuracy of differential astrometry limited by the atmospheric turbulence. AJ, 97, 607.
Hartkopf, W. I., Mason, B. D., and Rafferty, T. J. (2008). Speckle interferometry at the USNO Flagstaff Station: observations obtained in 2003–2004 and 17 new orbits. AJ, 135, 1334.
Helmi, A. and White, S. D. M. (1999). Building up the stellar halo of the Galaxy. MNRAS, 307, 495
Henry, T. J., Jao, W.-C., Subasavage, J. P., et al. (2006). The solar neighborhood. XVII. Parallax results from the CTIOPI 0.9 m program: 20 new members of the RECONS 10 parsec sample. AJ, 132, 2360.
Horch, E. P., Franz, O. G., and van Altena, W. F. (2006). Characterizing binary stars below the diffraction limit with CCD-based speckle imaging. AJ, 132, 2478.
Horch, E. P., Veilliette, D. R., Baena Gallé, R., et al. (2009). Observations of binary stars with the differential speckle survey instrument. I. Instrument description and first results. AJ, 137, 5057.
Horch, E. P., van Altena, W. F., Howell, S. B., Sherry, W. H., and Ciardi, D. R. (2011). Observations of binary stars with the Differential Speckle Survey Instrument. III. Measures below the diffraction limit of the WIYN telescope. AJ, 141, 180.
Ivezic, Z., Axelrod, T., Brandt, W. N., et al. (2008). Large Synoptic Survey Telescope: from science drivers to reference design. Serb. Astr. J., 176, 1.
Jacoby, G., Tonry, J. L., Burke, B. E., et al. (2002). WIYN One Degree Imager (ODI). Proc. SPIE, 4836, 217.
Johnston, K. V., Spergel, D. N., and Hayden, C. (2002). How lumpy is the MilkyWay's dark matter halo?ApJ, 570, 656.
Kaiser, N., Aussel, H., Burke, B. E., et al. (2002). Pan-STARRS: a Large Synoptic Survey Telescope Array. Proc. SPIE, 4836, 154.
Labeyrie, A. (1970). Attainment of diffraction limited resolution in large telescopes by Fourier analyzing speckle patterns in star images. A&A, 6, 85.
Mason, B. D., Hartkopf, W. I., Gies, D. R., Henry, T. J., and Helsel, J. W. (2009). High angular resolution multiplicity of massive stars. AJ, 137, 3358.
Platais, I., Kozhurina-Platais, V., Girard, T. M., et al. (2002). WIYN open cluster study. VIII. The geometry and stability of the NOAO CCD Mosaic Imager. AJ, 124, 601.
Platais, I., Kozhurina-Platais, V.,Mathieu, R. D., Girard, T. M., and van Altena, W. F. (2003). WIYN open cluster study. XVII. Astrometry and membership to V = 21 in NGC 188. AJ, 126, 2922.
Platais, I.,Wyse, R. F. G., and Zacharias, N. (2006). Deep astrometric standards and galactic Structure. PASP, 118, 107.
Reid, M. J. (2008). Micro-arcsecond astrometry with the VLBA. Proc. IAU Symp., 248, 141.
Ten Brummelaar, T. A., et al. (2010). An update of the CHARA Array. Proc. SPIE, 7734, 773403.
Thompson, A. R., Moran, J. M., and Swenson, G. W. (2001). Interferometry and Synthesis in Radio Astronomy, 2nd edn. Chichester: Wiley.
Tonry, J., Burke, B. E., and Schechter, P. L. (1997). The orthogonal transfer CCD. PASP, 109, 1154.
Tonry, J., Burke, B. E., and Schechter, P. L. (2004). The orthogonal parallel imaging transfer camera. In Scientific Detectors for Astronomy: The Beginning of a New Era, ed. P., AmicoJ. W., Beletic and J. E., Beletic. Astrophysics and Space Science Library, vol. 300, New York, NY: Springer, p. 385.
van Altena, W. F. (2008). The opportunities and challenges for astrometry in the 21st century. Rev. Mex. A&A (Serie de Conf.), 34, 1.
van Altena, W. F., Lee, J. T., and Hoffleit, E. D. (1995). The General Catalogue of Trigonometric Parallaxes, 4th edn. New Haven: Yale University Observatory.
Walter, H. G. and Sovers, O. J. (2000). Astrometry of Fundamental Catalogues: The Evolution from Optical to Radio Reference Frames. New York, NY: Springer.
Zacharias, N. (1992). Global block adjustment simulations using the CPC 2 data structure. A&A, 264, 296.
Zacharias, N. (2008). Dense optical reference frames: UCAC and URAT. Proc. IAU Symp., 248, 310.
Zacharias, N., Urban, S. E., Zacharias, M. I., et al. (2004). The Second US Naval Observatory CCD Astrograph Catalog (UCAC2). AJ, 127, 3043.
Zacharias, N.,McCallon, H. I., Kopan, E., and Cutri, R. M. (2006). Extending the ICRF into the infrared: 2MASS-UCAC astrometry. In JD16: The International Celestial Reference Ssytem: Maintenance and Future Realization, ed. R., Gaume, D., McCharthy, J., Souchay. Washington, DC: USNO, p. 52.