Skip to main content Accessibility help
×
Home
  • Print publication year: 2012
  • Online publication date: December 2012

2 - Astrometric satellites

from Part I - Astrometry in the twenty-first century

Summary

Introduction

The launch of the Hipparcos satellite in 1989 and the Hubble Space Telescope in 1990 revolutionized astrometry. By no means does this imply that not much progress was made in the ground-based techniques used exclusively until then. On the contrary, the 1960s to 1980s saw an intense development of new or highly improved instruments, including photoelectric meridian circles, automated plate measuring machines, and the use of chargecoupled device (CCD) detectors for small-field differential astrometry (for a review of optical astrometry at the time, see Monet 1988). In the radio domain, very long baseline interferometry (VLBI) astrometry already provided an extragalactic reference frame accurate to about 1 milliarcsecond (mas) (Ma et al. 1990). Spectacular improvements were made in terms of accuracy, the faintness of the observed objects, and their numbers. However, there was a widening gulf between small-angle astrometry, where differential techniques could overcome atmospheric effects down to below 1 mas, and large-angle astrometry, where conventional instruments such as meridian circles seemed to have hit a barrier in the underlying systematic errors at about 100 mas. Though very precise, the small-angle measurements were of limited use for the determination of positions and proper motions, due to the lack of suitable reference objects in the small fields, and even for parallaxes the necessary correction for the mean parallax of background stars was highly non-trivial. Linking the optical observations to the accurate VLBI frame also proved extremely difficult.

Related content

Powered by UNSILO
References
Anderson, J. and King, I. R. (2003). An improved distortion solution for the Hubble Space Telescope's WFPC2. PASP, 115, 113.
Anderson, J. and King, I. R. (2006). PSFs, Photometry, and Astrometry for the ACS/WFC. Space Telescope Science Institute, ISR-ACS 2006–01.
Bacchus, P. and Lacroute, P. (1974). Prospects of space astrometry. Proc. IAU. Symp., 61, 277.
Bastian, U. and Röser, S. (2001). DIVA, the next global astrometry and photometry mission. ASP Conf. Ser., 228, 321.
Benedict, G. F., McArthur, B. E., Bean, J. L. (2008). HST FGS astrometry – the value of fractional millisecond of arc precision. Proc. IAU Symp., 248, 23.
Chubey, M. S., Kopylov, I. M., Gorshanov, D. L., Kanayev, , et al. (1997). The Aist-Struve space project sky survey. In New Horizons from Multi-Wavelength Sky Surveys, ed. B. J., McLean et al. Proc. IAU Symp., 179, 125.
,ESA (1997). The Hipparcos and Tycho Catalogues. ESA SP-1200.
Gaume, R. (2010). Looking towards the future: testing new concepts. EAS Publ Ser, 45, 143.
Gouda, N. (2010). Series of JASMINE missions. EAS Publ Ser, 45, 393.
Hennessy, G. S. and Gaume, R. (2010). Space astrometry with the Joint Milliarcsecond Astrometry Pathfinder. Proc. IAU Symp., 261, 350.
Høg, E. (1993). Astrometry and photometry of 400 million stars brighter than 18 mag. In Developments in Astrometry and Their Impact on Astrophysics and Geodynamics, ed. I. I., Mueller and B., Kotaczek. Proc. IAU Symp., 156, 37.
Høg, E. (1995). A new era of global astrometry. II. A 10 microarcsecond mission. In Astronomical and Astrophysical Objectives of Sub-Milliarcsecond Optical Astrometry, ed. E., Høg and P. K., Seidelmann. Proc. IAU Symp., 166, 317.
Høg, E., Fabricius, C., Makarov, V. V., Urban, S., Corbin, T., Wycoff, G., Bastian, U., Schwekendiek, P., and Wicenec, A. (2000). The Tycho-2 catalogue of the 2.5 million brightest stars. A&A, 355, L27.
Johnston, K. J. (2003). The FAME mission. Proc. SPIE, 4854, 303.
Johnston, K. J., Dorland, B., Gaume, R., et al. (2006). The Origins Billions Star Survey: Galactic explorer. PASP, 118, 1428.
Kalirai, J. S., Anderson, J., Richer, H. B., et al. (2007). The space motion of the globular cluster NGC 6397. ApJ, 657, L93.
Kobayashi, Y., Gouda, N., Yano, T., et al. (2008). The current status of the Nano-JASMINE project. Proc. IAU Symp., 248, 270.
Kovalevsky, J. (2005). The Hipparcos project at Strasbourg Observatory. In The Multinational History of Strasbourg Astronomical Observatory, ed. A., Heck. New York; NY: Springer Astrophysics and Space Science Library, vol. 330, p. 215.
Lacroute, P. (1967). In Transactions of the IAU, XIIIB, 63.
Lindegren, L. (2010a). Gaia: Astrometric performance and current status of the project. In Relativity in Fundamental Astronomy, ed. S., Klioner, P. K., Seidelmann and M., Soffel. Proc. IAU Symp., 261, 296.
Lindegren, L. (2010b). High-accuracy positioning: astrometry. ISSI Sci. Rep. Ser., 9, 279.
Lindegren, L. and Perryman, M. A. C. (1996). GAIA: Global astrometric interferometer for astrophysics, A&A Suppl. Ser., 116, 579.
Lindegren, L., Babusiaux, C., Bailer-Jones, C., et al. (2008). The Gaia mission: science, organization and present status. Proc. IAU Symp., 248, 217.
Ma, C., Shaffer, D. B., de Vegt, C., Johnston, K. J., and Russell, J. L. (1990). A radio optical reference frame. I. Precise radio source positions determined by Mark III VLBI: observations from 1979 to 1988 and a tie to the FK5. AJ, 99, 1284.
Mignard, F., Bailer-Jones, C., Bastian, U., et al. (2008). Gaia: organisation and challenges for the data processing, Proc. IAU Symp., 248, 224.
Monet, D. G. (1988). Recent advances in optical astrometry. ARAA, 26, 413.
Nelan, E. P., Lupie, O. L., McArthur, B., et al. (1998). Fine guidance sensors aboard the Hubble Space Telescope: the scientific capabilities of these interferometers. Proc. SPIE, 3350, 237.
Perryman, M. A. C. (2009). Astronomical Applications of Astrometry. Ten Years of Exploitation of The Hipparcos Satellite Data. Cambridge: Cambridge University Press.
Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. (1997). The Hipparcos Catalogue. A&A, 323, L49.
Shao, M. (2006). Search for terrestrial planets with SIM Planet Quest. In Advances in Stellar Interferometry, ed. J. D., MonnierM., Schöller and W. C., Danchi. Proc. SPIE, 6268, 1Z.
Turon, C., Gomez, A., Crifo, F., Creze, M., et al. (1992). The Hipparcos Input Catalogue. I – Star selection. A&A, 258, 74.
Turon, C., O'Flaherty, K. S., and Perryman, M. A. C., eds. (2005). The Three-Dimensional Universe with Gaia. ESA SP-576.
Unwin, S. C., Shao, M., Tanner, A. M., et al. (2008). Taking the measure of the universe: precision astrometry with SIM PlanetQuest. PASP, 120, 38.
van Leeuwen, F. (2007). Hipparcos, the New Reduction of the Raw Data. Astrophysics and Space Science Library, vol. 350, New York, NY: Springer.
Yano, T., Gouda, N., Kobayashi, Y., et al. (2008). Space astrometry JASMINE. Proc. IAU Symp., 248, 296.
Zacharias, N. and Dorland, B. (2006). The concept of a stare-mode astrometric space mission. PASP, 118, 1419.