Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-12T02:31:56.535Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  01 September 2009

Peter D. Clift
Affiliation:
University of Aberdeen
R. Alan Plumb
Affiliation:
Massachusetts Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Asian Monsoon
Causes, History and Effects
, pp. 232 - 262
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, M., Kitoh, A. and Yasunari, T. (2003) An evolution of the Asian summer monsoon associated with mountain uplift – simulation with the MRI atmosphere-ocean coupled GCM. J. Meteor. Soc. Japan, 81, 909–933.CrossRefGoogle Scholar
Abram, N. J., Gagan, M. K., Liu, Z., Hantoro, W. S., McCulloch, M. T. and Suwargadi, B. W. (2007) Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch. Nature, 445, 299–302.CrossRefGoogle ScholarPubMed
Agnihotri, R., Dutta, K., Bhushan, R. and Somayajulu, B. L. K. (2002) Evidence for solar forcing on the Indian monsoon during the last millennium. Earth Planet. Sci. Lett., 198, 521–527.CrossRefGoogle Scholar
Aitchison, J. C., Ali, J. R. and Davis, A. M. (2007) When and where did India and Asia collide?J. Geophys. Res., 112, B05423, doi: 10.1029/2006JB004706.CrossRefGoogle Scholar
Alam, M. and Subrahmanyam, S. (1998) The Mughal state, 1526–1750. Delhi, India: Oxford University Press, p. 455.Google Scholar
Albright, W. F. (1944) Ur excavations, vol. V: the Ziggurat and its surroundings. American J. Archaeo., 48, 303–305.CrossRefGoogle Scholar
Ali, J. R. and Aitchison, J. C. (2005) Greater India. Earth Sci. Rev., 72, 169–188.CrossRefGoogle Scholar
Alley, R. B., Meese, D. A., Shuman, C. A.et al. (1993) Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362, 527–529.CrossRefGoogle Scholar
Altabet, M. A., Francois, R., Murray, D. W. and Prell, W. L. (1995) Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature, 373, 506–509.CrossRefGoogle Scholar
Altabet, M. A., Murray, D. W. and Prell, W. L. (1999) Climatically linked oscillations in Arabian Sea denitrification over the past 1 m.y.: implications for the marine N cycle. Paleoceanography, 14, 732–743.CrossRefGoogle Scholar
Altabet, M. A., Higginson, M. J. and Murray, D. W. (2002) The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature, 415, 159–162.CrossRefGoogle ScholarPubMed
An, C.-B., Feng, Z. and Tang, L. (2004) Environmental change and cultural response between 8000 and 4000 cal. yr BP in the western Loess Plateau, north-west China. J. Quat. Sci., 19, 529–535.CrossRefGoogle Scholar
An, C.-B., Tang, L., Barton, L. and Chen, F. H. (2005) Climate change and cultural response around 4000 cal yr B. P. in the western part of Chinese Loess Plateau. Quat. Res., 63, 347–352.CrossRefGoogle Scholar
An, Z. (1991) Radiocarbon dating and the prehistoric archaeology of China. World Archaeo., 23, 193–200.Google Scholar
An, Z., Kukla, G. J., Porter, S. C. and Xiao, J. (1991) Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quat. Res., 36, 29–36.CrossRefGoogle Scholar
An, Z. S., Porter, S. C., Chappell, J.et al. (1994) The Luochuan loess sequence over the past 130 ka and records of the Greenland ice cores. Chinese Sci. Bull., 39, 182–184.Google Scholar
An, Z., Kutzbach, J. E., Prell, W. L. and Porter, S. C. (2001) Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature, 411, 62–66.Google Scholar
Anand, P., Elderfield, H. and Conte, M. H. (2003) Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18, 1050, doi: 10.1029/2002PA000846.CrossRefGoogle Scholar
Anderson, D. M. and Prell, W. L. (1993) A 300 kyr record of upwelling off Oman during the late Quaternary; evidence of the Asian south-west monsoon. Paleoceanography, 8, 193–208.CrossRefGoogle Scholar
Anderson, D. M., Brock, J. C. and Prell, W. L. (1992) Physical upwelling processes, upper ocean environment and the sediment record of the south-west monsoon. In Upwelling Systems; Evolution Since the Early Miocene, ed. Summerhayes, C. P., Prell, W. L. and Emeis, K. C.. London: Geol. Soc. Lond., Spec. Publ., vol. 64, pp. 121–129.Google Scholar
Anderson, D. M., Overpeck, J. T. and Gupta, A. K. (2002) Increase in the Asian south-west monsoon during the past four centuries. Science, 297, 596–599.CrossRefGoogle Scholar
Andersson, J. G. (1923) Essays on the Cenozoic of northern China. Mem. Geol. Surv. China, Ser. A, 3, 1–152.Google Scholar
Ashrit, R. G., Kumar, K. R. and Kumar, K. K. (2001) ENSO-monsoon relationships in a greenhouse warming scenario. Geophys. Res. Lett. 28, 1727–1730.CrossRefGoogle Scholar
Audley-Charles, M. G. (2004) Ocean trench blocked and obliterated by Banda forearc collision with Australian proximal continental slope. Tectonophysics, 389, 65–79.CrossRefGoogle Scholar
Axelrod, D. I. (1980) Estimating altitudes of Tertiary forests. In Proceedings of Symposium on Qinghai-Zizang (Tibet) Plateau, Beijing, China: Academica Sinica, 0–2.Google Scholar
Barber, D. C., Dyke, A., Hillaire, M. C.et al. (1999) Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400, 344–348.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Arnold, M.et al. (1996) Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature, 382, 241–244.CrossRefGoogle Scholar
Bassinot, F. C., Labeyrie, L. D., Vincent, E.et al. (1994) The astronomical theory of climate and the age of the Brunhes–Matuyama magnetic reversal. Earth Planet. Sci. Lett., 126, 91–108.CrossRefGoogle Scholar
Beaumont, C., Jamieson, R. A., Nguyen, M. H. and Medvedev, S. (2004) Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan–Tibetan orogen. J. Geophys. Res. 109, B06406, doi: 10.1029/2003JB002809.CrossRefGoogle Scholar
Béchennec, F., Métour, J., Platel, J. P. and Roger, J. (1993) Explanatory notes to the geological map of the Sultanate of Oman. Muscat, Oman: Directorate General of Minerals, Oman Ministry of Petroleum and Minerals, p. 93.Google Scholar
Bettinger, R. L., Barton, L., Richerson, P. J. et al. (2007) The transition to agriculture in North-western China. In Late Quaternary Climate Change and Human Adaptation in Arid China, ed. Madsen, D. B., Chen, F. and Gao, X., Amsterdam: Elsevier, Develop. Quat. Sci., vol. 9, pp. 83–101.Google Scholar
Bhattacharya, A. (1989) Vegetation and climate during the last 30,000 years in Ladakh. Palaeogeog., Palaeoclimat., Palaeoeco., 73, 25–38.CrossRefGoogle Scholar
Bird, M. I. and Cali, J. A. (1998) A million-year record of fire in sub-Saharan Africa. Nature, 394, 767–769.CrossRefGoogle Scholar
Bird, P. (1978) Initiation of intracontinental subduction in the Himalaya. J. Geophys. Res., 83, 4975–4987.CrossRefGoogle Scholar
Biscaye, P. E. (1965) Mineralogy and sedimentation of Recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull., 76, 803–831.CrossRefGoogle Scholar
Blisniuk, P. M., Hacker, B. R., Glodny, J.et al. (2001) Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 412, 628–632.CrossRefGoogle ScholarPubMed
Bohren, C. F. and Albrecht, B. A. (1998) Atmospheric Thermodynamics, Oxford: Oxford University Press, p. 404.Google Scholar
Bond, G. C., Heinrich, H., Broecker, W. S.et al. (1992) Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature, 360, 245–249.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M.et al. (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278, 1257–1266.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J.et al. (2001) Persistent solar influence on North Atlantic Climate during the Holocene. Science, 294, 2130–2136.CrossRefGoogle ScholarPubMed
Bookhagen, B. and Burbank, D. W. (2006) Topography, relief and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33, L08405, doi: 10.1029/2006GL026037.Google Scholar
Bookhagen, B., Thiede, R. C. and Strecker, M. R. (2005a) Late Quaternary intensified monsoon phases control landscape evolution in the north-west Himalaya. Geology, 33, 149–152.CrossRefGoogle Scholar
Bookhagen, B., Thiede, R. C. and Strecker, M. R. (2005b) Abnormal monsoon years and their control on erosion and sediment flux in the high, arid north-west Himalaya. Earth Planet. Sci. Lett., 231, 131–146.CrossRefGoogle Scholar
Brass, G. W. and Raman, C. V. (1991) Clay mineralogy of sediments from the Bengal Fan. Proc. Ocean Drill. Prog., Sci. Res., ed. J. R. Cochran, D. A. V. Stow et al., 116, College Station, TX: Ocean Drilling Program, pp. 35–42.
Bray, H. E. and Stokes, S. (2004) Temporal patterns of arid-humid transitions in the south-eastern Arabian Peninsula based on optical dating. Geomorph., 59, 271–280.CrossRefGoogle Scholar
Broecker, W. S. (1994) Massive iceberg discharges as triggers for global climate change. Nature, 372, 421–424.CrossRefGoogle Scholar
Brookfield, M. E. (1998) The evolution of the great river systems of southern Asia during the Cenozoic India–Asia collision; rivers draining southwards. Geomorph., 22, 285–312.CrossRefGoogle Scholar
Bryson, R. A. and Swain, A. M. (1981) Holocene variations of monsoon rainfall in Rajasthan. Quat. Res., 16, 135–145.CrossRefGoogle Scholar
Bull, J. M. and Scrutton, R. A. (1990) Fault reactivation in the central Indian Ocean and the rheology of oceanic lithosphere. Nature, 344, 855–858.CrossRefGoogle Scholar
Bull, J. M. and Scrutton, R. A. (1992) Seismic reflection images of intraplate deformation, central Indian Ocean and their tectonic significance. J. Geol. Soc., 149, 955–966.CrossRefGoogle Scholar
Burbank, D. W., Derry, L. A. and France-Lanord, C. (1993) Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 364, 48–50.CrossRefGoogle Scholar
Burbank, D. W., Blythe, A. E., Putkonen, J.et al. (2003) Decoupling of erosion and precipitation in the Himalayas. Nature, 426, 652–655.CrossRefGoogle ScholarPubMed
Burchfiel, B. C., Chen, Z., Hodges, K. V.et al. (1992) The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous With and Parallel to Shortening in a Collisional Mountain Belt. Boulder, CO: Geological Society of America, Geol. Soc. Amer. Spec. Paper, 269, p. 41.Google Scholar
Burg, J. P., Proust, F., Tapponnier, P. and Chen, G. M. (1983) Deformation phases and tectonic evolution of the Lhasa Block (southern Tibet, China). Eclog. Geol. Helv., 76, 643–665.Google Scholar
Burns, S. J. and Matter, A. (1995) Geochemistry of carbonate cements in surficial alluvial conglomerates and their paleoclimatic implications, Sultanate of Oman. J. Sed. Res., 65, 170–177.Google Scholar
Burns, S. J., Matter, A., Frank, N. and Mangini, A. (1998) Speleothem-based paleoclimate record from northern Oman. Geology, 26, 499–502.2.3.CO;2>CrossRefGoogle Scholar
Burns, S. J., Fleitmann, D., Mudelsee, M.et al. (2002) 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from South Oman. J. Geophys. Res., 107, 20, 4434.CrossRefGoogle Scholar
Burns, S. J., Fleitmann, D., Matter, A., Kramers, J. and Al-Subbary, A. A. (2003) Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science, 301, 1365–1367.CrossRefGoogle ScholarPubMed
Bush, A. B. G. (2004) Modeling of late Quaternary climate over Asia: a synthesis. Boreas, 33, 155–163.CrossRefGoogle Scholar
Calvache-Archila, J. and Love, C. (2001) Structural provinces in the northern Sohar Basin, offshore Oman. Abstr. Int. Conf. Geol. Oman, Muscat, Oman: Oman Ministry of Commerce, p. 27.Google Scholar
Camoin, G. F., Montaggioni, L. F. and Braithwaite, C. J. R. (2004) Late glacial to post glacial sea levels in the western Indian Ocean. Mar. Geol., 206, 119–146.CrossRefGoogle Scholar
Cane, M. A. (1998) A role for the tropical Pacific. Science, 282, 60–61.CrossRefGoogle Scholar
Cane, M. A. and Molnar, P. (2001) Closing of the Indonesian seaway as a precursor to East African aridification around 3–4 million years ago. Nature, 411, 157–162.CrossRefGoogle ScholarPubMed
Cerling, T. E., Wang, Y. and Quade, J. (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 361 (6410), 344–345.CrossRefGoogle Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J.et al. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature, 38, 153–158.CrossRefGoogle Scholar
Chakraborty, A., Nanjundiah, R. S. and Srinivasan, J. (2002) Role of Asian and African orography in Indian summer monsoon. Geophys. Res. Lett., 29, doi: 10.1029/2002GL015522.CrossRefGoogle Scholar
Chen, J., Farrell, J. W., Murray, D. W. and Prell, W. L. (1995) Timescale and paleoceanographic implications of a 3.6 Ma oxygen isotope record from the north-east Indian Ocean (Ocean Drilling Program Site 758). Paleoceanography, 10, 21–48.CrossRefGoogle Scholar
Chen, J., Zheng, L., Wiesner, M. G.et al. (1998) Estimations of primary production and export production in the South China Sea based on sediment trap experiments. China Sci. Bull., 43, 583–586.CrossRefGoogle Scholar
Chen, J., An, Z. S. and Head, J. (1999) Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quat. Res., 51, 215–219.CrossRefGoogle Scholar
Chen, K. T. and Hiebert, F. T. (1995) The late prehistory of Xinjiang in relation to its neighbors. J. World Prehist., 9, 243–300.CrossRefGoogle Scholar
Chen, M., Wang, R., Yang, L., Han, J. and Lu, J. (2003) Development of East Asian summer monsoon environments in the late Miocene; radiolarian evidence from Site 1143 of ODP Leg 184. Mar. Geol., 201, 169–177.CrossRefGoogle Scholar
Chen, M.-T. and Huang, C. Y. (1998) Ice-volume forcing of winter monsoon climate in the South China Sea. Paleoceanography, 13, 622–633.CrossRefGoogle Scholar
Cheng, H., Edwards, R. L., Wang, Y.et al. (2006) A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology, 34, 217–220.CrossRefGoogle Scholar
Chou, C. and Neelin, J. D. (2001) Mechanisms limiting the southward extent of the South American summer monsoon. Geophys. Res. Lett., 28, 2433–2436.CrossRefGoogle Scholar
Chou, C., Neelin, J. D. and Su, H. (2001) Ocean-atmosphere-land feedbacks in an idealized monsoon. Quart. J. R. Meteor. Soc., 127, 1869–1891.CrossRefGoogle Scholar
Chu, P. C. and Li, R. (2000) South China Sea isopycnal-surface circulation. J. Phys. Ocean., 30, 2419–2438.2.0.CO;2>CrossRefGoogle Scholar
Chung, S. L., Lo, C. H., Lee, T. Y.et al. (1998) Diachronous uplift of the Tibet Plateau starting 40 Myr ago. Nature, 394, 769–773.CrossRefGoogle Scholar
Clark, C. O., Cole, J. E. and Webster, P. J. (2000) Indian Ocean SST and Indian summer rainfall: predictive relationships and their decadal variability. J. Clim., 13, 2503–2519.2.0.CO;2>CrossRefGoogle Scholar
Clark, M. K. and Royden, L. H. (2000) Topographic ooze; building the eastern margin of Tibet by lower crustal flow. Geology, 28, 703–706.2.0.CO;2>CrossRefGoogle Scholar
Clark, M. K., Schoenbohm, L. M., Royden, L. H.et al. (2004) Surface uplift, tectonics, and erosion of Eastern Tibet from large-scale drainage patterns. Tectonics, 23, TC1006, doi: 10.1029/2002TC001402.CrossRefGoogle Scholar
Clark, M. K., House, M. A., Royden, L. H.et al. (2005) Late Cenozoic uplift of south-eastern Tibet. Geology, 33, 525–528.CrossRefGoogle Scholar
Clemens, S. C. and Prell, W. L. (1990) Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity; Eolian records from the lithogenic component of deep-sea sediments. Paleoceanography, 5, 109–145.CrossRefGoogle Scholar
Clemens, S. C. and Prell, W. L. (2003) Data report: preliminary oxygen and carbon isotopes from site 1146, northern South China Sea. Proc. Ocean Drill. Prog., Sci. Res., 184, 1–8 (online).Google Scholar
Clemens, S. C. and Prell, W. L. (2007) The timing of orbital-scale Indian monsoon changes. Quat. Sci. Rev., 26, 275–278.CrossRefGoogle Scholar
Clemens, S. C., Prell, W., Murray, D., Shimmield, G. and Weedon, G. (1991) Forcing mechanisms of the Indian Ocean monsoon. Nature, 353, 720–725.CrossRefGoogle Scholar
Clemens, S. C., Murray, D. W. and Prell, W. L. (1996) Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science, 274, 943–948.CrossRefGoogle ScholarPubMed
Clift, P. D., Giosan, L., Blusztajn, J.et al. (2008) Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology, 36, 79–82.CrossRefGoogle Scholar
Clift, P. D. (2006) Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett., 241, 571–580.CrossRefGoogle Scholar
Clift, P. D. and Blusztajn, J. (2005) Re-organization of the western Himalayan river system after five million years ago. Nature, 438, 1001–1003.CrossRefGoogle Scholar
Clift, P. D., Lee, J. I., Blusztajn, J. and Clark, M. K. (2002a) Erosional response of South China to arc rifting and monsoonal strengthening recorded in the South China Sea. Mar. Geol., 184, 207–226.CrossRefGoogle Scholar
Clift, P. D., Gaedicke, C., Edwards, R.et al. (2002b) The stratigraphic evolution of the Indus Fan and the history of sedimentation in the Arabian Sea. Mar. Geophys. Res., 23, 223–245.CrossRefGoogle Scholar
Clift, P. D., Lee, J. I., Hildebrand, P.et al. (2002c) Nd and Pb isotope variability in the Indus River system: implications for sediment provenance and crustal heterogeneity in the Western Himalaya. Earth Planet. Sci. Lett., 200, 91–106.CrossRefGoogle Scholar
Clift, P. D., Layne, G. D. and Blusztajn, J. (2004) The erosional record of Tibetan uplift in the East Asian marginal seas. In Continent-Ocean Interactions in the East Asian Marginal Seas, ed. P. D. Clift, P. Wang, D. Hayes, W. Kuhnt. Amer. Geophys. Union, monogr., 149, 255–282.
Clift, P. D., Blusztajn, J. and Nguyen, D. A. (2006a) Large-scale drainage capture and surface uplift in Eastern Tibet before 24 Ma. Geophys. Res. Lett, 33, L19403, doi: 10.1029/2006GL027772.CrossRefGoogle Scholar
Clift, P. D., Carter, A., Campbell, I. H.et al. (2006b) Thermochronology of mineral grains in the Song Hong and Mekong Rivers, Vietnam. Geophys., Geochem., Geosyst., 7, Q10005, doi: 10.1029/2006GC001336.Google Scholar
Cline, J. D. and Kaplan, I. R. (1975) Isotopic fractionation of dissolved nitrate during denitrification in the Eastern Tropical North Pacific Ocean. Mar. Chem., 3, 271–299.CrossRefGoogle Scholar
Cochran, J. R. (1990) Himalayan uplift, sea level, and the record of Bengal Fan sedimentation at the ODP leg 116 sites. Proc. Ocean Drill. Prog., Sci. Res., 116, 397–414.Google Scholar
Coleman, M. and Hodges, K. (1995) Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374, 49–52.CrossRefGoogle Scholar
Colin, C., Turpin, L., Bertaux, J., Desprairies, A. and Kissel, C. (1999) Erosional history of the Himalayan and Burman ranges during the last two glacial-interglacial cycles. Earth Planet. Sci. Lett., 171, 647–660.CrossRefGoogle Scholar
Conkright, M., Levitus, S., O'Brien, T.et al. (1998) World Ocean Atlas 1998, CD-ROM data set documentation, tech. rep. 15. Silver Spring, MD: National Oceanographic Data Center, p. 16.Google Scholar
Conte, M. H. and Weber, J. C. (2002) Plant biomarkers in aerosols record isotopic discrimination of terrestrial photosynthesis. Nature, 417, 639–641.CrossRefGoogle ScholarPubMed
Cook, E. R., D'Arrigo, R. D. and Briffa, K. R. (1998) A reconstruction of the North Atlantic oscillation using tree-ring chronologies from North America and Europe. Holocene, 8, 9–17.CrossRefGoogle Scholar
Cook, E. R., Woodhouse, C., Eakin, C. M., Meko, D. M. and Stahle, D. W. (2004) Long-term aridity changes in the western United States. Science, 306, 1015–1018.CrossRefGoogle ScholarPubMed
Copeland, P., Harrison, T. M., Kidd, W. S. F., Xu, R. and Zhang, Y. (1987) Rapid Miocene acceleration of uplift in the Gangdese belt, Xizang (southern Tibet), and its bearing on accommodation mechanisms of the India–Asia collision. Earth Planet. Sci. Letts., 86, 240–252.CrossRefGoogle Scholar
Cullen, H. M., deMenocal, P. B., Hemming, S.et al. (2000) Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology, 28, 379–382.2.0.CO;2>CrossRefGoogle Scholar
Curray, J. R. (1994) Sediment volume and mass beneath the Bay of Bengal. Earth Planet. Sci. Lett., 125, 371–383.CrossRefGoogle Scholar
Curray, J. R. and Moore, D. G. (1971) Growth of the Bengal deep-sea fan and denudation in the Himalayas. Geol. Soc. Amer. Bull., 82, 563–572.CrossRefGoogle Scholar
Curray, J. R., Emmel, F. J. and Moore, D. G. (2003) The Bengal Fan: morphology, geometry, stratigraphy, history and processes. Mar. Petrol. Geol., 19, 1191–1223.CrossRefGoogle Scholar
Currie, B. S., Rowley, D. B. and Tabor, N. J. (2005) Middle Miocene paleoaltimetry of southern Tibet; implications for the role of mantle thickening and delamination in the Himalayan Orogen. Geology, 33, 181–184.CrossRefGoogle Scholar
Curry, W. B., Ostermann, D. R., Guptha, M. V. S. and Itekkot, V. (1992) Foraminiferal production and monsoonal upwelling in the Arabian Sea; evidence from sediment traps. In Upwelling Systems; Evolution Since the Early Miocene, ed. C. P. Summerhayes, W. L. Prell and K. C. Emeis, Geol. Soc. Lond., Spec. Publ., 64, 93–106.
Dadson, S., Hovius, N.Chen, H.et al. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426, 648–651.CrossRefGoogle ScholarPubMed
Dahl, K. A. and Oppo, D. W. (2006) Sea-surface temperature pattern reconstructions in the Arabian Sea. Paleoceanography, 21, PA1014, doi: 10.1029/2005PA001162.CrossRefGoogle Scholar
Dannenmann, S., Linsley, B. K., Oppo, D. W., Rosenthal, Y. and Beaufort, L. (2003) East Asian monsoon forcing of suborbital variability in the Sulu Sea during Marine Isotope Stage 3; link to Northern Hemisphere climate. Geochem., Geophys., Geosyst., 4, 1, doi: 10.1029/2002GC000390.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S. J., Clausen, H. B.et al. (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–220.CrossRefGoogle Scholar
Davies, T. A., Kidd, R. B. and Ramsay, A. T. S. (1995) A time-slice approach to the history of Cenozoic sedimentation in the Indian Ocean. Sed. Geol., 96, 157–179, 1995.CrossRefGoogle Scholar
DeCelles, P. G., Robinson, D. M., Quade, J.et al. (2001) Stratigraphy, structure and tectonic evolution of the Himalayan fold–thrust belt in western Nepal. Tectonics 20, 487–509.CrossRefGoogle Scholar
deMenocal, P. B. (2001) Cultural responses to climate change during the late Holocene. Science, 292, 667–673.CrossRefGoogle ScholarPubMed
deMenocal, P. B., Ortiz, J., Guilderson, T. and Sarnthein, M. (2000) Coherent high- and low-latitude climate variability during the Holocene warm period. Science, 288, 2198–2202.CrossRefGoogle ScholarPubMed
Dercourt, J., Ricou, L. E. and Vrielinck, B. eds., (1993) Atlas Tethys Palaeoenvironmental Maps, Paris: Gauthier-Villars, pp. 1–307.Google Scholar
Derry, L. A. and France-Lanord, C. (1996) Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record. Earth Planet. Sci. Lett., 142, 59–76.CrossRefGoogle Scholar
Derry, L. A. and France-Lanord, C. (1997) Himalayan weathering and erosion fluxes; climate and tectonic controls. In Tectonic Uplift and Climate Change, ed. Ruddiman, W. F., New York: Plenum Press, pp. 289–312.CrossRefGoogle Scholar
Dettman, D. L., Kohn, M. J., Quade, J.et al. (2001) Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology, 29, 31–34.2.0.CO;2>CrossRefGoogle Scholar
Dettman, D. L., Fang, X., Garzione, C. N. and Li, J. (2003) Uplift-driven climate change at 12 Ma; a long δ18O record from the NE margin of the Tibetan Plateau. Earth Planet. Sci. Lett., 214, 267–277.CrossRefGoogle Scholar
Dickson, R. R. and Brown, J. (1994) The production of North Atlantic Deep Water: sources, rates, and pathways. J. Geophys. Res., 9, 12 319–12 342.CrossRefGoogle Scholar
Ding, L., Kapp, P., Zhong, D. and Deng, W. (2003) Cenozoic volcanism in Tibet; evidence for a transition from oceanic to continental subduction. J. Petrol., 44, 1833–1865.CrossRefGoogle Scholar
Ding, Z., Liu, T., Rutter, N. W.et al. (1995) Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years. Quat. Res., 44(2), 149–159.CrossRefGoogle Scholar
Ding, Z. L., Sun, J. M., Liu, T. S.et al. (1998) Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China. Earth Planet. Sci. Lett., 161(1–4), 135–143.CrossRefGoogle Scholar
Ding, Z. L., Xiong, S. F., Sun, J. M.et al. (1999) Pedostratigraphy and paleomagnetism of an approximately 7.0 Ma Eolian loess–red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeog., Palaeoclim., Palaeoeco., 152, 49–66.CrossRefGoogle Scholar
Ding, Z. L., Sun, J. M., Yang, S. L. and Liu, T. S. (2001) Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochim. Cosmochim. Acta, 65, 901–913.CrossRefGoogle Scholar
Dokken, T. M. and Jansen, E. (1999) Rapid changes in the mechanism of ocean convection during the last glacial period. Nature, 401, 458–461.CrossRefGoogle Scholar
Doose-Rolinski, H., Rogalla, U., Scheeder, G., Lückge, A. and Rad, U. (2001) High-resolution temperature and evaporation changes during the late Holocene in the north-eastern Arabian Sea. Paleoceanography, 16(4), 358–367.CrossRefGoogle Scholar
Duplessy, J. C. (1982) Glacial to interglacial contrasts in the northern Indian Ocean. Nature, 295, 494–498.CrossRefGoogle Scholar
Edwards, R. L., Chen, J. H. and Wasserburg, G. J. (1987) 238U-234U-230-Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett., 81, 175–192.CrossRefGoogle Scholar
Elston, R. G., Xu, C., Madsen, D. B.et al. (1997) New dates for the North China Mesolithic. Antiquity, 71, 985–993.CrossRefGoogle Scholar
Emanuel, K. A. (1986) An air–sea interaction theory for tropical cyclones. Part I: steady state maintenance. J. Atmos. Sci., 43, 585–604.2.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. A. (2000) A statistical analysis of hurricane intensity. Mon. Wea. Rev., 128, 1139–1152.2.0.CO;2>CrossRefGoogle Scholar
England, P. C. and Houseman, G. (1989) Extension during continental convergence with application to the Tibetan Plateau. J. Geophys. Res., 94, 17561–17579.CrossRefGoogle Scholar
England, P. C. and Searle, M. P. (1986) The Cretaceous–Tertiary deformation of the Lhasa Block and its implications for crustal thickening in Tibet. Tectonics, 5, 1–14.CrossRefGoogle Scholar
Enzel, Y., Ely, L. L., Mishra, S.et al. (1999) High-resolution Holocene environmental changes in the Thar Desert, north-western India. Science, 284, 125–128.CrossRefGoogle Scholar
Esper, J., Cook, E. R. and Schweingruber, F. H. (2002) Low-frequency signals in long chronologies for reconstructing past temperature variability. Science, 295, 2250–2253.CrossRefGoogle ScholarPubMed
Esper, J., Frank, D. C., Wilson, R. J. S., Büntgen, U. and Treydte, K. (2007) Uniform growth trends among central Asian low and high elevation juniper tree sites. Trees, 21, 141–150.CrossRefGoogle Scholar
Fairbanks, R. G. (1989) A 17 000-year glacio-eustatic sea level record: influence of glacial melting rates on Younger Dryas event and deep-ocean circulation. Nature, 342, 637–642.CrossRefGoogle Scholar
Fang, J. Q. (1991) Lake evolution during the past 30,000 years in China, and its implications for environmental change. Quat. Res., 36, 37–60.CrossRefGoogle Scholar
Fang, X., Ono, Y., Fukusawa, H.et al. (1999) Asian summer monsoon instability during the past 60,000 years; magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau. Earth Planet. Sci. Lett., 168, 219–232.CrossRefGoogle Scholar
Fang, X., Garzione, C., Voo, R., Li, J. and Fan, M. (2003) Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth Planet. Sci. Lett., 210, 545–560.CrossRefGoogle Scholar
Farley, K. A. (2000) Helium diffusion from apatite; general behavior as illustrated by Durango fluorapatite. J. Geophys. Res., 105, 2903–2914.CrossRefGoogle Scholar
Fasullo, J. and Webster, P. J. (2003) A hydrological definition of the Indian summer monsoon onset and withdrawal. J. Clim., 16, 3200–3211.2.0.CO;2>CrossRefGoogle Scholar
Feng, X., Cui, H., Tang, K. and Conkey, L. E. (1999) Tree-ring δD as an indicator of Asian monsoon intensity. Quat. Res., 51, 262–266.CrossRefGoogle Scholar
Feng, Z.-D., An, C. B., Tang, L. Y. and Jull, A. J. T. (2004) Stratigraphic evidence of a Megahumid climate between 10,000 and 4000 years BP in the western part of the Chinese Loess Plateau. Global Planet. Change, 43, 145–155.CrossRefGoogle Scholar
Fielding, E. J. (1996) Tibet uplift and erosion. Tectonophysics, 260, 55–84.CrossRefGoogle Scholar
Findlater, J. (1969) Interhemispheric transport of air in the lower troposphere over the western Indian Ocean. Quart. J. R. Meteor. Soc., 95, 400–403.CrossRefGoogle Scholar
Fine, R. A., Lukas, R., Bingham, F. M., Warner, M. J. and Gammon, R. H. (1994) The Western Equatorial Pacific: a water mass crossroads. J. Geophys. Res., 99, 25 063–25 080.CrossRefGoogle Scholar
Fleitmann, D., Burns, S. J., Neff, U.et al. (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science, 300, 1737–1739.CrossRefGoogle Scholar
Fleitmann, D., Burns, S. J., Neff, U.et al. (2004) Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from southern Oman. Quat. Sci. Rev., 23, 935–945.CrossRefGoogle Scholar
Fluteau, F., Ramstein, G. and Besse, J. (1999) Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J. Geophys. Res., 104, 11 995–12 018.CrossRefGoogle Scholar
France-Lanord, C., Derry, L. and Michard, A. (1993) Evolution of the Himalaya since Miocene time: isotopic and sedimentological evidence from the Bengal Fan. In Himalayan Tectonics, ed. P. J. Treloar and M. P. Searle. Geol. Soc., Lond., Spec. Publ., 74, 603–622.
Frumkin, A. (1991) The Holocene climatic record of the salt caves of Mount Sedom, Israel. The Holocene, 1, 191–200.CrossRefGoogle Scholar
Galy, A. and France-Lanord, C. (2001) Higher erosion rates in the Himalaya; geochemical constraints on riverine fluxes. Geology, 29, 23–26.2.0.CO;2>CrossRefGoogle Scholar
Garzione, C. N., Quade, J., DeCelles, P. G. and English, N. B. (2000) Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth Planet. Sci. Lett., 183, 215–229.CrossRefGoogle Scholar
Garzione, C. N., Dettman, D. L. and Horton, B. K. (2004) Carbonate oxygen isotope paleoaltimetry; evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan Plateau. Palaeogeog., Palaeoclim., Palaeoeco., 212, 119–140.CrossRefGoogle Scholar
Garzione, C. N., Ikari, M. J. and Basu, A. R. (2005) Source of Oligocene to Pliocene sedimentary rocks in the Linxia basin in north-eastern Tibet from Nd isotopes: implications for tectonic forcing of climate. Geol. Soc. Amer. Bull., 117, 1156–1166.CrossRefGoogle Scholar
Gasse, F., Arnold, M., Fontes, J. C.et al. (1991) A 13 000-year climate record from western Tibet. Nature, 353, 742–745.CrossRefGoogle Scholar
George, A. D., Marshallsea, S. J., Wyrwoll, K. H., Jie, C. and Yanchou, A. (2001) Miocene cooling in the northern Qilian Shan, north-eastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology, 29, 939–942.2.0.CO;2>CrossRefGoogle Scholar
Ghose, B., Kar, A. and Husain, Z. (1979) The lost courses of the Saraswati River in the Great Indian Desert; new evidence from Landsat imagery. Geograph. J., 145, 446–451.CrossRefGoogle Scholar
Giosan, L., Flood, R. D., Grutzner, J. and Mudie, P. (2002) Paleoceanographic significance of sediment color on western North Atlantic Drifts: II. Late Pliocene-Pleistocene sedimentation. Mar. Geol., 189, 43–61.CrossRefGoogle Scholar
Giosan, L., Clift, P. D., Blusztajn, J.et al. (2006) On the control of climate- and human-modulated fluvial sediment delivery on river delta development: the Indus. Eos Trans., 87(52), OS14A–04.Google Scholar
Godfrey, J. S. (1996) The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: a review. J. Geophys. Res., 101, 12 217–12 238.CrossRefGoogle Scholar
Godfrey, J. S. and Golding, T. J. (1981) The Sverdrup relation in the Indian Ocean, and the effect of Pacific-Indian Ocean throughflow on Indian Ocean circulation and on the East Australian Current. J. Phys. Ocean., 11, 771–779.2.0.CO;2>CrossRefGoogle Scholar
Godfrey, J. S., Alexiou, A., Ilahude, A. G.et al. (1995) The Role of the Indian Ocean in the Global Climate System: Recommendations Regarding the Global Ocean Observing System. Report of the Ocean Observing System Development Panel, College Station, TX, USA: Texas A & M University, p. 89.Google Scholar
Godin, L., Grujic, D., Law, R. D. and Searle, M. P. (2006) Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction. In Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones, ed. Law, R. D., Searle, M. P. and Godin, L. Geol. Soc. Lond. Spec. Publ., 268, 1–24.
Gong, Z., Chen, H., Wang, Z., Cai, F. and Luo, G. (1987) The epigenetic geochemical types of loess in China. In Aspects of Loess Research, ed. Liu, T., Beijing: China Ocean Press, pp. 135–150.Google Scholar
Goodbred, S. L. and Kuehl, S. A. (1999) Holocene and modern sediment budgets for the Ganges–Brahmaputra river system; evidence for highstand dispersal to flood-plain, shelf, and deep-sea depocenters. Geology, 27, 559–562.2.3.CO;2>CrossRefGoogle Scholar
Goodbred, S. L. and Kuehl, S. A. (2000) Enormous Ganges–Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology, 28, 1083–1086.2.0.CO;2>CrossRefGoogle Scholar
Gordon, A. L. (2001) Interocean Exchange. In Ocean Circulation and Climate, ed. Siedler, G., Church, J. and Gould, J., London: Academic Press, pp. 303–314.Google Scholar
Gordon, A. L. and Fine, R. A. (1996) Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature, 379, 146–149.CrossRefGoogle Scholar
Gordon, A. L., Susanto, R. D. and Vranes, K. (2003) Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature, 425, 824–828.CrossRefGoogle ScholarPubMed
Green, P. F., Duddy, I. R., Laslett, G. M.et al. (1989) Thermal annealing of fission tracks in apatite: four quantitative modeling techniques and extension to geological timescales. Chem. Geol., 79, 155–182.Google Scholar
Greenland Ice Sheet Project (1997) The Greenland Summit ice cores. (CD-ROM) Boulder, Colorado, University of Colorado, National Snow and Ice Data Center, and Boulder, Colorado, National Geophysical Data Center, World Data Center–A for Paleoclimatology, www.ngdc.noaa.gov/paleo/icecore/greenland/summit/index.html.
Grootes, P. M. and Stuiver, M. (1997) 18O/16O variability in Greenland snow and ice with 103 to 105 yr time resolution. J. Geophys. Res., 102, 26 455–26 470.CrossRefGoogle Scholar
Guillot, S., Hodges, K., Fort, P. and Pecher, A. (1994) New constraints on the age of the Manaslu leucogranite: evidence for episodic tectonic denudation in the central Himalayas. Geology, 22, 559–562.2.3.CO;2>CrossRefGoogle Scholar
Guo, Z. T., Ruddiman, W. F., Hao, Q. Z.et al. (2002) Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159–165.CrossRefGoogle Scholar
Gupta, A. K. (2004) Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Current Sci., 87, 54–59.Google Scholar
Gupta, A. K. and Thomas, E. (2003) Initiation of Northern Hemisphere Glaciation and strengthening of the North-east Indian monsoon; Ocean Drilling Program Site 758, eastern equatorial Indian Ocean. Geology, 31, 47–50.2.0.CO;2>CrossRefGoogle Scholar
Gupta, A. K., Anderson, D. M. and Overpeck, J. T. (2003) Abrupt changes in the Asian south-west monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421, 354–356.CrossRefGoogle Scholar
Gupta, A. K., Singh, R. K., Joseph, S. and Thomas, E. (2004) Indian ocean high-productivity event (10–8 Ma): linked to global cooling or to the initiation of the Indian monsoons?Geology, 32, 753–756.CrossRefGoogle Scholar
Gupta, A. K., Das, M. and Anderson, D. M. (2005) Solar influence on the Indian summer monsoon during the Holocene. Geophys. Res. Lett., 32, L17703, doi: 10.1029/2005GL022685.CrossRefGoogle Scholar
Gupta, S. M. (1999) Radiolarian monsoonal index Pylonüd group responds to astronomical forcing in the last 500,000 years: evidence from the central Indian Ocean. Man Environ., 24, 99–107.Google Scholar
Gupta, S. P. (1995) The Lost Sarasvati and the Indus Civilization. Jodhpur, India: Kusumanjali Prakashan, p. 314.Google Scholar
Hahn, D. G. and Manabe, S. (1975) The role of mountains in the south Asian monsoon circulation. J. Atmos. Sci., 32, 1515–1541.2.0.CO;2>CrossRefGoogle Scholar
Hall, R. (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific; computer-based reconstructions, model and animations. J. Asian Earth Sci., 20, 353–431.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J. and Vail, P. R. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.CrossRefGoogle ScholarPubMed
Harada, N., Ahagon, N., Sakamoto, T.et al. (2006) Rapid fluctuation of alkenone temperature in the south-western Okhotsk Sea during the past 120 kyr. Global Planet. Change, 53, 29–46.CrossRefGoogle Scholar
Harris, N. B. W. (2006) The elevation of the Tibetan Plateau and its impact on the monsoon, Palaeogeog., Palaeoclim., Palaeoeco., 241, 4–15.CrossRefGoogle Scholar
Harrison, T. M., Copeland, P., Kidd, W. S. F. and Yin, A. (1992) Raising Tibet. Science, 255, 1663–1670.CrossRefGoogle ScholarPubMed
Harrison, T. M., Copeland, P., Hall, S. A.et al. (1993) Isotopic preservation of Himalayan/Tibetan uplift, denudation and climatic histories in two molasse deposits. J. Geology, 100, 157–173.CrossRefGoogle Scholar
Harrison, T. M., Mahon, K. I., Guillot, S.et al. (1995) New constraints on the age of the Manaslu leucogranite; evidence for episodic tectonic denudation in the central Himalaya; discussion and reply. Geology, 23, 476–480.2.3.CO;2>CrossRefGoogle Scholar
Harzallah, A. and Sadourny, R. (1997) Observed lead – lag relationships between Indian summer monsoon and some meteorological variables. Clim. Dyn., 13, 635–648.CrossRefGoogle Scholar
Hassan, F. A. (1997) Nile floods and political disorder in early Egypt. In Third Millennium BCE Climate Change and Old World Collapse, ed. Dalfes, H. N., Kukla, G., and Weiss, H.. New York: Springer, NATO ASI Series 1 (49), pp. 1–24.CrossRefGoogle Scholar
Haug, G. H. and Tiedemann, R. (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393, 673–676.CrossRefGoogle Scholar
Hayden, B. (1981) Research and development in the Stone Age: technological transitions among hunter-gatherers. Current Anthrop., 22, 519–548.CrossRefGoogle Scholar
Hays, J. D., Imbrie, J. and Shackleton, N. J. (1976) Variations in the Earth's orbit; pacemaker of the ice ages. Science, 194, 1121–1132.CrossRefGoogle ScholarPubMed
Held, I. M. and Hou, A. Y. (1980) Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515–533.2.0.CO;2>CrossRefGoogle Scholar
Heller, F. and Liu, T. S. (1982) Magnetostratigraphic dating of loess deposits in China. Nature, 300, 431–433.CrossRefGoogle Scholar
Hendon, H. H. and Liebmann, B. (1990) A composite study of onset of the Australian summer monsoon, J. Atmos. Sci., 47, 2227–2240.2.0.CO;2>CrossRefGoogle Scholar
Herren, E. (1987) Zanskar shear zone; north-east-south-west extension within the Higher Himalayas (Ladakh, India). Geology, 15, 409–413.2.0.CO;2>CrossRefGoogle Scholar
Herzschuh, U. (2006) Palaeo-moisture evolution at the margins of the Asian monsoon during the last 50 ka. Quat. Sci. Rev., 25, 163–178.CrossRefGoogle Scholar
Herzschuh, U.Tarasov, P., Wünnemann, B. and Hartmann, K. (2004) Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data. Palaeogeog. Palaeoclim., Palaeoeco., 211, 1–17.CrossRefGoogle Scholar
Herzschuh, U., Zhang, C., Mischke, S. (2005) A Late Quaternary lake record from the Qilian Mountains (NW China): evolution of the primary production and the water depth reconstructed from macrofossil, pollen, biomarker and isotope data. Global Planet. Change, 46, 361–379.CrossRefGoogle Scholar
Hess, S. and Kuhnt, W. (2005) Neogene and Quaternary paleoceanographic changes in the southern South China Sea (Site 1143); the benthic foraminiferal record. Mar. Micropaleo., 54, 63–87.CrossRefGoogle Scholar
Heusser, L. and Morley, J. (1997) Monsoon Fluctuations over the past 350 kyr: high-resolution evidence from north-east Asia / north-west Pacific climate proxies (marine pollen and radiolarians). Quat. Sci. Rev., 16, 565–581.CrossRefGoogle Scholar
Higginson, M. J., Maxwell, J. R. and Altabet, M. A. (2003) Nitrogen isotope and chlorin paleoproductivity records from the northern South China Sea; remote vs. local forcing of millennial- and orbital-scale variability. Mar. Geol., 201, 223–250.CrossRefGoogle Scholar
Higham, C. (1996) The Bronze Age of South-east Asia. Cambridge: Cambridge University Press, p. 381.Google Scholar
Hodges, K. V. and Silverberg, D. S. (1988) Thermal evolution of the Greater Himalaya, Garhwal, India. Tectonics, 7, 583–600.CrossRefGoogle Scholar
Hodges, K. V., Parrish, R. R. and Searle, M. P. (1996) Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics, 15, 1264–1291.CrossRefGoogle Scholar
Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T. and Whipple, K. (2004) Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth Planet. Sci. Lett., 220, 379–389.CrossRefGoogle Scholar
Holbourn, A. E., Kuhnt, W., Simo, J. A. and Li, Q. (2004) Middle Miocene isotope stratigraphy and paleoceanographic evolution of the north-west and south-west Australian margins (Wombat Plateau and Great Australian Bight). Palaeogeog., Palaeoclim., Palaeoeco., 208, 1–22.CrossRefGoogle Scholar
Holton, J. R. (2004) An Introduction to Dynamic Meteorology, 3rd edn. San Diego: Academic Press, p. 535.Google Scholar
Hong, Y. T., Wang, Z. G., Jiang, H. B.et al. (2001) A 6000-year record of changes in drought and precipitation in north-eastern China based on a delta 13C time series from peat cellulose. Earth Planet. Sci. Lett., 185, 111–119.CrossRefGoogle Scholar
Hong, Y. T., Hong, B., Lin, Q. H.et al. (2003) Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth Planet. Sci. Lett., 211, 371–380.CrossRefGoogle Scholar
Hong, Y. T., Hong, B., Lin, Q. H.et al. (2005) Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12 000 years and paleo-El Niño. Earth Planet. Sci. Lett., 231, 337–346.CrossRefGoogle Scholar
Hoskins, B. J. and Rodwell, M. J. (1995) A model of the Asian summer monsoon. Part I: the global scale. J. Atmos. Sci., 52, 1329–1340.2.0.CO;2>CrossRefGoogle Scholar
Hostetler, S. W., Clark, P. U., Bartlein, P. J., Mix, A. C. and Pisias, N. J. (1999) Atmospheric transmission of North Atlantic Heinrich events. J. Geophys. Res., 104, 3947–3952.CrossRefGoogle Scholar
Houseman, G. A. and England, P. C. (1993) Crustal thickening versus lateral expulsion in the Indian–Asian continental collision. J. Geophys. Res., 98, 12 233–12 249.CrossRefGoogle Scholar
Houseman, G. A., McKenzie, D. P. and Molnar, P. (1981) Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res., 86, 6115–6132.CrossRefGoogle Scholar
Hovan, S. A., Rea, D. K., Pisias, N. G. and Shackleton, N. J. (1989) A direct link between the China loess and marine δ18O records; aeolian flux to the North Pacific. Nature, 340, 296–298.CrossRefGoogle Scholar
Hovan, S. A., Rea, D. K. and Pisias, N. G. (1991) Late Pleistocene continental climate and oceanic variability recorded in North-west Pacific sediments. Paleoceanography, 6, 349–370.CrossRefGoogle Scholar
Hu, Z.-Z., Latif, M., Roeckner, E. and Bengtsson, L. (2000) Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophys. Res. Lett., 27, 2681–2684.CrossRefGoogle Scholar
Huang, C. C., Pang, J., Han, Y. P. and Hou, C. H. (2000) A regional aridity phase and its possible cultural impact during the Holocene Megathermal in the Guanzhong Basin, China. The Holocene, 10, 135–142.CrossRefGoogle Scholar
Huang, C. C.Zhao, S., Pang, J.et al. (2003) Climatic aridity and the relocations of the Zhou culture in the southern loess plateau of China. Clim. Change, 61, 361–378.CrossRefGoogle Scholar
Huang, Q., Cai, B. and Ru, C. (1980) Radiocarbon dating of samples from several salt lakes on the Tibet Plateau and their sedimentary cycles. Kexue Tongbao, 25, 990–995.Google Scholar
Huang, Y., Street-Perrott, F. A., Metcalfe, S. E.et al. (2001) Climate change as the dominant control on glacial–interglacial variations in C3 and C4 plant abundance. Science, 293, 1647–1651.CrossRefGoogle ScholarPubMed
Hughes, M. K., Wu, X., Shao, X. and Garfin, G. M. (1994) A preliminary reconstruction of rainfall in North-Central China since A. D. 1600 from tree-ring density and width. Quat. Res., 42, 88–99.CrossRefGoogle Scholar
Huntington, K. W., Blythe, A. E. and Hodges, K. V. (2006) Climate change and Late Pliocene acceleration of erosion in the Himalaya. Earth Planet. Sci. Lett., 252, 107–118.CrossRefGoogle Scholar
Indermühle, A., Monnin, E., Stauffer, B., Stocker, T. F. and Wahlen, M. (2000) Atmospheric CO2 concentration from 60 to 20 kyr B. P. from the Taylor Dome ice core, Antarctica. Geophys. Res. Lett., 27, 735–738.CrossRefGoogle Scholar
Ingall, E. and Jahnke, R. (1994) Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim. Cosmochim. Acta, 58, 2571–2575.CrossRefGoogle Scholar
IPCC (2001) Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. T. R. Watson and Core Writing Team, Cambridge: Cambridge University Press, p. 398.
Irino, T. and Tada, R. (2000) Quantification of aeolian dust (Kosa) contribution to the Japan Sea sediments and its variation during the last 200 ky. Geochem. J., 34, 59–93.CrossRefGoogle Scholar
Irino, T. and Tada, R. (2002) High-resolution reconstruction of variation in aeolian dust (Kosa) deposition at ODP Site 797, the Japan Sea, during the last 200 ka. Global Planet. Change, 35, 143–156.CrossRefGoogle Scholar
Janecek, T. R. and Rea, D. K. (1985) Quaternary fluctuations in northern hemispheric tradewinds and westerlies. Quat. Res., 24, 150–163.CrossRefGoogle Scholar
Jarrige, J. F. (1993) Excavations at Mehrgarh: their significance for understanding the background of the Harappan Civilization. In Harappan Civilization: A Recent Perspective, ed. Possehl, G., Delhi: Oxford University Press, pp. 125–135.Google Scholar
Jia, G., Peng, P., Zhao, Q. and Jian, Z. (2003) Changes in terrestrial ecosystem since 30 Ma in East Asia: stable isotope evidence from black carbon in the South China Sea. Geology, 31, 1093–1096.CrossRefGoogle Scholar
Jin, L. and Su, B. (2000) Natives or immigrants: modern human origin in East Asia. Nature Rev. Genet., 1, 126–133.CrossRefGoogle ScholarPubMed
Johnsen, S. J., Clausen, H. B., Dansgaard, W.et al. (1992) Irregular glacial interstadials recorded in a new Greenland ice core. Nature, 359, 311–313.CrossRefGoogle Scholar
Jones, C. E., Halliday, A. N., Rea, D. K. and Owen, R. M. (1994) Neodymium isotopic variations in North Pacific modern silicate sediment and the insignificance of detrital REE contributions to seawater. Earth Planet. Sci. Lett., 127, 55–66.CrossRefGoogle Scholar
Jung, S. J. A., Davies, G. R., Ganssen, G. and Kroon, D. (2002) Decadal-centennial scale monsoon variations in the Arabian Sea during the early Holocene. Geochem., Geophys., Geosyst., 3 (10), 1060, doi: 10.1029/2002GC000348.CrossRefGoogle Scholar
Jung, S. J. A., Davies, G. R., Ganssen, G. M. and Kroon, D. (2004) Stepwise Holocene aridification in NE Africa deduced from dust-borne radiogenic isotope records. Earth Planet. Sci. Lett., 221 (1–4), 27–37.CrossRefGoogle Scholar
Kapsner, W. R., Alley, R. B., Shuman, C. A., Anandakrishnan, S. and Grootes, P. M. (1995) Dominant influence of atmospheric circulation in Greenland over the past 18 000 years. Nature, 373, 52–54.CrossRefGoogle Scholar
Kar, A. (1984) The Drishadvati River system of India; an assessment and new findings. Geograph. J., 150 (2), 221–229.CrossRefGoogle Scholar
Karim, A. and Veizer, J. (2002) Water balance of the Indus River Basin and moisture source in the Karakoram and western Himalayas: implications from hydrogen and oxygen isotopes in river water. J. Geophys. Res., 107 (D18), 4362, doi: 10.1029/2000JD000253.CrossRefGoogle Scholar
Kirch, A. (1997) Zur Paläoozeanographie westlich von Luzon (Philippinen). M.Sc. thesis, Kiel, Germany: Kiel University, p. 28.
Kitoh, A. (1997) Mountain uplift and surface temperature changes. Geophys. Res. Lett., 24, 185–188.CrossRefGoogle Scholar
Kitoh, A. (2004) Effect of mountain uplift on East Asian summer climate investigated by a coupled atmosphere–ocean GCM. J. Clim., 17, 783–802.2.0.CO;2>CrossRefGoogle Scholar
Klinck, J. M. and Smith, D. A. (1993) Effect of wind changes during the last glacial maximum on the circulation of the Southern Ocean. Paleoceanography, 8, 427–433.CrossRefGoogle Scholar
Koons, P. O., Zeitler, P. K., Chamberlain, C. P., Craw, D. and Meltzer, A. S. (2002) Mechanical links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya. Amer. J. Sci., 302, 749–773.CrossRefGoogle Scholar
Krishna, K. S., Bull, J. M. and Scrutton, R. A. (2001) Evidence for multiphase folding of the central Indian Ocean lithosphere. Geology, 29, 715–718.2.0.CO;2>CrossRefGoogle Scholar
Krissek, L. A. and Clemens, S. C. (1991) Mineralogic variations in a Pleistocene high-resolution Eolian record from the Owen Ridge, western Arabian Sea (Site 722); implications for sediment source conditions and monsoon history. Proc. Ocean Drill. Prog., Sci. Res., 117, 197–213.Google Scholar
Kroon, D., Steens, T. and Troelstra, S. R. (1991) Onset of Monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc. Ocean Drill. Prog., Sci. Res., 117, 257–263.Google Scholar
Kudrass, H. R., Hofmann, A., Doose, H., Emeis, K. and Erlenkeuser, H. (2001) Modulation and amplification of climatic changes in the Northern Hemisphere by the Indian summer monsoon during the past 80 k.y. Geology, 29, 63–66.2.0.CO;2>CrossRefGoogle Scholar
Kuhlemann, J. (2001) Post-collisional sediment budget of circum-Alpine basins (Central Europe). Sci. Mem. Geol., Padova, 52, 1–91.Google Scholar
Kuhlemann, J., Frisch, W., Dunkl, I. and Szekely, B. (2001) Quantifying tectonic versus erosive denudation by the sediment budget: the Miocene core complexes of the Alps. Tectonophysics 330, 1–23.CrossRefGoogle Scholar
Kuhnt, W., Holbourn, A., Hall, E., Zuvela, M. and Käse, R. (2004) Neogene history of the Indonesian Throughflow. In Continent–Ocean Interactions Within East Asian Marginal Seas, ed. Clift, P. D., Kuhnt, W., Wang, P. and Hayes, D. E., Geophys. Monogr. Ser.149, Washington DC: American Geophysical Union, pp. 299–320.CrossRefGoogle Scholar
Kukla, G., An, Z. S., Melice, J. L., Gavin, J. and Xiao, J. L. (1990) Magnetic susceptibility record of Chinese loess. Trans. R. Soc. Edin. Earth Sci., 81, 263–288.CrossRefGoogle Scholar
Kutzbach, J. E., Guetter, P. J., Ruddiman, W. F. and Prell, W. L. (1989) Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West; numerical experiments. J. Geophys. Res., 94 (15), 18 393–18 407.CrossRefGoogle Scholar
Kutzbach, J. E., Prell, W. L. and Ruddiman, W. F. (1993) Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J. Geology, 101, 177–190.CrossRefGoogle Scholar
Kuwae, M., Yoshikawa, S., Tsugeki, N. and Inouchi, Y. (2004) Reconstruction of a climate record for the past 140 kyr based on diatom valve flux data from Lake Biwa, Japan. J. Paleolim., 32, 19–39.CrossRefGoogle Scholar
Lal, B. B. (1997) The Earliest Civilization of South Asia. Delhi: Aryan Books International, p. 308.Google Scholar
Li, C., Chen, Q., Zhang, J., Yang, S. and Fan, D. (2000) Stratigraphy and paleoenvironmental changes in the Yangtze delta during late Pleistocene. J. Asian Earth Sci., 18, 453–469.CrossRefGoogle Scholar
Li, S., Zheng, B. and Jiao, K. (1989) Preliminary research on lacustrine deposits and lake evolution on the southern slope of the west Kunlun Mountains. Bull. Glacier Res., 7, 169–176.Google Scholar
Li, X. H., Wei, G., Shao, L.et al. (2003) Geochemical and Nd isotopic variations in sediments of the South China Sea: a response to Cenozoic tectonism in SE Asia. Earth Planet. Sci. Lett., 211, 207–220.CrossRefGoogle Scholar
Lindzen, R. S. and Hou, A. Y. (1988) Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 2416–2427.2.0.CO;2>CrossRefGoogle Scholar
Liu, K.-B., Shen, C. and Louie, K.-B. (2001) A 1000-year history of typhoon landfalls in Guangdong, Southern China, reconstructed from Chinese historical documentary records. Ann. Assoc. Amer. Geograph., 91 (3), 453–464.CrossRefGoogle Scholar
Liu, L. (1996) Settlement patterns, chiefdom variability, and the development of early states in North China. J. Anthrop. Archaeo., 15, 237–288.CrossRefGoogle Scholar
Liu, T. S. (1985) Loess and the Environment. Beijing: China Ocean Press, p. 251.Google Scholar
Liu, T., Ding, Z. and Rutter, N. (1999) Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5 Ma. Quat. Sci. Rev., 18, 1205–1212.CrossRefGoogle Scholar
Liu, W., Feng, X., Liu, Y., Zhang, Q. and An, Z. (2004b) δ18O values of tree rings as a proxy of monsoon precipitation in arid north-west China. Chem. Geol., 206, 73–80.Google Scholar
Liu, W., Huang, Y., An, Z.et al. (2005) Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau; carbon isotope evidence from bulk organic matter and individual leaf waxes. Palaeogeog., Palaeoclim., Palaeoeco., 220, 243–254.CrossRefGoogle Scholar
Liu, X. and Yin, Z.-Y. (2002) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeog, Palaeoclimat, Palaeocol., 183, 223–245.CrossRefGoogle Scholar
Liu, X. M., Liu, T. S., Xu, T. C., Liu, C. and Chen, M. Y. (1988) The Chinese Loess in Xifeng: I: the primary study on magnetostratigraphy of a loess profile in Xifeng area, Gansu Province. Geophys. J., 93, 345–348.CrossRefGoogle Scholar
Liu, Z. C., Sun, S. Y., Yang, F. and Zhou, Z. H. (1990) Quaternary stratigraphical and chronological studies of Sanhu Region, Qaidam basin (in Chinese). Sci. China (Ser. B), 11, 1202–1212.Google Scholar
Liu, Z., Trentesaux, A., Clemens, S. C. (2003) Clay mineral assemblages in the northern South China Sea; implications for East Asian monsoon evolution over the past two million years. Mar. Geol., 201, 133–146.CrossRefGoogle Scholar
Liu, Z., Colin, C., Trentesaux, A.et al. (2004c) Erosional history of the eastern Tibetan Plateau since 190 kyr ago; clay mineralogical and geochemical investigations from the south-western South China Sea. Mar. Geol., 209, 1–18.CrossRefGoogle Scholar
Liu, Z., Henderson, A. C. G. and Huang, Y. S. (2006) Alkenone-based reconstruction of late Holocene surface temperature and salinity changes in Lake Qinghai, China. Geophys. Res. Lett., 33, L09707.Google Scholar
Loewe, M. and Shaughness, E. L. (1999) The Cambridge History of Ancient China: From the Origins of Civilization to 221 BCE. Cambridge: Cambridge University Press, p. 1180.CrossRefGoogle Scholar
Loope, D. B., Rowe, C. M. and Joeckel, R. M. (2001) Annual monsoon rains recorded by Jurassic dunes. Nature, 412 (6842), 64–66.CrossRefGoogle ScholarPubMed
Louie, K. S. and Liu, K.-B. (2003) Earliest historical records of typhoons in China. J. Hist. Geog., 29 (3), 299–316.CrossRefGoogle Scholar
Ma, Y., Li, J. and Fan, X. (1998) Pollen-based vegetational and climatic records during 30.6 to 5.0 My from Linxia area, Gansu. Chinese Sci. Bull., 43, 301–304 (in Chinese).Google Scholar
Madden, R. A. and Julian, P. R. (1972) Description of Global-scale circulation cells in the Tropics with a 40–50 Day Period. J. Atmos. Sci., 29 (6), 1109–1123.2.0.CO;2>CrossRefGoogle Scholar
Madden, R. A. and Julian, P. R. (1994) Observations of the 40–50-day Tropical Oscillation – a review. Mon. Wea. Rev., 122, 814–837.2.0.CO;2>CrossRefGoogle Scholar
Madsen, D. B., Li, J., Elston, R. G.et al. (1998) The loess/paleosol record and the nature of the Younger Dryas climate in central China. Geoarchaeo.: Int. J., 13 (8), 847–869.3.0.CO;2-6>CrossRefGoogle Scholar
Maher, B. A. (1986) Characterization of soils by mineral magnetic measurements. Phys. Earth Planet. Interiors, 42, 76–92.CrossRefGoogle Scholar
Maizels, J. K. and McBean, C. (1990) Cenozoic alluvial fan systems of interior Oman: palaeoenvironmental reconstruction based on discrimination of palaeochannels using remotely sensed data. In The Geology and Tectonics of the Oman Region, ed. A. H. F. Robertson, M. P. Searle and A. C. Ries. Geol. Soc., Lond., Spec. Publ., 49, 565–582.
Mann, M. E., Bradley, R. S. and Hughes, M. K. (1999) Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys. Res. Lett., 26, 759–762.CrossRefGoogle Scholar
Marshall, J. and Plumb, R. A. (2008) Atmosphere Ocean, and Climate Dynamics: An Introductory Text. International Geophysics Series, v. 93, Elsevier Academic Press, Burlington, MA. 319 pp.Google Scholar
Martinson, D. G., Pisias, N. G., Hays, J. D.et al. (1987) Age dating and the orbital theory of the ice ages; development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res., 27, 1–29.CrossRefGoogle Scholar
Maslin, M. A., Seidov, D. and Lowe, J. (2001) Synthesis and nature and causes of rapid climate transitions during the Quaternary (a review). In The Oceans and Rapid Climate Change, ed. D. Seidov, B. J. Haupt, E. J. Barron and M. Maslin, Amer. Geophys. U. Geophys. Monogr., 126, 9–51.
Mattinson, J. M. (1978) Age, origin, and thermal histories of some plutonic rocks from Salinian Block of California. Contrib. Mineral. Petrol., 67, 233–245.CrossRefGoogle Scholar
Mayewski, P. A., Meeker, L. D., Whitlow, S.et al. (1994) Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41 000 years. Science, 263, 1747–1751.CrossRefGoogle ScholarPubMed
McCreary, J. P., Kundu, P. K. and Molinari, R. L. (1993) A numerical investigation of dynamics, thermodynamics, and mixed layer processes in the Indian Ocean. Prog. Ocean., 31, 181–244.CrossRefGoogle Scholar
McDonald, W. F. (1938) Atlas of climate charts of the oceans, Charts 59–62, Washington, DC: US Department of Agriculture, Weather Bureau, p. 247.Google Scholar
McIntyre, A. and Molfino, B. (1996) Forcing Atlantic equatorial and subpolar millennial cycles by precession. Science, 274, 1867–1870.CrossRefGoogle ScholarPubMed
Meehl, G. A. (1994) Coupled ocean–atmosphere–land processes and south Asian monsoon variability. Science, 265, 263–267.CrossRefGoogle Scholar
Meehl, G. A. (1997) The south Asian monsoon and the tropospheric biennial oscillation. J. Clim., 10, 1921–1943.2.0.CO;2>CrossRefGoogle Scholar
Mercier, J. L., Armijo, R., Tapponnier, P., Carey, G. E. and Han, T. L. (1987) Change from late Tertiary compression to Quaternary extension in southern Tibet during the India–Asia collision. Tectonics, 6, 275–304.CrossRefGoogle Scholar
Métivier, F., Gaudemer, Y., Tapponnier, P. and Klein, M. (1999) Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int., 137, 280–318.CrossRefGoogle Scholar
Miller, K. G., Wright, J. M. and Fairbanks, R. G. (1991) Unlocking the Ice House: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res., 96, 6829–6848.CrossRefGoogle Scholar
Milliman, J. D. and Syvitski, J. P. M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean; the importance of small mountainous rivers. J. Geology, 100, 525–544.CrossRefGoogle Scholar
Mischke, S., Herzschuh, U., Zhang, C., Bloemendal, J. and Riedel, F. (2005) Late Quaternary lake record from the Qilian Mountains (NW China): lake level and salinity changes inferred from sediment properties and ostracod assemblages. Global Planet. Change, 46, 337–359.CrossRefGoogle Scholar
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M. and Karlen, W. (2005) Highly variable Northern Hemisphere temperatures reconstructed from low and high-resolution proxy data. Nature, 433, 613–617.CrossRefGoogle ScholarPubMed
Molnar, P. (2004) Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates?Ann. Rev. Earth Planet. Sci., 32, 67–89.CrossRefGoogle Scholar
Molnar, P. and Emanuel, K. A. (1999) Temperature profiles in radiative-convective equilibrium above surfaces at different heights. J. Geophys. Res., 104, 24 265–24 484.CrossRefGoogle Scholar
Molnar, P. and England, P. C. (1990) Late Cenozoic uplift of mountain ranges and global climate change; chicken or egg?Nature, 346, 29–34.CrossRefGoogle Scholar
Molnar, P., England, P. and Martinod, J. (1993) Mantle dynamics, the uplift of the Tibetan Plateau, and the Indian monsoon. Rev. Geophys., 31, 357–396.CrossRefGoogle Scholar
Morgan, M. E., Kingston, J. D. and Marino, B. D. (1994) Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya. Nature, 367, 162–165.CrossRefGoogle Scholar
Mountain, G. S. and Prell, W. L. (1990) A multiphase plate tectonic history of the south-east continental margin of Oman. In The Geology and Tectonics of the Oman Region, ed. A. H. F. Robertson, M. P. Searle and A. C. Ries. Geol. Soc., Lond., Spec. Publ., pp. 725–743.
Murphy, M. A., Yin, A., Harrison, T. M.et al. (1997) Did the Indo–Asian collision alone create the Tibetan Plateau?Geology, 25, 719–722.2.3.CO;2>CrossRefGoogle Scholar
Murthy, S. R. N. (1980) The Vedic River Saraswati, a myth or fact; a geological approach. Indian J. Hist. Sci., 15 (2), 189–192.Google Scholar
Nair, R. R., Ittekkot, V., Manganini, S. J.et al. (1989) Increased particle flux to the deep ocean related to monsoons. Nature, 338, 749–751.CrossRefGoogle Scholar
Najman, Y. (2006) The detrital record of orogenesis: a review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Sci. Rev., 74, 1–72.Google Scholar
Najman, Y., Pringle, M., Godin, L. and Oliver, G. (2001) Dating of the oldest continental sediments from the Himalayan foreland basin. Nature, 410, 194–197.CrossRefGoogle ScholarPubMed
Naqvi, W. A. and Fairbanks, R. G. (1996) A 27 000 year record of Red Sea outflow; implication for timing of post-glacial monsoon intensification. Geophys. Res. Lett., 23, 1501–1504.CrossRefGoogle Scholar
Nathan, S. A. and Leckie, R. M. (2004) Gateway closures and ocean circulation during the late Miocene (approximately 13–5 Ma). Abstr. Prog., Geol. Soc. Amer., 36, 197.Google Scholar
Nathan, S. A., Leckie, R. M., Olson, B. and Deconto, R. M. (2003) The Western Pacific Warm Pool; a probe of global sea level change and Indonesian Seaway closure during the middle to late Miocene. Ann. Meet. Abstr., Amer. Assoc. Petrol. Geol., 12, 126.Google Scholar
Neelin, J. D. (2007) Moist dynamics of tropical convection zones in monsoons, teleconnections and global warming. In The Global Circulation of the Atmosphere, ed. Schneider, T. and Sobel, A., Princeton, NJ: Princeton University Press, pp. 267–301.Google Scholar
Neff, U., Burns, S. J., Mangini, A.et al. (2001) Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature, 411, 290–293.CrossRefGoogle ScholarPubMed
Nelson, K. D., Zhao, W., Brown, L. D.et al. (1996) Partially molten middle crust beneath southern Tibet: synthesis of Project INDEPTH results. Science, 274, 1684–1688.CrossRefGoogle ScholarPubMed
Nesbitt, G. M. and Young, H. W. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.CrossRefGoogle Scholar
Nicholls, N. (1983) Air–sea interaction and the quasi-biennial oscillation. Mon. Wea. Rev., 106, 1505–1508.2.0.CO;2>CrossRefGoogle Scholar
Nitsuma, N., Oba, T. and Okada, M. (1991) Oxygen and carbon isotope stratigraphy at site 723, Oman Margin. Proc. Ocean Drilling Prog., Sci. Res., 117, College Station, TX: Ocean Drilling Program, 321–341.Google Scholar
Oldham, R. D. (1893) The Saraswati and the Lost River of the Indian Desert. J. R. Asiatic Soc., 1893, 49–76.CrossRefGoogle Scholar
Oppo, D. W. and Lehman, S. J. (1995) Suborbital timescale variability of North Atlantic Deep Water during the past 200,000 years. Paleoceanography, 10, 901–910.CrossRefGoogle Scholar
Oppo, D. W., Linsley, B. K., Rosenthal, Y., Dannenmann, S. and Beaufort, L. (2003) Orbital and suborbital climate variability in the Sulu Sea, western tropical Pacific. Geochem., Geophys., Geosyst., 1003, doi: 10.1029/2001GC000260.Google Scholar
Overpeck, J. and Cole, J. E. (2007) Climate change: lessons from a distant monsoon. Nature, 445, 270–271.CrossRefGoogle ScholarPubMed
Overpeck, J., Anderson, D., Trumbore, S. and Prell, W. (1996a) The south-west Indian Monsoon over the last 18 000 years. Clim. Dynam., 12, 213–225.CrossRefGoogle Scholar
Overpeck, J., Rind, D., Lacis, A. and Healy, R. (1996b) Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature, 384, 447–449.CrossRefGoogle Scholar
Pairault, A. A., Hall, R. and Elders, C. F. (2003) Structural styles and tectonic evolution of the Seram Trough, Indonesia. Mar. Petrol. Geol., 20, 1141–1160.CrossRefGoogle Scholar
Palmer, M. R. and Edmond, J. M. (1989) The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett., 92(1), 11–26.CrossRefGoogle Scholar
Pan, Y. and Kidd, W. S. F. (1992) Nyainqentanglha shear zone; a late Miocene extensional detachment in the southern Tibetan Plateau. Geology, 20, 775–778.2.3.CO;2>CrossRefGoogle Scholar
Pang, K. D. (1987) Extraordinary floods in early Chinese history and their absolute dates. J. Hydrol., 96, 139–155.CrossRefGoogle Scholar
Pearson, P. N. and Palmer, M. R. (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695–699.CrossRefGoogle ScholarPubMed
Pechenkina, E. A, Benfer, R. A. and Wang, Z. (2001) Diet and health changes at the end of the Chinese neolithic: the Yangshao/Longshan transition in Shaanxi province. Amer. J. Phys. Anthrop., 117, 15–36.CrossRefGoogle Scholar
Pelejero, C. and Grimalt, J. O. (1997) The correlation between the UK37 index and sea-surface temperature in the warm boundary: the South China Sea. Geochim. Cosmochim. Acta, 61, 4789–4797.CrossRefGoogle Scholar
Peltier, W. R. (1994) Ice age paleotopography. Science, 265, 195–201.CrossRefGoogle ScholarPubMed
Peregrine, P. (1991) Some political aspects of craft specialization. World Archaeo., 23, 1–11.CrossRefGoogle Scholar
Peterson, L. C., Murray, D. W., Ehrmann, W. U. and Hempel, P. (1992) Cenozoic carbonate accumulation and compensation depth changes in the Indian Ocean. In: Synthesis of Results From Scentific Drilling in the Indian Ocean, ed. R. A. Duncan, D. K. Rea, R. B. Kidd, U. von Rad and J. K. Weissel, American Geophysical Union Monog. 70, 311–333.CrossRef
Petit, J. R., Jouzel, J., Raynaud, D.et al. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436.CrossRefGoogle Scholar
Petit, J. R., Jouzel, J., Raynaud, D. et al. (2001) Vostok Ice Core Data for 420,000 Years, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-076. Boulder CO, USA: NOAA/NGDC Paleoclimatology Program.
Pettke, T., Halliday, A. N., Hall, C. M. and Rea, D. K. (2000) Dust production and deposition in Asia and the North Pacific Ocean over the past 12 Myr. Earth Planet. Sci. Lett., 178, 397–413.CrossRefGoogle Scholar
Porter, S. C. and An, Z. S. (1995) Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 375, 305–308.CrossRefGoogle Scholar
Possehl, G. (1990) Revolution in the urban revolution: the emergence of Indus urbanization. Ann. Rev. Anthrop., 19, 261–282.CrossRefGoogle Scholar
Possehl, G. (1993) Harappan Civilization: A Recent Perspective. Delhi: Oxford University Press, p. 595.Google Scholar
Possehl, G. (1997) Climate and the eclipse of the ancient cities of the Indus. In Third Millennium BCE Climate Change and Old World Collapse, ed. Dalfes, H. N., Kukla, G. and Weiss, H., NATO ASI Ser. 1, 49, New York: Springer, pp. 193–244.CrossRefGoogle Scholar
Potts, D. T. (1999) The Archaeology of Elam: Formation and Transformation of an Ancient Iranian State. Cambridge: Cambridge University Press, p. 488.CrossRefGoogle Scholar
Powell, C. M. (1986) Curvature of the Himalayan Arc related to Miocene normal faults in southern Tibet. Geology, 14, 358–359.2.0.CO;2>CrossRefGoogle Scholar
Prabhu, C. N., Shankar, R., Anupama, K.et al. (2004) A 200-ka pollen and oxygen-isotopic record from two sediment cores from the eastern Arabian Sea. Palaeogeog., Palaeoclim., Palaeoeco., 214, 309–321.CrossRefGoogle Scholar
Prawdin, M. (2006) The Mongol Empire: Its Rise and Legacy. New York: Transaction Publishers, p. 581.Google Scholar
Prell, W. L. and Curry, W. B. (1981) Faunal and isotopic indices of monsoonal upwelling: western Arabian Sea. Ocean. Acta, 4, 91–98.Google Scholar
Prell, W. L. and Kutzbach, J. E. (1987) Monsoon variability over the past 150,000 years. J. Geophys. Res. Atmos. Sci., 92 (D7), 8411–8425.CrossRefGoogle Scholar
Prell, W. L. and Kutzbach, J. E. (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360, 647–652.CrossRefGoogle Scholar
Prell, W. L, Murray, D. W., Clemens, S. C. and Anderson, D. M. (1992) Evolution and variability of the Indian Ocean Summer Monsoon: evidence from the western Arabian Sea drilling program. In Synthesis of Results from Scientific Drilling in the Indian Ocean, ed. Duncan, R. A., Rea, D. K., Kidd, R. B., Rad, U. and Weissel, J. K.. Amer. Geophys. U. Monogr., 70, 447–469.CrossRefGoogle Scholar
Prins, M. A. and Postma, G. (2000) Effects of climate, sea level, and tectonics unraveled for last deglaciation turbidite records of the Arabian Sea. Geology, 28, 375–378.2.0.CO;2>CrossRefGoogle Scholar
Privé, N. C. and Plumb, R. A. (2007a) Monsoon dynamics with interactive forcing. Part I: axisymmetric studies. J. Atmos. Sci., 64 (5), 1417–1430.
Privé, N. C. and Plumb, R. A. (2007b) Monsoon dynamics with interactive forcing. Part II: impact of eddies and asymmetric geometries. J. Atmos. Sci., 64 (5), 1431–1442.
Prospero, J. M., Uematsi, M. and Savoie, D. L. (1989) Mineral aerosol transport to the Pacific Ocean. In Chemical Oceanography, vol. 10, ed. Riley, J. P., Chester, R. and Duce, R. A., San Diego: Academic Press, pp. 187–218.Google Scholar
Purdy, J. and Jäger, E. (1976) K-Ar ages on rock-forming minerals from the Central Alps. Mem. 1st Geol. Min. Congr., Univ. Padova, 30, p. 32.
Puri, V. M. K. (2001) Origin and course of Vedic Saraswati River in Himalaya; its secular desiccation episodes as deciphered from palaeo-glaciation and geomorphological signatures. In Proceedings; Symposium on Snow, Ice and Glaciers; a Himalayan Perspective, ed. Acharyya, S. K.. Geol. Surv. India, Spec. Publ. Ser., 53, 175–191.Google Scholar
Pye, K. and Zhou, L. (1989) Late Pleistocene and Holocene aeolian dust deposition in north China and the North-west Pacific Ocean. Palaeogeog., Palaeoclim., Palaeoeco., 73, 11–23.CrossRefGoogle Scholar
Quade, J. (1993) Major shifts in the 87Sr/86Sr ratios of large paleorivers draining the Himalayas of central Nepal over the past 10 Ma. Geol. Soc. America, Abstr. Prog., 25 (6), 175.Google Scholar
Quade, J., Cerling, T. E. and Browman, J. R. (1989) Dramatic ecologic shift in the late Miocene of northern Pakistan, and its significance to the development of the Asian monsoon. Nature, 342, 163–166.CrossRefGoogle Scholar
Ramage, C. (1971) Monsoon Meteorology. New York: Academic Press, International Geophysics Series, vol. 15, p. 296.Google Scholar
Ramstein, G., Fluteau, F., Besse, J. and Joussaume, S. (1997) Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature, 386, 788–795.CrossRefGoogle Scholar
Rao, Y. P. (1976) South-west Monsoon. New Delhi: India Meteorological Department, p. 367.Google Scholar
Raval, A. and Ramanathan, V. (1989) Observational determination of the greenhouse effect. Nature, 342, 758–762.CrossRefGoogle Scholar
Raymo, M. E. and Ruddiman, W. F. (1992) Tectonic forcing of the late Cenozoic climate. Nature, 359, 117–122.CrossRefGoogle Scholar
Raymo, M. E., Ruddiman, W. F. and Froelich, P. (1988) Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16, 649–653.2.3.CO;2>CrossRefGoogle Scholar
Rea, D. K. (1992) Delivery of Himalayan sediment to northern Indian Ocean and its relation to global climate, sea level, uplift and seawater strontium. In Synthesis of Results from Scientific Drilling in the Indian Ocean, ed. Duncan, R. A., Rea, D. K., Kidd, R. B., Rad, U. and Weissel, J. K.. Amer. Geophys. U. monogr., 70, 387–402.CrossRefGoogle Scholar
Rea, D. K. (1994) The paleoclimatic record provided by Eolian deposition in the deep sea; the geologic history of wind. Rev. Geophys., 32, 159–195.CrossRefGoogle Scholar
Rea, D. K., Basov, I. A., Janecek, T. R.et al. (1993) Proc. Ocean Drill. Prog. Init. Rpts, 145, College Station, TX: Ocean Drilling Program, p. 1040.Google Scholar
Rea, D. K., Snoeckx, H and Joseph, L. H. (1998) Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13, 215–224.CrossRefGoogle Scholar
Reade, J. (2001) Assyrian king-lists, the royal tombs of Ur, and Indus origins. J. Near East. Stud., 60, 1–29.CrossRefGoogle Scholar
Redfield, C. C., Ketchum, B. H. and Richards, F. A. (1963) The influence of organisms on the composition of sea-water. In The Sea, ed. Hill, M. N., New York: Wiley-Interscience, pp. 26–77.Google Scholar
Reichart, G. J., Dulk, M., Visser, H. J., Weijden, C. H. and Zachariasse, W. J. (1997) A 225 kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the Murray Ridge (northern Arabian Sea). Palaeogeog. Palaeoclim. Palaeoeco., 134, 149–169.CrossRefGoogle Scholar
Reiners, P. W., Ehlers, T. A., Mitchell, S. G. and Montgomery, D. R. (2003) Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature, 426, 645–647.CrossRefGoogle ScholarPubMed
Ren, S. N. (2000) The origin and development of settlement and society during the Neolithic Age in China. Archaeology, 7, 48–59 (in Chinese).Google Scholar
Richards, J. F. (1990) The seventeenth-century crisis in South Asia. Mod. Asian Stud., 24, 625–638.CrossRefGoogle Scholar
Richards, J. F. (1996) The Mughal Empire. Cambridge: Cambridge University Press, p. 337.Google Scholar
Richerson, P. J., Boyd, R. and Bettinger, R. L. (2001) Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. Amer. Antiq., 66 (3), 387–412.CrossRefGoogle Scholar
Rodgers, D. W. and Gunatilaka, A. (2002) Bajada formation by monsoonal erosion of a subaerial forebulge, Sultanate of Oman. Sed. Geol., 154, 127–146.CrossRefGoogle Scholar
Rodwell, M. J. and Hoskins, B. J. (1995) A model of the Asian summer monsoon. Part II: cross-equatorial flow and PV behavior. J. Atmos. Sci., 52, 1341–1356.2.0.CO;2>CrossRefGoogle Scholar
Rodwell, M. J. and Hoskins, B. J. (2001) Subtropical anticyclones and summer monsoons. J. Clim., 14, 3192–3211.2.0.CO;2>CrossRefGoogle Scholar
Rogalla, U. and Andruleit, H. (2005) Precessional forcing of coccolithophore assemblages in the northern Arabian Sea; implications for monsoonal dynamics during the last 200,000 years. Mar. Geol., 217, 31–48.CrossRefGoogle Scholar
Rögl, F. and Steininger, F. F. (1984) Neogene Paratethys, Mediterranean and Indo-pacific seaways. In Fossils and Climate, ed. Brenchley, P. J., New York: John Wiley and Sons., pp. 171–200.Google Scholar
Rossignol-Strick, M., Paterne, M., Bassinot, F. C., Emeis, K. C. and Lange, G. J. (1998) An unusual mid-Pleistocene monsoon period over Africa and Asia. Nature, 392, 269–272.CrossRefGoogle Scholar
Roth, J. M., Droxler, A. W. and Kameo, K. (2000) The Caribbean carbonate crash at the middle to late Miocene transition: linkage to the establishment of the modern global ocean conveyor. Proc. Ocean Drill. Prog., Sci. Res., 165, College Station, TX: Ocean Drilling Program, pp. 249–273.Google Scholar
Rowley, D. B. (1996) Age of initiation of collision between India and Asia; a review of stratigraphic data, Earth Planet. Sci. Lett., 145, 1–13.CrossRefGoogle Scholar
Rowley, D. B. and Currie, B. S. (2006) Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439, 677–681.CrossRefGoogle ScholarPubMed
Rowley, D. B., Pierrehumbert, R. T. and Currie, B. S. (2001) A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth Planet. Sci. Lett., 188, 253–268.CrossRefGoogle Scholar
Ruddiman, W. F. and Kutzbach, J. E. (1989) Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the American West. J. Geophys. Res., 94 (15), 18 409–18 427.CrossRefGoogle Scholar
Rutherford, E., Burke, K. and Lytwyn, J. (2001) Tectonic history of Sumba Island, Indonesia, since the Late Cretaceous and its rapid escape into the forearc in the Miocene. J. Asian Earth Sci., 19, 453–479.CrossRefGoogle Scholar
Saito, Y. (1998) Sea levels of the last glacial in the East China Sea continental shelf. Quat. Res., 37, 235–242 (in Japanese with English abstract).CrossRefGoogle Scholar
Saji, N. H., Goswami, B. N., Vinayachandran, P. N. and Yamagata, T. (1999) A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.CrossRefGoogle ScholarPubMed
Sanders, F. (1984) Quasi-geostrophic diagnosis of the Monsoon Depression of 5–8 July, 1979. J. Atmos. Sci. 41, 538–552.2.0.CO;2>CrossRefGoogle Scholar
Schmitz, W. J. and McCartney, M. S. (1993) On the North Atlantic circulation. Rev Geophys., 31, 29–50.CrossRefGoogle Scholar
Schoenbohm, L. M., Burchfiel, B. C., Chen, L. and Yin, J. (2006) Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow. Geol. Soc. Amer. Bull., 118, 672–688.CrossRefGoogle Scholar
Schwenk, T., Spiess, V., Hübscher, C. and Breitzke, M. (2003) Frequent channel avulsions within the active channel–levee system of the middle Bengal Fan – an exceptional channel–levee development derived from Parasound and Hydrosweep data. Deep-Sea Res. II, 50, 1023–1045.CrossRefGoogle Scholar
Searle, M. P. and Godin, L. (2003) The South Tibetan detachment and the Manaslu Leucogranite; a structural reinterpretation and restoration of the Annapurna–Manaslu Himalaya, Nepal. J. Geology, 111, 505–523.CrossRefGoogle Scholar
Shackleton, N. J. and Opdyke, N. D. (1977) Oxygen isotope and palaeomagnetic evidence for early Northern Hemisphere glaciation. Nature, 270, 216–219.CrossRefGoogle Scholar
Shackleton, N. J., Berger, A. and Peltier, W. A. (1990) An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Trans. R. Soc. Edin. Earth Sci., 81, 251–261.CrossRefGoogle Scholar
Shackleton, N. J., Hall, M. A. and Pate, D. (1995) Pliocene stable isotope stratigraphy of ODP Site 846. In: Proc. Ocean Drill Prog., Sci. Rpt, ed. Pisias, N. G.et al., 337–355.Google Scholar
Shaffer, J. G. (1992) The Indus Valley, Baluchistan and Helmand Traditions: Neolithic through Bronze Age. In Chronologies in Old World Archaeology, ed. Ehrich, R. W., Chicago: University of Chicago Press, pp. 425–446.Google Scholar
Sharma, S., Joachimski, M., Sharma, M.et al. (2004) Late glacial and Holocene environmental changes in Ganga plain, northern India. Quat. Sci. Rev., 23, 145–159.CrossRefGoogle Scholar
Sheppard, P. R., Tarasov, P. E., Graumlich, L. J.et al. (2004) Annual precipitation since 515 BCE reconstructed from living and fossil juniper growth of north-eastern Qinghai Province, China. Clim. Dynam., 23, 869–881.CrossRefGoogle Scholar
Shui, T. (2001) Papers on the Bronze Age Archaeology of North-west. Beijing: China Science Press, p. 25 (in Chinese).Google Scholar
Shukla, J. and Paolina, D. A. (1983) The Southern Oscillation and long range forecasting of the summer monsoon rainfall over India. Mon. Wea. Rev., 111, 1830–1837.2.0.CO;2>CrossRefGoogle Scholar
Siddall, M., Rohling, E. J., Almogi-Labin, A.et al. (2003) Sea-level fluctuations during the last glacial cycle. Nature, 423, 583–588.CrossRefGoogle ScholarPubMed
Sikka, D. R. and Gadgil, S. (1980) On the Maximum Cloud Zone and the ITCZ over Indian longitudes during the South-west Monsoon. Mon. Wea. Rev., 108, 1840–1853.2.0.CO;2>CrossRefGoogle Scholar
Sinha, A., Cannariato, K. G., Stott, L. D.et al. (2005) Variability of South-west Indian summer monsoon precipitation during the Bølling-Allerød. Geology, 33, 813–816.CrossRefGoogle Scholar
Sirocko, F. (1995) Abrupt change in monsoonal climate: evidence from the geochemical composition of Arabian Sea sediments. Habilitation Thesis, University of Kiel, p. 216.Google Scholar
Sirocko, F., Sarnthein, M., Erlenkeuser, H.et al. (1993) Century-scale events in monsoonal climate over the last 24 000 years. Nature, 364, 322–324.CrossRefGoogle Scholar
Sirocko, F., Garbe-Schönberg, D., Mclntyre, A. and Molfino, B. (1996) Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation. Science, 272, 526–529.CrossRefGoogle Scholar
Sirocko, F., Garbe-Schoenberg, D. and Devey, C. (2000) Processes controlling trace element geochemistry of Arabian Sea sediments during the last 25 000 years. Global Planet. Change, 26 (1–3), 217–303.CrossRefGoogle Scholar
Sontakke, N. A., Pant, G. B. and Singh, N. (1993) Construction of all-India summer monsoon rainfall series for the period 1844–1991. J. Climat., 6, 1807–1811.2.0.CO;2>CrossRefGoogle Scholar
Spicer, R. A., Harris, N. B. W., Widdowson, M.et al. (2003) Constant elevation of southern Tibet over the past 15 million years. Nature, 421, 622–624.CrossRefGoogle ScholarPubMed
Staubwasser, M., Sirocko, F., Grootes, P. M. and Segl, M. (2003) Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys. Res. Lett., 30 (8), 1425, doi: 10.1029/2002GL016822.CrossRefGoogle Scholar
Stevens, T., Armitage, S. J., Lu, H. and Thomas, D. S. G. (2006) Sedimentation and diagenesis of Chinese loess: implications for the preservation of continuous, high-resolution climate records. Geology, 34, 849–852.CrossRefGoogle Scholar
Stott, L., Poulsen, C., Lund, S. and Thunell, R. (2002) Super ENSO and global climate oscillations at millennial timescales. Science, 297, 222–226.CrossRefGoogle Scholar
Stuiver, M. and Braziunas, T. F. (1993) Sun, ocean, climate and atmospheric 14CO2; an evaluation of causal and spectral relationships. The Holocene, 3, 289–305.CrossRefGoogle Scholar
Stuiver, M. and Grootes, P. M. (2000) GISP2 oxygen isotope ratios. Quat. Res., 53, 277–284.CrossRefGoogle Scholar
Sun, D. (2004) Monsoon and westerly circulation changes recorded in the late Cenozoic aeolian sequences of northern China. Global Planet. Change, 41, 63–80.Google Scholar
Sun, D. H., Liu, T. S., Chen, M. Y. and An, Z. S. (1997) Magnetostratigraphy and climate implications of the Red–Clay sequences in the Loess Plateau in China. Sci. in China, 27, 265–270.Google Scholar
Sun, D. H., Shaw, J., An, Z. S., Chen, M. Y. and Yue, L. P. (1998) Magnetostratigraphy and paleoclimatic interpretation of continuous 7.2 Ma late Cenozoic Eolian sediments from the Chinese Loess Plateau. Geophys. Res. Lett., 25, 85–88.CrossRefGoogle Scholar
Sun, X. and Li, X. (1999) Pollen records of the last 37 ka in deep-sea core 17940 from the northern slope of the South China Sea. Mar. Geol., 156, 227–244.CrossRefGoogle Scholar
Sun, X. and Wang, P. (2005) How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeog., Palaeoclim., Palaeoeco., 222, 181–222.CrossRefGoogle Scholar
Sun, Y. and An, Z. (2004) An improved comparison of Chinese loess with deep-sea δ18O record over the interval 1.6–2.6 Ma. Geophys. Res. Lett., 31, 13.Google Scholar
Suzuki, H. (1978) Ideas of the Forest and Ideas of the Desert. Tokyo: NHK Books, p. 222.Google Scholar
Swain, A. M., Kutzbach, J. E. and Hastenrath, S. (1983) Estimates of Holocene precipitation for Rajasthan, India, based on pollen and lake-level data. Quat. Res., 19, 1–17.CrossRefGoogle Scholar
Tada, R., Irino, T. and Koizumi, I. (1999) Land–ocean linkages over orbital and millennial timescales recorded in late Quaternary sediments of the Japan Sea. Paleoceanography, 14, 236–247.CrossRefGoogle Scholar
Tamburini, F., Adatte, T., Foellmi, K., Bernasconi, S. M. and Steinmann, P. (2003) Investigating the history of East Asian monsoon and climate during the last glacial–interglacial period (0–140,000 years); mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea. Mar. Geol., 201, 147–168.CrossRefGoogle Scholar
Tapponnier, P., Xu, Z., Roger, F.et al. (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science, 294, 1671–1677.CrossRefGoogle ScholarPubMed
Thamban, M., Rao, V. P., Schneider, R. R. and Grootes, P. M. (2001) Glacial to Holocene fluctuations in hydrography and productivity along the south-western continental margin of India. Palaeogeogr., Palaeoclimatol., Palaeoecol., 165, 113–127.CrossRefGoogle Scholar
Thiede, R. C., Bookhagen, B., Arrowsmith, J. R.,Sobela, E. R. and Strecker, M. R. (2004) Climatic control on rapid exhumation along the Southern Himalayan Front. Earth Planet. Sci. Lett., 222, 791–806.CrossRefGoogle Scholar
Thiry, M. (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Sci. Rev., 49, 201–221.CrossRefGoogle Scholar
Thompson, L. G., Mosley-Thompson, E., Davis, M. E.et al. (1989) 100,000 year climate record from Qinghai–Tibetan Plateau ice cores. Science, 246, 474–477.CrossRefGoogle Scholar
Thompson, L. G., Mosley-Thompson, E., Davis, M.et al. (1993) “Recent warming”; ice core evidence from tropical ice cores with emphasis on Central Asia. Global Planet. Change, 7, 145–156.CrossRefGoogle Scholar
Thompson, L. G., Yao, Y., Davis, M. E.et al. (1997) Tropical climate instability: the last glacial cycle from a Qinghai–Tibetan ice core. Science, 276, 1821–1825.CrossRefGoogle Scholar
Thompson, L. G., Yao, T., Mosley-Thompson, E.et al (2000) A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science, 289, 1916–1919.CrossRefGoogle ScholarPubMed
Tomczak, M. and Godfrey, J. S. (1994) Regional Oceanography: An Introduction. Oxford: Pergamon Press, p. 422.Google Scholar
Torrence, C. and Webster, P. J. (1999) Interdecadal changes in the ENSO–Monsoon System. J. Clim., 12, 2679–2690.2.0.CO;2>CrossRefGoogle Scholar
Tosi, M. (1975) The dialectics of state formation in Mesopotamia, Iran, and central Asia. Dialect. Anthrop., 1, 173–180.CrossRefGoogle Scholar
Treloar, P. J., Rex, D. C., Guise, P. G.et al. (1989) K-Ar and Ar-Ar geochronology of the Himalayan collision in NW Pakistan: constraints on the timing of suturing, deformation, metamorphism and uplift. Tectonics, 8, 881–909.CrossRefGoogle Scholar
Treydte, K. S., Schleser, G. H., Helle, G.et al. (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature, 440, 1179–1182.CrossRefGoogle ScholarPubMed
Turner, S., Hawkesworth, C., Liu, J.et al. (1993) Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364, 50–54.CrossRefGoogle Scholar
Underhill, A. P. (1991) Pottery production in chiefdoms: the Longshan period in northern China. World Archaeo., 23, 12–27.CrossRefGoogle Scholar
Underhill, P. A., Passarino, G., Lin, A. A.et al (2001) The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations. Ann. Human Genet., 65, 43–62.CrossRefGoogle ScholarPubMed
Vail, P. R., Mitchum, R. M. and Thompson, S. (1977) Seismic stratigraphy and global changes of sea level; Part 4; global cycles of relative changes of sea level. In Seismic Stratigraphy; Applications to Hydrocarbon Exploration, ed. C. E. Payton. Mem., Amer. Assoc. Petrol. Geol., 26, 83–97.
Van Campo, E. (1991) Pollen transport into Arabian Sea sediments. Proc. Ocean Drill. Prog., Sci. Res., 117, College Station, TX: Ocean Drilling Program, 277–281.CrossRef
Campo, E., Duplessy, J. C. and Rossignol-Strick, M. (1982) Climatic conditions deduced from 150,000 yr oxygen isotope–pollen record from the Arabian sea. Nature, 296, 56–59.CrossRefGoogle Scholar
Vannay, J. C., Sharp, Z. D. and Grasemann, B. (1999) Himalayan inverted metamorphism constrained by oxygen isotope thermometry. Contrib. Mineral. Petrol., 137, 90–101.CrossRefGoogle Scholar
Rad, U., Schulz, H., Riech, V.et al. (1999) Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30,000 years documented in laminated sediments off Pakistan. Palaeogeog., Palaeoclim., Palaeoeco., 152, 129–161.Google Scholar
Walker, C. B., Searle, M. P. and Waters, D. J. (2001) An integrated tectonothermal model for the evolution of the High Himalaya in western Zanskar with constraints from thermobarometry and metamorphic modeling. Tectonics, 20, 810–833.CrossRefGoogle Scholar
Wang, B., Clemens, S. and Liu, P. (2003a) Contrasting the Indian and East Asian monsoons: implications on geologic timescale. Mar. Geol., 201, 5–21.CrossRefGoogle Scholar
Wang, J., Wang, Y., Liu, Z., Li, J. and Xi, P. (1999c) Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of Central Asia. Palaeogeog., Palaeoclim., Palaeoeco., 152, 37–47.CrossRefGoogle Scholar
Wang, L., Sarnthein, M., Erlenkeuser, H.et al. (1999a) East Asian monsoon climate during the late Pleistocene: high-resolution sediment records from the South China Sea. Mar. Geol., 156, 245–284.CrossRefGoogle Scholar
Wang, L., Sarnthein, M., Erlenkeuser, H.et al. (1999b) Holocene variations in Asian monsoon moisture; a bidecadal sediment record from the South China Sea. Geophys. Res. Lett., 26, 2889–2892.CrossRefGoogle Scholar
Wang, P. (2004) Cenozoic deformation and the history of sea–land interactions in Asia. In Continent–Ocean Interactions Within East Asian Marginal Seas, ed. Clift, P. D., Kuhnt, W., Wang, P. and Hayes, D. E., Washington D. C.: American Geophysical Union, Geophys. Monogr. Ser.149, pp. 1–22.CrossRefGoogle Scholar
Wang, P., Zhao, Q., Jian, Z.et al. (2003b). Thirty million year deep-sea records in the South China Sea. Chinese Sci. Bull., 48, 2524–2535.CrossRefGoogle Scholar
Wang, P., Tian, J., Cheng, X., Liu, C. and Xu, J. (2003c) Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 31, 239–242.2.0.CO;2>CrossRefGoogle Scholar
Wang, R. and Abelmann, A. (2002) Radiolarian responses to paleoceanographic events of the southern South China Sea during the Pleistocene. Mar. Micropaleo., 46, 25–44.CrossRefGoogle Scholar
Wang, R. L., Scarpitta, S. C., Zhang, S. C. and Zheng, M. P. (2002) Later Pleistocene/Holocene climate conditions of Qinghai–Xizhang Plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments. Earth Planet. Sci. Lett., 203, 461–477.CrossRefGoogle Scholar
Wang, Y. J., Cheng, H., Edwards, R. L.et al. (2001a) A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China. Science, 294, 2345–2348.CrossRefGoogle ScholarPubMed
Wang, Y., Cheng, H., Edwards, R. L.et al. (2005) The Holocene Asian monsoon; links to solar changes and North Atlantic climate. Science, 308, 854–857.CrossRefGoogle Scholar
Wang, Y., Deng, T. and Biasatti, D. (2006) Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma. Geology, 34, 309–312.CrossRefGoogle Scholar
Weber, M. E., Wiedicke, M. H., Kudrass, H. R., Huebscher, C. and Erlenkeuser, H. (1997) Active growth of the Bengal Fan during sea-level rise and highstand. Geology, 25, 315–318.2.3.CO;2>CrossRefGoogle Scholar
Webster, P. J. (1987) The elementary monsoon. In Monsoons, ed. Fein, J. S. and Stephens, P. L., New York: John Wiley, pp. 3–32.Google Scholar
Webster, P. J., Magana, V. O., Palmer, T. N.et al. (1998) Monsoons: processes, predictability, and the prospects for prediction, in the TOGA decade. J. Geophys. Res., 103, 14 451–14 510.CrossRefGoogle Scholar
Webster, P. J., Clark, C., Cherikova, G. et al. (2002) The Monsoon as a self-regulating coupled ocean-atmosphere system. In Meteorology at the Millennium, ed. Pearce, R. P.San Diego: Academic Press, International Geophysical Series, vol. 83, 198–219.Google Scholar
Webster, P. J., Holland, G. J., Curry, J. A. and Chang, H.-R. (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309 (5742), 1844–1846.CrossRefGoogle Scholar
Weiss, H, Courty, M. A. and Wetterstrom, W. (1993) The genesis and collapse of third millennium north Mesopotamian civilization. Science, 261, 995–1004.CrossRefGoogle ScholarPubMed
Whipple, K. X., Kirby, E. and Brocklehurst, S. H. (1999) Geomorphic limits to climate-induced increases in topographic relief. Nature, 401, 39–43.CrossRefGoogle Scholar
White, N. M., Pringle, M., Garzanti, E.et al. (2002) Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth Planet. Sci. Lett., 195, 29–44.CrossRefGoogle Scholar
Williams, H., Turner, S., Kelley, S. and Harris, N. (2001) Age and compositin of dikes in southern Tibet: new constraints on the timing of east–west extension and its relations to postcollisional volcanism. Geology, 29, 339–342.2.0.CO;2>CrossRefGoogle Scholar
Williams, H. M., Turner, S. P., Pearce, J. A., Kelley, S. P. and Harris, N. B. W. (2004) Nature of the source regions for post-collisional, potassic magmatism in Southern and Northern Tibet from geochemical variations and inverse trace element modeling. J. Petrol., 45, 555–607.CrossRefGoogle Scholar
Wilson, R. J. S., Luckman, B. H. and Esper, J. A. (2005) 500-year dendroclimatic reconstruction of spring/summer precipitation from the lower Bavarian forest region, Germany. Int. J. Climat., 25, 611–630.CrossRefGoogle Scholar
Wobus, C., Heimsath, A., Whipple, A. and Hodges, K. (2005) Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature, 434, 1008–1011.CrossRefGoogle ScholarPubMed
Wolfe, J. A., Forest, C. E. and Molnar, P. (1998) Paleobotanical evidence of Eocene and Oligocene paleoaltitudes in midlatitude western North America. Geol. Soc. Amer. Bull., 110, 664–678.2.3.CO;2>CrossRefGoogle Scholar
Woodruff, F. and Savin, S. (1989) Miocene deepwater oceanography. Paleoceanography, 4, 87–140.CrossRefGoogle Scholar
Woodruff, F. and Savin, S. M. (1991) Mid-Miocene isotope stratigraphy in the deep-sea: high resolution correlations, paleoclimatic cycles, and sediment preservation. Paleoceanography, 6, 755–806.CrossRefGoogle Scholar
Woodruff, F., Savin, S. M. and Abel, L. (1990) Miocene benthic foraminifer oxygen and carbon isotopes, Site 709, Indian Ocean. Proc. Ocean Drill. Prog., Sci. Res., 115, College Station, TX: Ocean Drilling Program, pp. 519–528.CrossRef
Wu, G., Pan, B., Guan, Q. and Xia, D. (2005) Terminations and their correlation with insolation in the Northern Hemisphere; a record from a loess section in north-west China. Palaeogeog., Palaeoclim., Palaeoeco., 216, 267–277.CrossRefGoogle Scholar
Xiao, J. L. and An, Z. S. (1999) Three large shifts in East Asian monsoon circulation indicated by loess–Paleosol sequences in China and late Cenozoic deposits in Japan. Palaeogeog., Palaeoclim., Palaeoeco., 154, 179–189.CrossRefGoogle Scholar
Xiao, J. L., Inouchi, Y., Kumai, H.et al. (1997) Eolian quartz flux to Lake Biwa, central Japan over the past 145 000 years. Quat. Res., 48, 48–57.CrossRefGoogle Scholar
Xiao, J. L., An, Z. S., Liu, T. S.et al. (1999) East Asian monsoon variation during the last 130,000 years; evidence from the Loess Plateau of central China and Lake Biwa of Japan. Quat. Sci. Rev., 18, 147–157.CrossRefGoogle Scholar
Xie, P. and Arkin, P. A. (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteo. Soc., 78, 2539–2558.2.0.CO;2>CrossRefGoogle Scholar
Xie, S.-P., Xu, H., Saji, N. H., Wang, Y. and Liu, W. T. (2006) Role of narrow mountains in large-scale organization of Asian monsoon convection. J. Clim., 19, 3420–3429.CrossRefGoogle Scholar
Xu, R. (1979) Discovery of Glossopteris flora in southern Tibet and its significance to geology and paleogeography. In A Report of the Scientific Expedition in the Mount Everest Region; 1975, Beijing, China: Sci. Press, pp. 77–88.
Yan, F., Ye, Y. and Mai, X. (1983) The sporo-pollen assemblage in the Luo4 drilling of Lop Lake in Uygur Autonomous Region of Xinjiang and its significance. Seismo. Geo., 5, 75–80 (in Chinese).Google Scholar
Yancheva, G., Nowaczyk, N. R., Mingram, J.et al. (2007) Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445, 74–77.CrossRefGoogle ScholarPubMed
Yang, F., Ma, Z. Q., Xu, T. C. and Ye, S. T. (1992) A Tertiary paleomagnetic stratigraphic profile in Qaidam basin (in Chinese). Acta Pet. Sin., 13 (2), 97–101.Google Scholar
Yang, J., Chen, J., An, Z.et al. (2000) Variations in 87Sr/86Sr ratios of calcites in Chinese loess; a proxy for chemical weathering associated with the East Asian summer monsoon. Palaeogeog., Palaeoclim., Palaeoeco., 157, 151–159.CrossRefGoogle Scholar
Yasuda, Y. (2004) Monsoons and religions. In Monsoon and Civilization, ed. Yasuda, Y. and Shinde, V., New Delhi: Lustre Press, pp. 319–338.Google Scholar
Yasunari, T. (1980) A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225–229.CrossRefGoogle Scholar
Yasunari, T. (1981) Structure of an Indian Summer monsoon system with around 40-day period. J. Meteor. Soc. Japan, 59, 336–354.CrossRefGoogle Scholar
Yin, A., Kapp, P. A., Murphy, M. A.et al. (1999) Significant late Neogene east–west extension in northern Tibet. Geology, 27, 787–790.2.3.CO;2>CrossRefGoogle Scholar
Yoshikawa, S. and Inouchi, Y. (1991) Tephrostratigraphy of the Takashima-oki boring core samples from Lake Biwa, central Japan. Earth Sci. (Chikyu Kagaku), 45, 81–100.Google Scholar
Yoshikawa, S. and Inouchi, Y. (1993) Middle Pleistocene to Holocene explosive volcanism revealed by ashes of the Takashima-oki core samples from Lake Biwa, central Japan. Earth Sci. (Chikyu Kagaku), 47, 97–109.Google Scholar
Young, T. C. (1995) The Uruk World System: the dynamics of expansion of Early Mesopotamian civilization. Bull. Amer. Sch. Orient. Res., 297, 84–85.CrossRefGoogle Scholar
Zachos, J.Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001) Trends, rhythms and aberrations in global climate 65 Ma to Present. Science, 292, 686–693.CrossRefGoogle ScholarPubMed
Zahn, R. (2003) Monsoon linkages. Nature, 421, 324–325.CrossRefGoogle ScholarPubMed
Zeitler, P. K., Koons, P. O., Bishop, M. P.et al. (2001) Crustal reworking at Nanga Parbat, Pakistan; metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics, 20, 712–728.CrossRefGoogle Scholar
Zhang, P., Molnar, P. and Downs, W. R. (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410, 891–897.CrossRefGoogle Scholar
Zhao, J., Wang, Y., Collerson, K. D. and Gagan, M. K. (2003) Speleothem U-series dating of semi-synchronous climate oscillations during the last deglaciation. Earth Planet. Sci. Lett., 216, 155–161.CrossRefGoogle Scholar
Zhao, Q., Wang, P., Cheng, X.et al. (2001a) A record of Miocene carbon excursion in the South China Sea. Sci. China, Ser. D, 44, 943–951.CrossRefGoogle Scholar
Zhao, Q., Wang, J., Cheng, X.et al. (2001b) Neogene oxygen isotopic stratigraphy, ODP Site 1148, northern South China Sea. Sci. China, Ser. D, 44, 934–942.CrossRefGoogle Scholar
Zhao, W. L. and Morgan, W. J. P. (1987) Injection of Indian crust into Tibetan lower crust; a two-dimensional finite element model study. Tectonics, 6, 489–504.CrossRefGoogle Scholar
Zheng, H., Powell, C. M., An, Z., Zhou, J. and Dong, G. (2000) Pliocene uplift of the northern Tibetan Plateau. Geology, 28, 715–718.2.0.CO;2>CrossRefGoogle Scholar
Zickfeld, K., Knopf, B., Petoukhov, V. and Schellnhuber, H. J. (2005) Is the Indian summer monsoon stable against global change?Geophys. Res. Lett., 32, L15707, doi: 10.1029/2005GL022771.CrossRefGoogle Scholar
Zielinski, G. A., Mayewski, P. A., Meeker, L. D.et al. (1996) Potential atmospheric impact of the Toba mega-eruption approximately 71 000 years ago. Geophys. Res. Lett., 23 (8), 837–840.CrossRefGoogle Scholar
Abe, M., Kitoh, A. and Yasunari, T. (2003) An evolution of the Asian summer monsoon associated with mountain uplift – simulation with the MRI atmosphere-ocean coupled GCM. J. Meteor. Soc. Japan, 81, 909–933.CrossRefGoogle Scholar
Abram, N. J., Gagan, M. K., Liu, Z., Hantoro, W. S., McCulloch, M. T. and Suwargadi, B. W. (2007) Seasonal characteristics of the Indian Ocean Dipole during the Holocene epoch. Nature, 445, 299–302.CrossRefGoogle ScholarPubMed
Agnihotri, R., Dutta, K., Bhushan, R. and Somayajulu, B. L. K. (2002) Evidence for solar forcing on the Indian monsoon during the last millennium. Earth Planet. Sci. Lett., 198, 521–527.CrossRefGoogle Scholar
Aitchison, J. C., Ali, J. R. and Davis, A. M. (2007) When and where did India and Asia collide?J. Geophys. Res., 112, B05423, doi: 10.1029/2006JB004706.CrossRefGoogle Scholar
Alam, M. and Subrahmanyam, S. (1998) The Mughal state, 1526–1750. Delhi, India: Oxford University Press, p. 455.Google Scholar
Albright, W. F. (1944) Ur excavations, vol. V: the Ziggurat and its surroundings. American J. Archaeo., 48, 303–305.CrossRefGoogle Scholar
Ali, J. R. and Aitchison, J. C. (2005) Greater India. Earth Sci. Rev., 72, 169–188.CrossRefGoogle Scholar
Alley, R. B., Meese, D. A., Shuman, C. A.et al. (1993) Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362, 527–529.CrossRefGoogle Scholar
Altabet, M. A., Francois, R., Murray, D. W. and Prell, W. L. (1995) Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature, 373, 506–509.CrossRefGoogle Scholar
Altabet, M. A., Murray, D. W. and Prell, W. L. (1999) Climatically linked oscillations in Arabian Sea denitrification over the past 1 m.y.: implications for the marine N cycle. Paleoceanography, 14, 732–743.CrossRefGoogle Scholar
Altabet, M. A., Higginson, M. J. and Murray, D. W. (2002) The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2. Nature, 415, 159–162.CrossRefGoogle ScholarPubMed
An, C.-B., Feng, Z. and Tang, L. (2004) Environmental change and cultural response between 8000 and 4000 cal. yr BP in the western Loess Plateau, north-west China. J. Quat. Sci., 19, 529–535.CrossRefGoogle Scholar
An, C.-B., Tang, L., Barton, L. and Chen, F. H. (2005) Climate change and cultural response around 4000 cal yr B. P. in the western part of Chinese Loess Plateau. Quat. Res., 63, 347–352.CrossRefGoogle Scholar
An, Z. (1991) Radiocarbon dating and the prehistoric archaeology of China. World Archaeo., 23, 193–200.Google Scholar
An, Z., Kukla, G. J., Porter, S. C. and Xiao, J. (1991) Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quat. Res., 36, 29–36.CrossRefGoogle Scholar
An, Z. S., Porter, S. C., Chappell, J.et al. (1994) The Luochuan loess sequence over the past 130 ka and records of the Greenland ice cores. Chinese Sci. Bull., 39, 182–184.Google Scholar
An, Z., Kutzbach, J. E., Prell, W. L. and Porter, S. C. (2001) Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature, 411, 62–66.Google Scholar
Anand, P., Elderfield, H. and Conte, M. H. (2003) Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 18, 1050, doi: 10.1029/2002PA000846.CrossRefGoogle Scholar
Anderson, D. M. and Prell, W. L. (1993) A 300 kyr record of upwelling off Oman during the late Quaternary; evidence of the Asian south-west monsoon. Paleoceanography, 8, 193–208.CrossRefGoogle Scholar
Anderson, D. M., Brock, J. C. and Prell, W. L. (1992) Physical upwelling processes, upper ocean environment and the sediment record of the south-west monsoon. In Upwelling Systems; Evolution Since the Early Miocene, ed. Summerhayes, C. P., Prell, W. L. and Emeis, K. C.. London: Geol. Soc. Lond., Spec. Publ., vol. 64, pp. 121–129.Google Scholar
Anderson, D. M., Overpeck, J. T. and Gupta, A. K. (2002) Increase in the Asian south-west monsoon during the past four centuries. Science, 297, 596–599.CrossRefGoogle Scholar
Andersson, J. G. (1923) Essays on the Cenozoic of northern China. Mem. Geol. Surv. China, Ser. A, 3, 1–152.Google Scholar
Ashrit, R. G., Kumar, K. R. and Kumar, K. K. (2001) ENSO-monsoon relationships in a greenhouse warming scenario. Geophys. Res. Lett. 28, 1727–1730.CrossRefGoogle Scholar
Audley-Charles, M. G. (2004) Ocean trench blocked and obliterated by Banda forearc collision with Australian proximal continental slope. Tectonophysics, 389, 65–79.CrossRefGoogle Scholar
Axelrod, D. I. (1980) Estimating altitudes of Tertiary forests. In Proceedings of Symposium on Qinghai-Zizang (Tibet) Plateau, Beijing, China: Academica Sinica, 0–2.Google Scholar
Barber, D. C., Dyke, A., Hillaire, M. C.et al. (1999) Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature, 400, 344–348.CrossRefGoogle Scholar
Bard, E., Hamelin, B., Arnold, M.et al. (1996) Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge. Nature, 382, 241–244.CrossRefGoogle Scholar
Bassinot, F. C., Labeyrie, L. D., Vincent, E.et al. (1994) The astronomical theory of climate and the age of the Brunhes–Matuyama magnetic reversal. Earth Planet. Sci. Lett., 126, 91–108.CrossRefGoogle Scholar
Beaumont, C., Jamieson, R. A., Nguyen, M. H. and Medvedev, S. (2004) Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan–Tibetan orogen. J. Geophys. Res. 109, B06406, doi: 10.1029/2003JB002809.CrossRefGoogle Scholar
Béchennec, F., Métour, J., Platel, J. P. and Roger, J. (1993) Explanatory notes to the geological map of the Sultanate of Oman. Muscat, Oman: Directorate General of Minerals, Oman Ministry of Petroleum and Minerals, p. 93.Google Scholar
Bettinger, R. L., Barton, L., Richerson, P. J. et al. (2007) The transition to agriculture in North-western China. In Late Quaternary Climate Change and Human Adaptation in Arid China, ed. Madsen, D. B., Chen, F. and Gao, X., Amsterdam: Elsevier, Develop. Quat. Sci., vol. 9, pp. 83–101.Google Scholar
Bhattacharya, A. (1989) Vegetation and climate during the last 30,000 years in Ladakh. Palaeogeog., Palaeoclimat., Palaeoeco., 73, 25–38.CrossRefGoogle Scholar
Bird, M. I. and Cali, J. A. (1998) A million-year record of fire in sub-Saharan Africa. Nature, 394, 767–769.CrossRefGoogle Scholar
Bird, P. (1978) Initiation of intracontinental subduction in the Himalaya. J. Geophys. Res., 83, 4975–4987.CrossRefGoogle Scholar
Biscaye, P. E. (1965) Mineralogy and sedimentation of Recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geol. Soc. Amer. Bull., 76, 803–831.CrossRefGoogle Scholar
Blisniuk, P. M., Hacker, B. R., Glodny, J.et al. (2001) Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 412, 628–632.CrossRefGoogle ScholarPubMed
Bohren, C. F. and Albrecht, B. A. (1998) Atmospheric Thermodynamics, Oxford: Oxford University Press, p. 404.Google Scholar
Bond, G. C., Heinrich, H., Broecker, W. S.et al. (1992) Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature, 360, 245–249.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M.et al. (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278, 1257–1266.CrossRefGoogle Scholar
Bond, G., Kromer, B., Beer, J.et al. (2001) Persistent solar influence on North Atlantic Climate during the Holocene. Science, 294, 2130–2136.CrossRefGoogle ScholarPubMed
Bookhagen, B. and Burbank, D. W. (2006) Topography, relief and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett., 33, L08405, doi: 10.1029/2006GL026037.Google Scholar
Bookhagen, B., Thiede, R. C. and Strecker, M. R. (2005a) Late Quaternary intensified monsoon phases control landscape evolution in the north-west Himalaya. Geology, 33, 149–152.CrossRefGoogle Scholar
Bookhagen, B., Thiede, R. C. and Strecker, M. R. (2005b) Abnormal monsoon years and their control on erosion and sediment flux in the high, arid north-west Himalaya. Earth Planet. Sci. Lett., 231, 131–146.CrossRefGoogle Scholar
Brass, G. W. and Raman, C. V. (1991) Clay mineralogy of sediments from the Bengal Fan. Proc. Ocean Drill. Prog., Sci. Res., ed. J. R. Cochran, D. A. V. Stow et al., 116, College Station, TX: Ocean Drilling Program, pp. 35–42.
Bray, H. E. and Stokes, S. (2004) Temporal patterns of arid-humid transitions in the south-eastern Arabian Peninsula based on optical dating. Geomorph., 59, 271–280.CrossRefGoogle Scholar
Broecker, W. S. (1994) Massive iceberg discharges as triggers for global climate change. Nature, 372, 421–424.CrossRefGoogle Scholar
Brookfield, M. E. (1998) The evolution of the great river systems of southern Asia during the Cenozoic India–Asia collision; rivers draining southwards. Geomorph., 22, 285–312.CrossRefGoogle Scholar
Bryson, R. A. and Swain, A. M. (1981) Holocene variations of monsoon rainfall in Rajasthan. Quat. Res., 16, 135–145.CrossRefGoogle Scholar
Bull, J. M. and Scrutton, R. A. (1990) Fault reactivation in the central Indian Ocean and the rheology of oceanic lithosphere. Nature, 344, 855–858.CrossRefGoogle Scholar
Bull, J. M. and Scrutton, R. A. (1992) Seismic reflection images of intraplate deformation, central Indian Ocean and their tectonic significance. J. Geol. Soc., 149, 955–966.CrossRefGoogle Scholar
Burbank, D. W., Derry, L. A. and France-Lanord, C. (1993) Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature, 364, 48–50.CrossRefGoogle Scholar
Burbank, D. W., Blythe, A. E., Putkonen, J.et al. (2003) Decoupling of erosion and precipitation in the Himalayas. Nature, 426, 652–655.CrossRefGoogle ScholarPubMed
Burchfiel, B. C., Chen, Z., Hodges, K. V.et al. (1992) The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous With and Parallel to Shortening in a Collisional Mountain Belt. Boulder, CO: Geological Society of America, Geol. Soc. Amer. Spec. Paper, 269, p. 41.Google Scholar
Burg, J. P., Proust, F., Tapponnier, P. and Chen, G. M. (1983) Deformation phases and tectonic evolution of the Lhasa Block (southern Tibet, China). Eclog. Geol. Helv., 76, 643–665.Google Scholar
Burns, S. J. and Matter, A. (1995) Geochemistry of carbonate cements in surficial alluvial conglomerates and their paleoclimatic implications, Sultanate of Oman. J. Sed. Res., 65, 170–177.Google Scholar
Burns, S. J., Matter, A., Frank, N. and Mangini, A. (1998) Speleothem-based paleoclimate record from northern Oman. Geology, 26, 499–502.2.3.CO;2>CrossRefGoogle Scholar
Burns, S. J., Fleitmann, D., Mudelsee, M.et al. (2002) 780-year annually resolved record of Indian Ocean monsoon precipitation from a speleothem from South Oman. J. Geophys. Res., 107, 20, 4434.CrossRefGoogle Scholar
Burns, S. J., Fleitmann, D., Matter, A., Kramers, J. and Al-Subbary, A. A. (2003) Indian Ocean climate and an absolute chronology over Dansgaard/Oeschger events 9 to 13. Science, 301, 1365–1367.CrossRefGoogle ScholarPubMed
Bush, A. B. G. (2004) Modeling of late Quaternary climate over Asia: a synthesis. Boreas, 33, 155–163.CrossRefGoogle Scholar
Calvache-Archila, J. and Love, C. (2001) Structural provinces in the northern Sohar Basin, offshore Oman. Abstr. Int. Conf. Geol. Oman, Muscat, Oman: Oman Ministry of Commerce, p. 27.Google Scholar
Camoin, G. F., Montaggioni, L. F. and Braithwaite, C. J. R. (2004) Late glacial to post glacial sea levels in the western Indian Ocean. Mar. Geol., 206, 119–146.CrossRefGoogle Scholar
Cane, M. A. (1998) A role for the tropical Pacific. Science, 282, 60–61.CrossRefGoogle Scholar
Cane, M. A. and Molnar, P. (2001) Closing of the Indonesian seaway as a precursor to East African aridification around 3–4 million years ago. Nature, 411, 157–162.CrossRefGoogle ScholarPubMed
Cerling, T. E., Wang, Y. and Quade, J. (1993) Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 361 (6410), 344–345.CrossRefGoogle Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J.et al. (1997) Global vegetation change through the Miocene/Pliocene boundary. Nature, 38, 153–158.CrossRefGoogle Scholar
Chakraborty, A., Nanjundiah, R. S. and Srinivasan, J. (2002) Role of Asian and African orography in Indian summer monsoon. Geophys. Res. Lett., 29, doi: 10.1029/2002GL015522.CrossRefGoogle Scholar
Chen, J., Farrell, J. W., Murray, D. W. and Prell, W. L. (1995) Timescale and paleoceanographic implications of a 3.6 Ma oxygen isotope record from the north-east Indian Ocean (Ocean Drilling Program Site 758). Paleoceanography, 10, 21–48.CrossRefGoogle Scholar
Chen, J., Zheng, L., Wiesner, M. G.et al. (1998) Estimations of primary production and export production in the South China Sea based on sediment trap experiments. China Sci. Bull., 43, 583–586.CrossRefGoogle Scholar
Chen, J., An, Z. S. and Head, J. (1999) Variation of Rb/Sr ratios in the loess-paleosol sequences of central China during the last 130,000 years and their implications for monsoon paleoclimatology. Quat. Res., 51, 215–219.CrossRefGoogle Scholar
Chen, K. T. and Hiebert, F. T. (1995) The late prehistory of Xinjiang in relation to its neighbors. J. World Prehist., 9, 243–300.CrossRefGoogle Scholar
Chen, M., Wang, R., Yang, L., Han, J. and Lu, J. (2003) Development of East Asian summer monsoon environments in the late Miocene; radiolarian evidence from Site 1143 of ODP Leg 184. Mar. Geol., 201, 169–177.CrossRefGoogle Scholar
Chen, M.-T. and Huang, C. Y. (1998) Ice-volume forcing of winter monsoon climate in the South China Sea. Paleoceanography, 13, 622–633.CrossRefGoogle Scholar
Cheng, H., Edwards, R. L., Wang, Y.et al. (2006) A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations. Geology, 34, 217–220.CrossRefGoogle Scholar
Chou, C. and Neelin, J. D. (2001) Mechanisms limiting the southward extent of the South American summer monsoon. Geophys. Res. Lett., 28, 2433–2436.CrossRefGoogle Scholar
Chou, C., Neelin, J. D. and Su, H. (2001) Ocean-atmosphere-land feedbacks in an idealized monsoon. Quart. J. R. Meteor. Soc., 127, 1869–1891.CrossRefGoogle Scholar
Chu, P. C. and Li, R. (2000) South China Sea isopycnal-surface circulation. J. Phys. Ocean., 30, 2419–2438.2.0.CO;2>CrossRefGoogle Scholar
Chung, S. L., Lo, C. H., Lee, T. Y.et al. (1998) Diachronous uplift of the Tibet Plateau starting 40 Myr ago. Nature, 394, 769–773.CrossRefGoogle Scholar
Clark, C. O., Cole, J. E. and Webster, P. J. (2000) Indian Ocean SST and Indian summer rainfall: predictive relationships and their decadal variability. J. Clim., 13, 2503–2519.2.0.CO;2>CrossRefGoogle Scholar
Clark, M. K. and Royden, L. H. (2000) Topographic ooze; building the eastern margin of Tibet by lower crustal flow. Geology, 28, 703–706.2.0.CO;2>CrossRefGoogle Scholar
Clark, M. K., Schoenbohm, L. M., Royden, L. H.et al. (2004) Surface uplift, tectonics, and erosion of Eastern Tibet from large-scale drainage patterns. Tectonics, 23, TC1006, doi: 10.1029/2002TC001402.CrossRefGoogle Scholar
Clark, M. K., House, M. A., Royden, L. H.et al. (2005) Late Cenozoic uplift of south-eastern Tibet. Geology, 33, 525–528.CrossRefGoogle Scholar
Clemens, S. C. and Prell, W. L. (1990) Late Pleistocene variability of Arabian Sea summer monsoon winds and continental aridity; Eolian records from the lithogenic component of deep-sea sediments. Paleoceanography, 5, 109–145.CrossRefGoogle Scholar
Clemens, S. C. and Prell, W. L. (2003) Data report: preliminary oxygen and carbon isotopes from site 1146, northern South China Sea. Proc. Ocean Drill. Prog., Sci. Res., 184, 1–8 (online).Google Scholar
Clemens, S. C. and Prell, W. L. (2007) The timing of orbital-scale Indian monsoon changes. Quat. Sci. Rev., 26, 275–278.CrossRefGoogle Scholar
Clemens, S. C., Prell, W., Murray, D., Shimmield, G. and Weedon, G. (1991) Forcing mechanisms of the Indian Ocean monsoon. Nature, 353, 720–725.CrossRefGoogle Scholar
Clemens, S. C., Murray, D. W. and Prell, W. L. (1996) Nonstationary phase of the Plio-Pleistocene Asian monsoon. Science, 274, 943–948.CrossRefGoogle ScholarPubMed
Clift, P. D., Giosan, L., Blusztajn, J.et al. (2008) Holocene erosion of the Lesser Himalaya triggered by intensified summer monsoon. Geology, 36, 79–82.CrossRefGoogle Scholar
Clift, P. D. (2006) Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett., 241, 571–580.CrossRefGoogle Scholar
Clift, P. D. and Blusztajn, J. (2005) Re-organization of the western Himalayan river system after five million years ago. Nature, 438, 1001–1003.CrossRefGoogle Scholar
Clift, P. D., Lee, J. I., Blusztajn, J. and Clark, M. K. (2002a) Erosional response of South China to arc rifting and monsoonal strengthening recorded in the South China Sea. Mar. Geol., 184, 207–226.CrossRefGoogle Scholar
Clift, P. D., Gaedicke, C., Edwards, R.et al. (2002b) The stratigraphic evolution of the Indus Fan and the history of sedimentation in the Arabian Sea. Mar. Geophys. Res., 23, 223–245.CrossRefGoogle Scholar
Clift, P. D., Lee, J. I., Hildebrand, P.et al. (2002c) Nd and Pb isotope variability in the Indus River system: implications for sediment provenance and crustal heterogeneity in the Western Himalaya. Earth Planet. Sci. Lett., 200, 91–106.CrossRefGoogle Scholar
Clift, P. D., Layne, G. D. and Blusztajn, J. (2004) The erosional record of Tibetan uplift in the East Asian marginal seas. In Continent-Ocean Interactions in the East Asian Marginal Seas, ed. P. D. Clift, P. Wang, D. Hayes, W. Kuhnt. Amer. Geophys. Union, monogr., 149, 255–282.
Clift, P. D., Blusztajn, J. and Nguyen, D. A. (2006a) Large-scale drainage capture and surface uplift in Eastern Tibet before 24 Ma. Geophys. Res. Lett, 33, L19403, doi: 10.1029/2006GL027772.CrossRefGoogle Scholar
Clift, P. D., Carter, A., Campbell, I. H.et al. (2006b) Thermochronology of mineral grains in the Song Hong and Mekong Rivers, Vietnam. Geophys., Geochem., Geosyst., 7, Q10005, doi: 10.1029/2006GC001336.Google Scholar
Cline, J. D. and Kaplan, I. R. (1975) Isotopic fractionation of dissolved nitrate during denitrification in the Eastern Tropical North Pacific Ocean. Mar. Chem., 3, 271–299.CrossRefGoogle Scholar
Cochran, J. R. (1990) Himalayan uplift, sea level, and the record of Bengal Fan sedimentation at the ODP leg 116 sites. Proc. Ocean Drill. Prog., Sci. Res., 116, 397–414.Google Scholar
Coleman, M. and Hodges, K. (1995) Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east-west extension. Nature, 374, 49–52.CrossRefGoogle Scholar
Colin, C., Turpin, L., Bertaux, J., Desprairies, A. and Kissel, C. (1999) Erosional history of the Himalayan and Burman ranges during the last two glacial-interglacial cycles. Earth Planet. Sci. Lett., 171, 647–660.CrossRefGoogle Scholar
Conkright, M., Levitus, S., O'Brien, T.et al. (1998) World Ocean Atlas 1998, CD-ROM data set documentation, tech. rep. 15. Silver Spring, MD: National Oceanographic Data Center, p. 16.Google Scholar
Conte, M. H. and Weber, J. C. (2002) Plant biomarkers in aerosols record isotopic discrimination of terrestrial photosynthesis. Nature, 417, 639–641.CrossRefGoogle ScholarPubMed
Cook, E. R., D'Arrigo, R. D. and Briffa, K. R. (1998) A reconstruction of the North Atlantic oscillation using tree-ring chronologies from North America and Europe. Holocene, 8, 9–17.CrossRefGoogle Scholar
Cook, E. R., Woodhouse, C., Eakin, C. M., Meko, D. M. and Stahle, D. W. (2004) Long-term aridity changes in the western United States. Science, 306, 1015–1018.CrossRefGoogle ScholarPubMed
Copeland, P., Harrison, T. M., Kidd, W. S. F., Xu, R. and Zhang, Y. (1987) Rapid Miocene acceleration of uplift in the Gangdese belt, Xizang (southern Tibet), and its bearing on accommodation mechanisms of the India–Asia collision. Earth Planet. Sci. Letts., 86, 240–252.CrossRefGoogle Scholar
Cullen, H. M., deMenocal, P. B., Hemming, S.et al. (2000) Climate change and the collapse of the Akkadian empire: evidence from the deep sea. Geology, 28, 379–382.2.0.CO;2>CrossRefGoogle Scholar
Curray, J. R. (1994) Sediment volume and mass beneath the Bay of Bengal. Earth Planet. Sci. Lett., 125, 371–383.CrossRefGoogle Scholar
Curray, J. R. and Moore, D. G. (1971) Growth of the Bengal deep-sea fan and denudation in the Himalayas. Geol. Soc. Amer. Bull., 82, 563–572.CrossRefGoogle Scholar
Curray, J. R., Emmel, F. J. and Moore, D. G. (2003) The Bengal Fan: morphology, geometry, stratigraphy, history and processes. Mar. Petrol. Geol., 19, 1191–1223.CrossRefGoogle Scholar
Currie, B. S., Rowley, D. B. and Tabor, N. J. (2005) Middle Miocene paleoaltimetry of southern Tibet; implications for the role of mantle thickening and delamination in the Himalayan Orogen. Geology, 33, 181–184.CrossRefGoogle Scholar
Curry, W. B., Ostermann, D. R., Guptha, M. V. S. and Itekkot, V. (1992) Foraminiferal production and monsoonal upwelling in the Arabian Sea; evidence from sediment traps. In Upwelling Systems; Evolution Since the Early Miocene, ed. C. P. Summerhayes, W. L. Prell and K. C. Emeis, Geol. Soc. Lond., Spec. Publ., 64, 93–106.
Dadson, S., Hovius, N.Chen, H.et al. (2003) Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426, 648–651.CrossRefGoogle ScholarPubMed
Dahl, K. A. and Oppo, D. W. (2006) Sea-surface temperature pattern reconstructions in the Arabian Sea. Paleoceanography, 21, PA1014, doi: 10.1029/2005PA001162.CrossRefGoogle Scholar
Dannenmann, S., Linsley, B. K., Oppo, D. W., Rosenthal, Y. and Beaufort, L. (2003) East Asian monsoon forcing of suborbital variability in the Sulu Sea during Marine Isotope Stage 3; link to Northern Hemisphere climate. Geochem., Geophys., Geosyst., 4, 1, doi: 10.1029/2002GC000390.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S. J., Clausen, H. B.et al. (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364, 218–220.CrossRefGoogle Scholar
Davies, T. A., Kidd, R. B. and Ramsay, A. T. S. (1995) A time-slice approach to the history of Cenozoic sedimentation in the Indian Ocean. Sed. Geol., 96, 157–179, 1995.CrossRefGoogle Scholar
DeCelles, P. G., Robinson, D. M., Quade, J.et al. (2001) Stratigraphy, structure and tectonic evolution of the Himalayan fold–thrust belt in western Nepal. Tectonics 20, 487–509.CrossRefGoogle Scholar
deMenocal, P. B. (2001) Cultural responses to climate change during the late Holocene. Science, 292, 667–673.CrossRefGoogle ScholarPubMed
deMenocal, P. B., Ortiz, J., Guilderson, T. and Sarnthein, M. (2000) Coherent high- and low-latitude climate variability during the Holocene warm period. Science, 288, 2198–2202.CrossRefGoogle ScholarPubMed
Dercourt, J., Ricou, L. E. and Vrielinck, B. eds., (1993) Atlas Tethys Palaeoenvironmental Maps, Paris: Gauthier-Villars, pp. 1–307.Google Scholar
Derry, L. A. and France-Lanord, C. (1996) Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record. Earth Planet. Sci. Lett., 142, 59–76.CrossRefGoogle Scholar
Derry, L. A. and France-Lanord, C. (1997) Himalayan weathering and erosion fluxes; climate and tectonic controls. In Tectonic Uplift and Climate Change, ed. Ruddiman, W. F., New York: Plenum Press, pp. 289–312.CrossRefGoogle Scholar
Dettman, D. L., Kohn, M. J., Quade, J.et al. (2001) Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology, 29, 31–34.2.0.CO;2>CrossRefGoogle Scholar
Dettman, D. L., Fang, X., Garzione, C. N. and Li, J. (2003) Uplift-driven climate change at 12 Ma; a long δ18O record from the NE margin of the Tibetan Plateau. Earth Planet. Sci. Lett., 214, 267–277.CrossRefGoogle Scholar
Dickson, R. R. and Brown, J. (1994) The production of North Atlantic Deep Water: sources, rates, and pathways. J. Geophys. Res., 9, 12 319–12 342.CrossRefGoogle Scholar
Ding, L., Kapp, P., Zhong, D. and Deng, W. (2003) Cenozoic volcanism in Tibet; evidence for a transition from oceanic to continental subduction. J. Petrol., 44, 1833–1865.CrossRefGoogle Scholar
Ding, Z., Liu, T., Rutter, N. W.et al. (1995) Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years. Quat. Res., 44(2), 149–159.CrossRefGoogle Scholar
Ding, Z. L., Sun, J. M., Liu, T. S.et al. (1998) Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China. Earth Planet. Sci. Lett., 161(1–4), 135–143.CrossRefGoogle Scholar
Ding, Z. L., Xiong, S. F., Sun, J. M.et al. (1999) Pedostratigraphy and paleomagnetism of an approximately 7.0 Ma Eolian loess–red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution. Palaeogeog., Palaeoclim., Palaeoeco., 152, 49–66.CrossRefGoogle Scholar
Ding, Z. L., Sun, J. M., Yang, S. L. and Liu, T. S. (2001) Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and paleoclimate change. Geochim. Cosmochim. Acta, 65, 901–913.CrossRefGoogle Scholar
Dokken, T. M. and Jansen, E. (1999) Rapid changes in the mechanism of ocean convection during the last glacial period. Nature, 401, 458–461.CrossRefGoogle Scholar
Doose-Rolinski, H., Rogalla, U., Scheeder, G., Lückge, A. and Rad, U. (2001) High-resolution temperature and evaporation changes during the late Holocene in the north-eastern Arabian Sea. Paleoceanography, 16(4), 358–367.CrossRefGoogle Scholar
Duplessy, J. C. (1982) Glacial to interglacial contrasts in the northern Indian Ocean. Nature, 295, 494–498.CrossRefGoogle Scholar
Edwards, R. L., Chen, J. H. and Wasserburg, G. J. (1987) 238U-234U-230-Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth Planet. Sci. Lett., 81, 175–192.CrossRefGoogle Scholar
Elston, R. G., Xu, C., Madsen, D. B.et al. (1997) New dates for the North China Mesolithic. Antiquity, 71, 985–993.CrossRefGoogle Scholar
Emanuel, K. A. (1986) An air–sea interaction theory for tropical cyclones. Part I: steady state maintenance. J. Atmos. Sci., 43, 585–604.2.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. A. (2000) A statistical analysis of hurricane intensity. Mon. Wea. Rev., 128, 1139–1152.2.0.CO;2>CrossRefGoogle Scholar
England, P. C. and Houseman, G. (1989) Extension during continental convergence with application to the Tibetan Plateau. J. Geophys. Res., 94, 17561–17579.CrossRefGoogle Scholar
England, P. C. and Searle, M. P. (1986) The Cretaceous–Tertiary deformation of the Lhasa Block and its implications for crustal thickening in Tibet. Tectonics, 5, 1–14.CrossRefGoogle Scholar
Enzel, Y., Ely, L. L., Mishra, S.et al. (1999) High-resolution Holocene environmental changes in the Thar Desert, north-western India. Science, 284, 125–128.CrossRefGoogle Scholar
Esper, J., Cook, E. R. and Schweingruber, F. H. (2002) Low-frequency signals in long chronologies for reconstructing past temperature variability. Science, 295, 2250–2253.CrossRefGoogle ScholarPubMed
Esper, J., Frank, D. C., Wilson, R. J. S., Büntgen, U. and Treydte, K. (2007) Uniform growth trends among central Asian low and high elevation juniper tree sites. Trees, 21, 141–150.CrossRefGoogle Scholar
Fairbanks, R. G. (1989) A 17 000-year glacio-eustatic sea level record: influence of glacial melting rates on Younger Dryas event and deep-ocean circulation. Nature, 342, 637–642.CrossRefGoogle Scholar
Fang, J. Q. (1991) Lake evolution during the past 30,000 years in China, and its implications for environmental change. Quat. Res., 36, 37–60.CrossRefGoogle Scholar
Fang, X., Ono, Y., Fukusawa, H.et al. (1999) Asian summer monsoon instability during the past 60,000 years; magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau. Earth Planet. Sci. Lett., 168, 219–232.CrossRefGoogle Scholar
Fang, X., Garzione, C., Voo, R., Li, J. and Fan, M. (2003) Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth Planet. Sci. Lett., 210, 545–560.CrossRefGoogle Scholar
Farley, K. A. (2000) Helium diffusion from apatite; general behavior as illustrated by Durango fluorapatite. J. Geophys. Res., 105, 2903–2914.CrossRefGoogle Scholar
Fasullo, J. and Webster, P. J. (2003) A hydrological definition of the Indian summer monsoon onset and withdrawal. J. Clim., 16, 3200–3211.2.0.CO;2>CrossRefGoogle Scholar
Feng, X., Cui, H., Tang, K. and Conkey, L. E. (1999) Tree-ring δD as an indicator of Asian monsoon intensity. Quat. Res., 51, 262–266.CrossRefGoogle Scholar
Feng, Z.-D., An, C. B., Tang, L. Y. and Jull, A. J. T. (2004) Stratigraphic evidence of a Megahumid climate between 10,000 and 4000 years BP in the western part of the Chinese Loess Plateau. Global Planet. Change, 43, 145–155.CrossRefGoogle Scholar
Fielding, E. J. (1996) Tibet uplift and erosion. Tectonophysics, 260, 55–84.CrossRefGoogle Scholar
Findlater, J. (1969) Interhemispheric transport of air in the lower troposphere over the western Indian Ocean. Quart. J. R. Meteor. Soc., 95, 400–403.CrossRefGoogle Scholar
Fine, R. A., Lukas, R., Bingham, F. M., Warner, M. J. and Gammon, R. H. (1994) The Western Equatorial Pacific: a water mass crossroads. J. Geophys. Res., 99, 25 063–25 080.CrossRefGoogle Scholar
Fleitmann, D., Burns, S. J., Neff, U.et al. (2003) Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science, 300, 1737–1739.CrossRefGoogle Scholar
Fleitmann, D., Burns, S. J., Neff, U.et al. (2004) Palaeoclimatic interpretation of high-resolution oxygen isotope profiles derived from annually laminated speleothems from southern Oman. Quat. Sci. Rev., 23, 935–945.CrossRefGoogle Scholar
Fluteau, F., Ramstein, G. and Besse, J. (1999) Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J. Geophys. Res., 104, 11 995–12 018.CrossRefGoogle Scholar
France-Lanord, C., Derry, L. and Michard, A. (1993) Evolution of the Himalaya since Miocene time: isotopic and sedimentological evidence from the Bengal Fan. In Himalayan Tectonics, ed. P. J. Treloar and M. P. Searle. Geol. Soc., Lond., Spec. Publ., 74, 603–622.
Frumkin, A. (1991) The Holocene climatic record of the salt caves of Mount Sedom, Israel. The Holocene, 1, 191–200.CrossRefGoogle Scholar
Galy, A. and France-Lanord, C. (2001) Higher erosion rates in the Himalaya; geochemical constraints on riverine fluxes. Geology, 29, 23–26.2.0.CO;2>CrossRefGoogle Scholar
Garzione, C. N., Quade, J., DeCelles, P. G. and English, N. B. (2000) Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth Planet. Sci. Lett., 183, 215–229.CrossRefGoogle Scholar
Garzione, C. N., Dettman, D. L. and Horton, B. K. (2004) Carbonate oxygen isotope paleoaltimetry; evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan Plateau. Palaeogeog., Palaeoclim., Palaeoeco., 212, 119–140.CrossRefGoogle Scholar
Garzione, C. N., Ikari, M. J. and Basu, A. R. (2005) Source of Oligocene to Pliocene sedimentary rocks in the Linxia basin in north-eastern Tibet from Nd isotopes: implications for tectonic forcing of climate. Geol. Soc. Amer. Bull., 117, 1156–1166.CrossRefGoogle Scholar
Gasse, F., Arnold, M., Fontes, J. C.et al. (1991) A 13 000-year climate record from western Tibet. Nature, 353, 742–745.CrossRefGoogle Scholar
George, A. D., Marshallsea, S. J., Wyrwoll, K. H., Jie, C. and Yanchou, A. (2001) Miocene cooling in the northern Qilian Shan, north-eastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology, 29, 939–942.2.0.CO;2>CrossRefGoogle Scholar
Ghose, B., Kar, A. and Husain, Z. (1979) The lost courses of the Saraswati River in the Great Indian Desert; new evidence from Landsat imagery. Geograph. J., 145, 446–451.CrossRefGoogle Scholar
Giosan, L., Flood, R. D., Grutzner, J. and Mudie, P. (2002) Paleoceanographic significance of sediment color on western North Atlantic Drifts: II. Late Pliocene-Pleistocene sedimentation. Mar. Geol., 189, 43–61.CrossRefGoogle Scholar
Giosan, L., Clift, P. D., Blusztajn, J.et al. (2006) On the control of climate- and human-modulated fluvial sediment delivery on river delta development: the Indus. Eos Trans., 87(52), OS14A–04.Google Scholar
Godfrey, J. S. (1996) The effect of the Indonesian throughflow on ocean circulation and heat exchange with the atmosphere: a review. J. Geophys. Res., 101, 12 217–12 238.CrossRefGoogle Scholar
Godfrey, J. S. and Golding, T. J. (1981) The Sverdrup relation in the Indian Ocean, and the effect of Pacific-Indian Ocean throughflow on Indian Ocean circulation and on the East Australian Current. J. Phys. Ocean., 11, 771–779.2.0.CO;2>CrossRefGoogle Scholar
Godfrey, J. S., Alexiou, A., Ilahude, A. G.et al. (1995) The Role of the Indian Ocean in the Global Climate System: Recommendations Regarding the Global Ocean Observing System. Report of the Ocean Observing System Development Panel, College Station, TX, USA: Texas A & M University, p. 89.Google Scholar
Godin, L., Grujic, D., Law, R. D. and Searle, M. P. (2006) Channel flow, ductile extrusion and exhumation in continental collision zones: an introduction. In Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones, ed. Law, R. D., Searle, M. P. and Godin, L. Geol. Soc. Lond. Spec. Publ., 268, 1–24.
Gong, Z., Chen, H., Wang, Z., Cai, F. and Luo, G. (1987) The epigenetic geochemical types of loess in China. In Aspects of Loess Research, ed. Liu, T., Beijing: China Ocean Press, pp. 135–150.Google Scholar
Goodbred, S. L. and Kuehl, S. A. (1999) Holocene and modern sediment budgets for the Ganges–Brahmaputra river system; evidence for highstand dispersal to flood-plain, shelf, and deep-sea depocenters. Geology, 27, 559–562.2.3.CO;2>CrossRefGoogle Scholar
Goodbred, S. L. and Kuehl, S. A. (2000) Enormous Ganges–Brahmaputra sediment discharge during strengthened early Holocene monsoon. Geology, 28, 1083–1086.2.0.CO;2>CrossRefGoogle Scholar
Gordon, A. L. (2001) Interocean Exchange. In Ocean Circulation and Climate, ed. Siedler, G., Church, J. and Gould, J., London: Academic Press, pp. 303–314.Google Scholar
Gordon, A. L. and Fine, R. A. (1996) Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature, 379, 146–149.CrossRefGoogle Scholar
Gordon, A. L., Susanto, R. D. and Vranes, K. (2003) Cool Indonesian throughflow as a consequence of restricted surface layer flow. Nature, 425, 824–828.CrossRefGoogle ScholarPubMed
Green, P. F., Duddy, I. R., Laslett, G. M.et al. (1989) Thermal annealing of fission tracks in apatite: four quantitative modeling techniques and extension to geological timescales. Chem. Geol., 79, 155–182.Google Scholar
Greenland Ice Sheet Project (1997) The Greenland Summit ice cores. (CD-ROM) Boulder, Colorado, University of Colorado, National Snow and Ice Data Center, and Boulder, Colorado, National Geophysical Data Center, World Data Center–A for Paleoclimatology, www.ngdc.noaa.gov/paleo/icecore/greenland/summit/index.html.
Grootes, P. M. and Stuiver, M. (1997) 18O/16O variability in Greenland snow and ice with 103 to 105 yr time resolution. J. Geophys. Res., 102, 26 455–26 470.CrossRefGoogle Scholar
Guillot, S., Hodges, K., Fort, P. and Pecher, A. (1994) New constraints on the age of the Manaslu leucogranite: evidence for episodic tectonic denudation in the central Himalayas. Geology, 22, 559–562.2.3.CO;2>CrossRefGoogle Scholar
Guo, Z. T., Ruddiman, W. F., Hao, Q. Z.et al. (2002) Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159–165.CrossRefGoogle Scholar
Gupta, A. K. (2004) Origin of agriculture and domestication of plants and animals linked to early Holocene climate amelioration. Current Sci., 87, 54–59.Google Scholar
Gupta, A. K. and Thomas, E. (2003) Initiation of Northern Hemisphere Glaciation and strengthening of the North-east Indian monsoon; Ocean Drilling Program Site 758, eastern equatorial Indian Ocean. Geology, 31, 47–50.2.0.CO;2>CrossRefGoogle Scholar
Gupta, A. K., Anderson, D. M. and Overpeck, J. T. (2003) Abrupt changes in the Asian south-west monsoon during the Holocene and their links to the North Atlantic Ocean. Nature, 421, 354–356.CrossRefGoogle Scholar
Gupta, A. K., Singh, R. K., Joseph, S. and Thomas, E. (2004) Indian ocean high-productivity event (10–8 Ma): linked to global cooling or to the initiation of the Indian monsoons?Geology, 32, 753–756.CrossRefGoogle Scholar
Gupta, A. K., Das, M. and Anderson, D. M. (2005) Solar influence on the Indian summer monsoon during the Holocene. Geophys. Res. Lett., 32, L17703, doi: 10.1029/2005GL022685.CrossRefGoogle Scholar
Gupta, S. M. (1999) Radiolarian monsoonal index Pylonüd group responds to astronomical forcing in the last 500,000 years: evidence from the central Indian Ocean. Man Environ., 24, 99–107.Google Scholar
Gupta, S. P. (1995) The Lost Sarasvati and the Indus Civilization. Jodhpur, India: Kusumanjali Prakashan, p. 314.Google Scholar
Hahn, D. G. and Manabe, S. (1975) The role of mountains in the south Asian monsoon circulation. J. Atmos. Sci., 32, 1515–1541.2.0.CO;2>CrossRefGoogle Scholar
Hall, R. (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific; computer-based reconstructions, model and animations. J. Asian Earth Sci., 20, 353–431.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J. and Vail, P. R. (1987) Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156–1167.CrossRefGoogle ScholarPubMed
Harada, N., Ahagon, N., Sakamoto, T.et al. (2006) Rapid fluctuation of alkenone temperature in the south-western Okhotsk Sea during the past 120 kyr. Global Planet. Change, 53, 29–46.CrossRefGoogle Scholar
Harris, N. B. W. (2006) The elevation of the Tibetan Plateau and its impact on the monsoon, Palaeogeog., Palaeoclim., Palaeoeco., 241, 4–15.CrossRefGoogle Scholar
Harrison, T. M., Copeland, P., Kidd, W. S. F. and Yin, A. (1992) Raising Tibet. Science, 255, 1663–1670.CrossRefGoogle ScholarPubMed
Harrison, T. M., Copeland, P., Hall, S. A.et al. (1993) Isotopic preservation of Himalayan/Tibetan uplift, denudation and climatic histories in two molasse deposits. J. Geology, 100, 157–173.CrossRefGoogle Scholar
Harrison, T. M., Mahon, K. I., Guillot, S.et al. (1995) New constraints on the age of the Manaslu leucogranite; evidence for episodic tectonic denudation in the central Himalaya; discussion and reply. Geology, 23, 476–480.2.3.CO;2>CrossRefGoogle Scholar
Harzallah, A. and Sadourny, R. (1997) Observed lead – lag relationships between Indian summer monsoon and some meteorological variables. Clim. Dyn., 13, 635–648.CrossRefGoogle Scholar
Hassan, F. A. (1997) Nile floods and political disorder in early Egypt. In Third Millennium BCE Climate Change and Old World Collapse, ed. Dalfes, H. N., Kukla, G., and Weiss, H.. New York: Springer, NATO ASI Series 1 (49), pp. 1–24.CrossRefGoogle Scholar
Haug, G. H. and Tiedemann, R. (1998) Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 393, 673–676.CrossRefGoogle Scholar
Hayden, B. (1981) Research and development in the Stone Age: technological transitions among hunter-gatherers. Current Anthrop., 22, 519–548.CrossRefGoogle Scholar
Hays, J. D., Imbrie, J. and Shackleton, N. J. (1976) Variations in the Earth's orbit; pacemaker of the ice ages. Science, 194, 1121–1132.CrossRefGoogle ScholarPubMed
Held, I. M. and Hou, A. Y. (1980) Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J. Atmos. Sci., 37, 515–533.2.0.CO;2>CrossRefGoogle Scholar
Heller, F. and Liu, T. S. (1982) Magnetostratigraphic dating of loess deposits in China. Nature, 300, 431–433.CrossRefGoogle Scholar
Hendon, H. H. and Liebmann, B. (1990) A composite study of onset of the Australian summer monsoon, J. Atmos. Sci., 47, 2227–2240.2.0.CO;2>CrossRefGoogle Scholar
Herren, E. (1987) Zanskar shear zone; north-east-south-west extension within the Higher Himalayas (Ladakh, India). Geology, 15, 409–413.2.0.CO;2>CrossRefGoogle Scholar
Herzschuh, U. (2006) Palaeo-moisture evolution at the margins of the Asian monsoon during the last 50 ka. Quat. Sci. Rev., 25, 163–178.CrossRefGoogle Scholar
Herzschuh, U.Tarasov, P., Wünnemann, B. and Hartmann, K. (2004) Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data. Palaeogeog. Palaeoclim., Palaeoeco., 211, 1–17.CrossRefGoogle Scholar
Herzschuh, U., Zhang, C., Mischke, S. (2005) A Late Quaternary lake record from the Qilian Mountains (NW China): evolution of the primary production and the water depth reconstructed from macrofossil, pollen, biomarker and isotope data. Global Planet. Change, 46, 361–379.CrossRefGoogle Scholar
Hess, S. and Kuhnt, W. (2005) Neogene and Quaternary paleoceanographic changes in the southern South China Sea (Site 1143); the benthic foraminiferal record. Mar. Micropaleo., 54, 63–87.CrossRefGoogle Scholar
Heusser, L. and Morley, J. (1997) Monsoon Fluctuations over the past 350 kyr: high-resolution evidence from north-east Asia / north-west Pacific climate proxies (marine pollen and radiolarians). Quat. Sci. Rev., 16, 565–581.CrossRefGoogle Scholar
Higginson, M. J., Maxwell, J. R. and Altabet, M. A. (2003) Nitrogen isotope and chlorin paleoproductivity records from the northern South China Sea; remote vs. local forcing of millennial- and orbital-scale variability. Mar. Geol., 201, 223–250.CrossRefGoogle Scholar
Higham, C. (1996) The Bronze Age of South-east Asia. Cambridge: Cambridge University Press, p. 381.Google Scholar
Hodges, K. V. and Silverberg, D. S. (1988) Thermal evolution of the Greater Himalaya, Garhwal, India. Tectonics, 7, 583–600.CrossRefGoogle Scholar
Hodges, K. V., Parrish, R. R. and Searle, M. P. (1996) Tectonic evolution of the central Annapurna Range, Nepalese Himalayas. Tectonics, 15, 1264–1291.CrossRefGoogle Scholar
Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T. and Whipple, K. (2004) Quaternary deformation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth Planet. Sci. Lett., 220, 379–389.CrossRefGoogle Scholar
Holbourn, A. E., Kuhnt, W., Simo, J. A. and Li, Q. (2004) Middle Miocene isotope stratigraphy and paleoceanographic evolution of the north-west and south-west Australian margins (Wombat Plateau and Great Australian Bight). Palaeogeog., Palaeoclim., Palaeoeco., 208, 1–22.CrossRefGoogle Scholar
Holton, J. R. (2004) An Introduction to Dynamic Meteorology, 3rd edn. San Diego: Academic Press, p. 535.Google Scholar
Hong, Y. T., Wang, Z. G., Jiang, H. B.et al. (2001) A 6000-year record of changes in drought and precipitation in north-eastern China based on a delta 13C time series from peat cellulose. Earth Planet. Sci. Lett., 185, 111–119.CrossRefGoogle Scholar
Hong, Y. T., Hong, B., Lin, Q. H.et al. (2003) Correlation between Indian Ocean summer monsoon and North Atlantic climate during the Holocene. Earth Planet. Sci. Lett., 211, 371–380.CrossRefGoogle Scholar
Hong, Y. T., Hong, B., Lin, Q. H.et al. (2005) Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12 000 years and paleo-El Niño. Earth Planet. Sci. Lett., 231, 337–346.CrossRefGoogle Scholar
Hoskins, B. J. and Rodwell, M. J. (1995) A model of the Asian summer monsoon. Part I: the global scale. J. Atmos. Sci., 52, 1329–1340.2.0.CO;2>CrossRefGoogle Scholar
Hostetler, S. W., Clark, P. U., Bartlein, P. J., Mix, A. C. and Pisias, N. J. (1999) Atmospheric transmission of North Atlantic Heinrich events. J. Geophys. Res., 104, 3947–3952.CrossRefGoogle Scholar
Houseman, G. A. and England, P. C. (1993) Crustal thickening versus lateral expulsion in the Indian–Asian continental collision. J. Geophys. Res., 98, 12 233–12 249.CrossRefGoogle Scholar
Houseman, G. A., McKenzie, D. P. and Molnar, P. (1981) Convective instability of a thickened boundary layer and its relevance for the thermal evolution of continental convergent belts. J. Geophys. Res., 86, 6115–6132.CrossRefGoogle Scholar
Hovan, S. A., Rea, D. K., Pisias, N. G. and Shackleton, N. J. (1989) A direct link between the China loess and marine δ18O records; aeolian flux to the North Pacific. Nature, 340, 296–298.CrossRefGoogle Scholar
Hovan, S. A., Rea, D. K. and Pisias, N. G. (1991) Late Pleistocene continental climate and oceanic variability recorded in North-west Pacific sediments. Paleoceanography, 6, 349–370.CrossRefGoogle Scholar
Hu, Z.-Z., Latif, M., Roeckner, E. and Bengtsson, L. (2000) Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophys. Res. Lett., 27, 2681–2684.CrossRefGoogle Scholar
Huang, C. C., Pang, J., Han, Y. P. and Hou, C. H. (2000) A regional aridity phase and its possible cultural impact during the Holocene Megathermal in the Guanzhong Basin, China. The Holocene, 10, 135–142.CrossRefGoogle Scholar
Huang, C. C.Zhao, S., Pang, J.et al. (2003) Climatic aridity and the relocations of the Zhou culture in the southern loess plateau of China. Clim. Change, 61, 361–378.CrossRefGoogle Scholar
Huang, Q., Cai, B. and Ru, C. (1980) Radiocarbon dating of samples from several salt lakes on the Tibet Plateau and their sedimentary cycles. Kexue Tongbao, 25, 990–995.Google Scholar
Huang, Y., Street-Perrott, F. A., Metcalfe, S. E.et al. (2001) Climate change as the dominant control on glacial–interglacial variations in C3 and C4 plant abundance. Science, 293, 1647–1651.CrossRefGoogle ScholarPubMed
Hughes, M. K., Wu, X., Shao, X. and Garfin, G. M. (1994) A preliminary reconstruction of rainfall in North-Central China since A. D. 1600 from tree-ring density and width. Quat. Res., 42, 88–99.CrossRefGoogle Scholar
Huntington, K. W., Blythe, A. E. and Hodges, K. V. (2006) Climate change and Late Pliocene acceleration of erosion in the Himalaya. Earth Planet. Sci. Lett., 252, 107–118.CrossRefGoogle Scholar
Indermühle, A., Monnin, E., Stauffer, B., Stocker, T. F. and Wahlen, M. (2000) Atmospheric CO2 concentration from 60 to 20 kyr B. P. from the Taylor Dome ice core, Antarctica. Geophys. Res. Lett., 27, 735–738.CrossRefGoogle Scholar
Ingall, E. and Jahnke, R. (1994) Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim. Cosmochim. Acta, 58, 2571–2575.CrossRefGoogle Scholar
IPCC (2001) Synthesis Report. A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change, ed. T. R. Watson and Core Writing Team, Cambridge: Cambridge University Press, p. 398.
Irino, T. and Tada, R. (2000) Quantification of aeolian dust (Kosa) contribution to the Japan Sea sediments and its variation during the last 200 ky. Geochem. J., 34, 59–93.CrossRefGoogle Scholar
Irino, T. and Tada, R. (2002) High-resolution reconstruction of variation in aeolian dust (Kosa) deposition at ODP Site 797, the Japan Sea, during the last 200 ka. Global Planet. Change, 35, 143–156.CrossRefGoogle Scholar
Janecek, T. R. and Rea, D. K. (1985) Quaternary fluctuations in northern hemispheric tradewinds and westerlies. Quat. Res., 24, 150–163.CrossRefGoogle Scholar
Jarrige, J. F. (1993) Excavations at Mehrgarh: their significance for understanding the background of the Harappan Civilization. In Harappan Civilization: A Recent Perspective, ed. Possehl, G., Delhi: Oxford University Press, pp. 125–135.Google Scholar
Jia, G., Peng, P., Zhao, Q. and Jian, Z. (2003) Changes in terrestrial ecosystem since 30 Ma in East Asia: stable isotope evidence from black carbon in the South China Sea. Geology, 31, 1093–1096.CrossRefGoogle Scholar
Jin, L. and Su, B. (2000) Natives or immigrants: modern human origin in East Asia. Nature Rev. Genet., 1, 126–133.CrossRefGoogle ScholarPubMed
Johnsen, S. J., Clausen, H. B., Dansgaard, W.et al. (1992) Irregular glacial interstadials recorded in a new Greenland ice core. Nature, 359, 311–313.CrossRefGoogle Scholar
Jones, C. E., Halliday, A. N., Rea, D. K. and Owen, R. M. (1994) Neodymium isotopic variations in North Pacific modern silicate sediment and the insignificance of detrital REE contributions to seawater. Earth Planet. Sci. Lett., 127, 55–66.CrossRefGoogle Scholar
Jung, S. J. A., Davies, G. R., Ganssen, G. and Kroon, D. (2002) Decadal-centennial scale monsoon variations in the Arabian Sea during the early Holocene. Geochem., Geophys., Geosyst., 3 (10), 1060, doi: 10.1029/2002GC000348.CrossRefGoogle Scholar
Jung, S. J. A., Davies, G. R., Ganssen, G. M. and Kroon, D. (2004) Stepwise Holocene aridification in NE Africa deduced from dust-borne radiogenic isotope records. Earth Planet. Sci. Lett., 221 (1–4), 27–37.CrossRefGoogle Scholar
Kapsner, W. R., Alley, R. B., Shuman, C. A., Anandakrishnan, S. and Grootes, P. M. (1995) Dominant influence of atmospheric circulation in Greenland over the past 18 000 years. Nature, 373, 52–54.CrossRefGoogle Scholar
Kar, A. (1984) The Drishadvati River system of India; an assessment and new findings. Geograph. J., 150 (2), 221–229.CrossRefGoogle Scholar
Karim, A. and Veizer, J. (2002) Water balance of the Indus River Basin and moisture source in the Karakoram and western Himalayas: implications from hydrogen and oxygen isotopes in river water. J. Geophys. Res., 107 (D18), 4362, doi: 10.1029/2000JD000253.CrossRefGoogle Scholar
Kirch, A. (1997) Zur Paläoozeanographie westlich von Luzon (Philippinen). M.Sc. thesis, Kiel, Germany: Kiel University, p. 28.
Kitoh, A. (1997) Mountain uplift and surface temperature changes. Geophys. Res. Lett., 24, 185–188.CrossRefGoogle Scholar
Kitoh, A. (2004) Effect of mountain uplift on East Asian summer climate investigated by a coupled atmosphere–ocean GCM. J. Clim., 17, 783–802.2.0.CO;2>CrossRefGoogle Scholar
Klinck, J. M. and Smith, D. A. (1993) Effect of wind changes during the last glacial maximum on the circulation of the Southern Ocean. Paleoceanography, 8, 427–433.CrossRefGoogle Scholar
Koons, P. O., Zeitler, P. K., Chamberlain, C. P., Craw, D. and Meltzer, A. S. (2002) Mechanical links between erosion and metamorphism in Nanga Parbat, Pakistan Himalaya. Amer. J. Sci., 302, 749–773.CrossRefGoogle Scholar
Krishna, K. S., Bull, J. M. and Scrutton, R. A. (2001) Evidence for multiphase folding of the central Indian Ocean lithosphere. Geology, 29, 715–718.2.0.CO;2>CrossRefGoogle Scholar
Krissek, L. A. and Clemens, S. C. (1991) Mineralogic variations in a Pleistocene high-resolution Eolian record from the Owen Ridge, western Arabian Sea (Site 722); implications for sediment source conditions and monsoon history. Proc. Ocean Drill. Prog., Sci. Res., 117, 197–213.Google Scholar
Kroon, D., Steens, T. and Troelstra, S. R. (1991) Onset of Monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers. Proc. Ocean Drill. Prog., Sci. Res., 117, 257–263.Google Scholar
Kudrass, H. R., Hofmann, A., Doose, H., Emeis, K. and Erlenkeuser, H. (2001) Modulation and amplification of climatic changes in the Northern Hemisphere by the Indian summer monsoon during the past 80 k.y. Geology, 29, 63–66.2.0.CO;2>CrossRefGoogle Scholar
Kuhlemann, J. (2001) Post-collisional sediment budget of circum-Alpine basins (Central Europe). Sci. Mem. Geol., Padova, 52, 1–91.Google Scholar
Kuhlemann, J., Frisch, W., Dunkl, I. and Szekely, B. (2001) Quantifying tectonic versus erosive denudation by the sediment budget: the Miocene core complexes of the Alps. Tectonophysics 330, 1–23.CrossRefGoogle Scholar
Kuhnt, W., Holbourn, A., Hall, E., Zuvela, M. and Käse, R. (2004) Neogene history of the Indonesian Throughflow. In Continent–Ocean Interactions Within East Asian Marginal Seas, ed. Clift, P. D., Kuhnt, W., Wang, P. and Hayes, D. E., Geophys. Monogr. Ser.149, Washington DC: American Geophysical Union, pp. 299–320.CrossRefGoogle Scholar
Kukla, G., An, Z. S., Melice, J. L., Gavin, J. and Xiao, J. L. (1990) Magnetic susceptibility record of Chinese loess. Trans. R. Soc. Edin. Earth Sci., 81, 263–288.CrossRefGoogle Scholar
Kutzbach, J. E., Guetter, P. J., Ruddiman, W. F. and Prell, W. L. (1989) Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West; numerical experiments. J. Geophys. Res., 94 (15), 18 393–18 407.CrossRefGoogle Scholar
Kutzbach, J. E., Prell, W. L. and Ruddiman, W. F. (1993) Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J. Geology, 101, 177–190.CrossRefGoogle Scholar
Kuwae, M., Yoshikawa, S., Tsugeki, N. and Inouchi, Y. (2004) Reconstruction of a climate record for the past 140 kyr based on diatom valve flux data from Lake Biwa, Japan. J. Paleolim., 32, 19–39.CrossRefGoogle Scholar
Lal, B. B. (1997) The Earliest Civilization of South Asia. Delhi: Aryan Books International, p. 308.Google Scholar
Li, C., Chen, Q., Zhang, J., Yang, S. and Fan, D. (2000) Stratigraphy and paleoenvironmental changes in the Yangtze delta during late Pleistocene. J. Asian Earth Sci., 18, 453–469.CrossRefGoogle Scholar
Li, S., Zheng, B. and Jiao, K. (1989) Preliminary research on lacustrine deposits and lake evolution on the southern slope of the west Kunlun Mountains. Bull. Glacier Res., 7, 169–176.Google Scholar
Li, X. H., Wei, G., Shao, L.et al. (2003) Geochemical and Nd isotopic variations in sediments of the South China Sea: a response to Cenozoic tectonism in SE Asia. Earth Planet. Sci. Lett., 211, 207–220.CrossRefGoogle Scholar
Lindzen, R. S. and Hou, A. Y. (1988) Hadley circulations for zonally averaged heating centered off the equator. J. Atmos. Sci., 45, 2416–2427.2.0.CO;2>CrossRefGoogle Scholar
Liu, K.-B., Shen, C. and Louie, K.-B. (2001) A 1000-year history of typhoon landfalls in Guangdong, Southern China, reconstructed from Chinese historical documentary records. Ann. Assoc. Amer. Geograph., 91 (3), 453–464.CrossRefGoogle Scholar
Liu, L. (1996) Settlement patterns, chiefdom variability, and the development of early states in North China. J. Anthrop. Archaeo., 15, 237–288.CrossRefGoogle Scholar
Liu, T. S. (1985) Loess and the Environment. Beijing: China Ocean Press, p. 251.Google Scholar
Liu, T., Ding, Z. and Rutter, N. (1999) Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5 Ma. Quat. Sci. Rev., 18, 1205–1212.CrossRefGoogle Scholar
Liu, W., Feng, X., Liu, Y., Zhang, Q. and An, Z. (2004b) δ18O values of tree rings as a proxy of monsoon precipitation in arid north-west China. Chem. Geol., 206, 73–80.Google Scholar
Liu, W., Huang, Y., An, Z.et al. (2005) Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau; carbon isotope evidence from bulk organic matter and individual leaf waxes. Palaeogeog., Palaeoclim., Palaeoeco., 220, 243–254.CrossRefGoogle Scholar
Liu, X. and Yin, Z.-Y. (2002) Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau. Palaeogeog, Palaeoclimat, Palaeocol., 183, 223–245.CrossRefGoogle Scholar
Liu, X. M., Liu, T. S., Xu, T. C., Liu, C. and Chen, M. Y. (1988) The Chinese Loess in Xifeng: I: the primary study on magnetostratigraphy of a loess profile in Xifeng area, Gansu Province. Geophys. J., 93, 345–348.CrossRefGoogle Scholar
Liu, Z. C., Sun, S. Y., Yang, F. and Zhou, Z. H. (1990) Quaternary stratigraphical and chronological studies of Sanhu Region, Qaidam basin (in Chinese). Sci. China (Ser. B), 11, 1202–1212.Google Scholar
Liu, Z., Trentesaux, A., Clemens, S. C. (2003) Clay mineral assemblages in the northern South China Sea; implications for East Asian monsoon evolution over the past two million years. Mar. Geol., 201, 133–146.CrossRefGoogle Scholar
Liu, Z., Colin, C., Trentesaux, A.et al. (2004c) Erosional history of the eastern Tibetan Plateau since 190 kyr ago; clay mineralogical and geochemical investigations from the south-western South China Sea. Mar. Geol., 209, 1–18.CrossRefGoogle Scholar
Liu, Z., Henderson, A. C. G. and Huang, Y. S. (2006) Alkenone-based reconstruction of late Holocene surface temperature and salinity changes in Lake Qinghai, China. Geophys. Res. Lett., 33, L09707.Google Scholar
Loewe, M. and Shaughness, E. L. (1999) The Cambridge History of Ancient China: From the Origins of Civilization to 221 BCE. Cambridge: Cambridge University Press, p. 1180.CrossRefGoogle Scholar
Loope, D. B., Rowe, C. M. and Joeckel, R. M. (2001) Annual monsoon rains recorded by Jurassic dunes. Nature, 412 (6842), 64–66.CrossRefGoogle ScholarPubMed
Louie, K. S. and Liu, K.-B. (2003) Earliest historical records of typhoons in China. J. Hist. Geog., 29 (3), 299–316.CrossRefGoogle Scholar
Ma, Y., Li, J. and Fan, X. (1998) Pollen-based vegetational and climatic records during 30.6 to 5.0 My from Linxia area, Gansu. Chinese Sci. Bull., 43, 301–304 (in Chinese).Google Scholar
Madden, R. A. and Julian, P. R. (1972) Description of Global-scale circulation cells in the Tropics with a 40–50 Day Period. J. Atmos. Sci., 29 (6), 1109–1123.2.0.CO;2>CrossRefGoogle Scholar
Madden, R. A. and Julian, P. R. (1994) Observations of the 40–50-day Tropical Oscillation – a review. Mon. Wea. Rev., 122, 814–837.2.0.CO;2>CrossRefGoogle Scholar
Madsen, D. B., Li, J., Elston, R. G.et al. (1998) The loess/paleosol record and the nature of the Younger Dryas climate in central China. Geoarchaeo.: Int. J., 13 (8), 847–869.3.0.CO;2-6>CrossRefGoogle Scholar
Maher, B. A. (1986) Characterization of soils by mineral magnetic measurements. Phys. Earth Planet. Interiors, 42, 76–92.CrossRefGoogle Scholar
Maizels, J. K. and McBean, C. (1990) Cenozoic alluvial fan systems of interior Oman: palaeoenvironmental reconstruction based on discrimination of palaeochannels using remotely sensed data. In The Geology and Tectonics of the Oman Region, ed. A. H. F. Robertson, M. P. Searle and A. C. Ries. Geol. Soc., Lond., Spec. Publ., 49, 565–582.
Mann, M. E., Bradley, R. S. and Hughes, M. K. (1999) Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophys. Res. Lett., 26, 759–762.CrossRefGoogle Scholar
Marshall, J. and Plumb, R. A. (2008) Atmosphere Ocean, and Climate Dynamics: An Introductory Text. International Geophysics Series, v. 93, Elsevier Academic Press, Burlington, MA. 319 pp.Google Scholar
Martinson, D. G., Pisias, N. G., Hays, J. D.et al. (1987) Age dating and the orbital theory of the ice ages; development of a high-resolution 0 to 300,000-year chronostratigraphy. Quat. Res., 27, 1–29.CrossRefGoogle Scholar
Maslin, M. A., Seidov, D. and Lowe, J. (2001) Synthesis and nature and causes of rapid climate transitions during the Quaternary (a review). In The Oceans and Rapid Climate Change, ed. D. Seidov, B. J. Haupt, E. J. Barron and M. Maslin, Amer. Geophys. U. Geophys. Monogr., 126, 9–51.
Mattinson, J. M. (1978) Age, origin, and thermal histories of some plutonic rocks from Salinian Block of California. Contrib. Mineral. Petrol., 67, 233–245.CrossRefGoogle Scholar
Mayewski, P. A., Meeker, L. D., Whitlow, S.et al. (1994) Changes in atmospheric circulation and ocean ice cover over the North Atlantic during the last 41 000 years. Science, 263, 1747–1751.CrossRefGoogle ScholarPubMed
McCreary, J. P., Kundu, P. K. and Molinari, R. L. (1993) A numerical investigation of dynamics, thermodynamics, and mixed layer processes in the Indian Ocean. Prog. Ocean., 31, 181–244.CrossRefGoogle Scholar
McDonald, W. F. (1938) Atlas of climate charts of the oceans, Charts 59–62, Washington, DC: US Department of Agriculture, Weather Bureau, p. 247.Google Scholar
McIntyre, A. and Molfino, B. (1996) Forcing Atlantic equatorial and subpolar millennial cycles by precession. Science, 274, 1867–1870.CrossRefGoogle ScholarPubMed
Meehl, G. A. (1994) Coupled ocean–atmosphere–land processes and south Asian monsoon variability. Science, 265, 263–267.CrossRefGoogle Scholar
Meehl, G. A. (1997) The south Asian monsoon and the tropospheric biennial oscillation. J. Clim., 10, 1921–1943.2.0.CO;2>CrossRefGoogle Scholar
Mercier, J. L., Armijo, R., Tapponnier, P., Carey, G. E. and Han, T. L. (1987) Change from late Tertiary compression to Quaternary extension in southern Tibet during the India–Asia collision. Tectonics, 6, 275–304.CrossRefGoogle Scholar
Métivier, F., Gaudemer, Y., Tapponnier, P. and Klein, M. (1999) Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int., 137, 280–318.CrossRefGoogle Scholar
Miller, K. G., Wright, J. M. and Fairbanks, R. G. (1991) Unlocking the Ice House: Oligocene–Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res., 96, 6829–6848.CrossRefGoogle Scholar
Milliman, J. D. and Syvitski, J. P. M. (1992) Geomorphic/tectonic control of sediment discharge to the ocean; the importance of small mountainous rivers. J. Geology, 100, 525–544.CrossRefGoogle Scholar
Mischke, S., Herzschuh, U., Zhang, C., Bloemendal, J. and Riedel, F. (2005) Late Quaternary lake record from the Qilian Mountains (NW China): lake level and salinity changes inferred from sediment properties and ostracod assemblages. Global Planet. Change, 46, 337–359.CrossRefGoogle Scholar
Moberg, A., Sonechkin, D. M., Holmgren, K., Datsenko, N. M. and Karlen, W. (2005) Highly variable Northern Hemisphere temperatures reconstructed from low and high-resolution proxy data. Nature, 433, 613–617.CrossRefGoogle ScholarPubMed
Molnar, P. (2004) Late Cenozoic increase in accumulation rates of terrestrial sediment: how might climate change have affected erosion rates?Ann. Rev. Earth Planet. Sci., 32, 67–89.CrossRefGoogle Scholar
Molnar, P. and Emanuel, K. A. (1999) Temperature profiles in radiative-convective equilibrium above surfaces at different heights. J. Geophys. Res., 104, 24 265–24 484.CrossRefGoogle Scholar
Molnar, P. and England, P. C. (1990) Late Cenozoic uplift of mountain ranges and global climate change; chicken or egg?Nature, 346, 29–34.CrossRefGoogle Scholar
Molnar, P., England, P. and Martinod, J. (1993) Mantle dynamics, the uplift of the Tibetan Plateau, and the Indian monsoon. Rev. Geophys., 31, 357–396.CrossRefGoogle Scholar
Morgan, M. E., Kingston, J. D. and Marino, B. D. (1994) Carbon isotopic evidence for the emergence of C4 plants in the Neogene from Pakistan and Kenya. Nature, 367, 162–165.CrossRefGoogle Scholar
Mountain, G. S. and Prell, W. L. (1990) A multiphase plate tectonic history of the south-east continental margin of Oman. In The Geology and Tectonics of the Oman Region, ed. A. H. F. Robertson, M. P. Searle and A. C. Ries. Geol. Soc., Lond., Spec. Publ., pp. 725–743.
Murphy, M. A., Yin, A., Harrison, T. M.et al. (1997) Did the Indo–Asian collision alone create the Tibetan Plateau?Geology, 25, 719–722.2.3.CO;2>CrossRefGoogle Scholar
Murthy, S. R. N. (1980) The Vedic River Saraswati, a myth or fact; a geological approach. Indian J. Hist. Sci., 15 (2), 189–192.Google Scholar
Nair, R. R., Ittekkot, V., Manganini, S. J.et al. (1989) Increased particle flux to the deep ocean related to monsoons. Nature, 338, 749–751.CrossRefGoogle Scholar
Najman, Y. (2006) The detrital record of orogenesis: a review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Sci. Rev., 74, 1–72.Google Scholar
Najman, Y., Pringle, M., Godin, L. and Oliver, G. (2001) Dating of the oldest continental sediments from the Himalayan foreland basin. Nature, 410, 194–197.CrossRefGoogle ScholarPubMed
Naqvi, W. A. and Fairbanks, R. G. (1996) A 27 000 year record of Red Sea outflow; implication for timing of post-glacial monsoon intensification. Geophys. Res. Lett., 23, 1501–1504.CrossRefGoogle Scholar
Nathan, S. A. and Leckie, R. M. (2004) Gateway closures and ocean circulation during the late Miocene (approximately 13–5 Ma). Abstr. Prog., Geol. Soc. Amer., 36, 197.Google Scholar
Nathan, S. A., Leckie, R. M., Olson, B. and Deconto, R. M. (2003) The Western Pacific Warm Pool; a probe of global sea level change and Indonesian Seaway closure during the middle to late Miocene. Ann. Meet. Abstr., Amer. Assoc. Petrol. Geol., 12, 126.Google Scholar
Neelin, J. D. (2007) Moist dynamics of tropical convection zones in monsoons, teleconnections and global warming. In The Global Circulation of the Atmosphere, ed. Schneider, T. and Sobel, A., Princeton, NJ: Princeton University Press, pp. 267–301.Google Scholar
Neff, U., Burns, S. J., Mangini, A.et al. (2001) Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature, 411, 290–293.CrossRefGoogle ScholarPubMed
Nelson, K. D., Zhao, W., Brown, L. D.et al. (1996) Partially molten middle crust beneath southern Tibet: synthesis of Project INDEPTH results. Science, 274, 1684–1688.CrossRefGoogle ScholarPubMed
Nesbitt, G. M. and Young, H. W. (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.CrossRefGoogle Scholar
Nicholls, N. (1983) Air–sea interaction and the quasi-biennial oscillation. Mon. Wea. Rev., 106, 1505–1508.2.0.CO;2>CrossRefGoogle Scholar
Nitsuma, N., Oba, T. and Okada, M. (1991) Oxygen and carbon isotope stratigraphy at site 723, Oman Margin. Proc. Ocean Drilling Prog., Sci. Res., 117, College Station, TX: Ocean Drilling Program, 321–341.Google Scholar
Oldham, R. D. (1893) The Saraswati and the Lost River of the Indian Desert. J. R. Asiatic Soc., 1893, 49–76.CrossRefGoogle Scholar
Oppo, D. W. and Lehman, S. J. (1995) Suborbital timescale variability of North Atlantic Deep Water during the past 200,000 years. Paleoceanography, 10, 901–910.CrossRefGoogle Scholar
Oppo, D. W., Linsley, B. K., Rosenthal, Y., Dannenmann, S. and Beaufort, L. (2003) Orbital and suborbital climate variability in the Sulu Sea, western tropical Pacific. Geochem., Geophys., Geosyst., 1003, doi: 10.1029/2001GC000260.Google Scholar
Overpeck, J. and Cole, J. E. (2007) Climate change: lessons from a distant monsoon. Nature, 445, 270–271.CrossRefGoogle ScholarPubMed
Overpeck, J., Anderson, D., Trumbore, S. and Prell, W. (1996a) The south-west Indian Monsoon over the last 18 000 years. Clim. Dynam., 12, 213–225.CrossRefGoogle Scholar
Overpeck, J., Rind, D., Lacis, A. and Healy, R. (1996b) Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature, 384, 447–449.CrossRefGoogle Scholar
Pairault, A. A., Hall, R. and Elders, C. F. (2003) Structural styles and tectonic evolution of the Seram Trough, Indonesia. Mar. Petrol. Geol., 20, 1141–1160.CrossRefGoogle Scholar
Palmer, M. R. and Edmond, J. M. (1989) The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett., 92(1), 11–26.CrossRefGoogle Scholar
Pan, Y. and Kidd, W. S. F. (1992) Nyainqentanglha shear zone; a late Miocene extensional detachment in the southern Tibetan Plateau. Geology, 20, 775–778.2.3.CO;2>CrossRefGoogle Scholar
Pang, K. D. (1987) Extraordinary floods in early Chinese history and their absolute dates. J. Hydrol., 96, 139–155.CrossRefGoogle Scholar
Pearson, P. N. and Palmer, M. R. (2000) Atmospheric carbon dioxide concentrations over the past 60 million years. Nature, 406, 695–699.CrossRefGoogle ScholarPubMed
Pechenkina, E. A, Benfer, R. A. and Wang, Z. (2001) Diet and health changes at the end of the Chinese neolithic: the Yangshao/Longshan transition in Shaanxi province. Amer. J. Phys. Anthrop., 117, 15–36.CrossRefGoogle Scholar
Pelejero, C. and Grimalt, J. O. (1997) The correlation between the UK37 index and sea-surface temperature in the warm boundary: the South China Sea. Geochim. Cosmochim. Acta, 61, 4789–4797.CrossRefGoogle Scholar
Peltier, W. R. (1994) Ice age paleotopography. Science, 265, 195–201.CrossRefGoogle ScholarPubMed
Peregrine, P. (1991) Some political aspects of craft specialization. World Archaeo., 23, 1–11.CrossRefGoogle Scholar
Peterson, L. C., Murray, D. W., Ehrmann, W. U. and Hempel, P. (1992) Cenozoic carbonate accumulation and compensation depth changes in the Indian Ocean. In: Synthesis of Results From Scentific Drilling in the Indian Ocean, ed. R. A. Duncan, D. K. Rea, R. B. Kidd, U. von Rad and J. K. Weissel, American Geophysical Union Monog. 70, 311–333.CrossRef
Petit, J. R., Jouzel, J., Raynaud, D.et al. (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 399, 429–436.CrossRefGoogle Scholar
Petit, J. R., Jouzel, J., Raynaud, D. et al. (2001) Vostok Ice Core Data for 420,000 Years, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2001-076. Boulder CO, USA: NOAA/NGDC Paleoclimatology Program.
Pettke, T., Halliday, A. N., Hall, C. M. and Rea, D. K. (2000) Dust production and deposition in Asia and the North Pacific Ocean over the past 12 Myr. Earth Planet. Sci. Lett., 178, 397–413.CrossRefGoogle Scholar
Porter, S. C. and An, Z. S. (1995) Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 375, 305–308.CrossRefGoogle Scholar
Possehl, G. (1990) Revolution in the urban revolution: the emergence of Indus urbanization. Ann. Rev. Anthrop., 19, 261–282.CrossRefGoogle Scholar
Possehl, G. (1993) Harappan Civilization: A Recent Perspective. Delhi: Oxford University Press, p. 595.Google Scholar
Possehl, G. (1997) Climate and the eclipse of the ancient cities of the Indus. In Third Millennium BCE Climate Change and Old World Collapse, ed. Dalfes, H. N., Kukla, G. and Weiss, H., NATO ASI Ser. 1, 49, New York: Springer, pp. 193–244.CrossRefGoogle Scholar
Potts, D. T. (1999) The Archaeology of Elam: Formation and Transformation of an Ancient Iranian State. Cambridge: Cambridge University Press, p. 488.CrossRefGoogle Scholar
Powell, C. M. (1986) Curvature of the Himalayan Arc related to Miocene normal faults in southern Tibet. Geology, 14, 358–359.2.0.CO;2>CrossRefGoogle Scholar
Prabhu, C. N., Shankar, R., Anupama, K.et al. (2004) A 200-ka pollen and oxygen-isotopic record from two sediment cores from the eastern Arabian Sea. Palaeogeog., Palaeoclim., Palaeoeco., 214, 309–321.CrossRefGoogle Scholar
Prawdin, M. (2006) The Mongol Empire: Its Rise and Legacy. New York: Transaction Publishers, p. 581.Google Scholar
Prell, W. L. and Curry, W. B. (1981) Faunal and isotopic indices of monsoonal upwelling: western Arabian Sea. Ocean. Acta, 4, 91–98.Google Scholar
Prell, W. L. and Kutzbach, J. E. (1987) Monsoon variability over the past 150,000 years. J. Geophys. Res. Atmos. Sci., 92 (D7), 8411–8425.CrossRefGoogle Scholar
Prell, W. L. and Kutzbach, J. E. (1992) Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360, 647–652.CrossRefGoogle Scholar
Prell, W. L, Murray, D. W., Clemens, S. C. and Anderson, D. M. (1992) Evolution and variability of the Indian Ocean Summer Monsoon: evidence from the western Arabian Sea drilling program. In Synthesis of Results from Scientific Drilling in the Indian Ocean, ed. Duncan, R. A., Rea, D. K., Kidd, R. B., Rad, U. and Weissel, J. K.. Amer. Geophys. U. Monogr., 70, 447–469.CrossRefGoogle Scholar
Prins, M. A. and Postma, G. (2000) Effects of climate, sea level, and tectonics unraveled for last deglaciation turbidite records of the Arabian Sea. Geology, 28, 375–378.2.0.CO;2>CrossRefGoogle Scholar
Privé, N. C. and Plumb, R. A. (2007a) Monsoon dynamics with interactive forcing. Part I: axisymmetric studies. J. Atmos. Sci., 64 (5), 1417–1430.
Privé, N. C. and Plumb, R. A. (2007b) Monsoon dynamics with interactive forcing. Part II: impact of eddies and asymmetric geometries. J. Atmos. Sci., 64 (5), 1431–1442.
Prospero, J. M., Uematsi, M. and Savoie, D. L. (1989) Mineral aerosol transport to the Pacific Ocean. In Chemical Oceanography, vol. 10, ed. Riley, J. P., Chester, R. and Duce, R. A., San Diego: Academic Press, pp. 187–218.Google Scholar
Purdy, J. and Jäger, E. (1976) K-Ar ages on rock-forming minerals from the Central Alps. Mem. 1st Geol. Min. Congr., Univ. Padova, 30, p. 32.
Puri, V. M. K. (2001) Origin and course of Vedic Saraswati River in Himalaya; its secular desiccation episodes as deciphered from palaeo-glaciation and geomorphological signatures. In Proceedings; Symposium on Snow, Ice and Glaciers; a Himalayan Perspective, ed. Acharyya, S. K.. Geol. Surv. India, Spec. Publ. Ser., 53, 175–191.Google Scholar
Pye, K. and Zhou, L. (1989) Late Pleistocene and Holocene aeolian dust deposition in north China and the North-west Pacific Ocean. Palaeogeog., Palaeoclim., Palaeoeco., 73, 11–23.CrossRefGoogle Scholar
Quade, J. (1993) Major shifts in the 87Sr/86Sr ratios of large paleorivers draining the Himalayas of central Nepal over the past 10 Ma. Geol. Soc. America, Abstr. Prog., 25 (6), 175.Google Scholar
Quade, J., Cerling, T. E. and Browman, J. R. (1989) Dramatic ecologic shift in the late Miocene of northern Pakistan, and its significance to the development of the Asian monsoon. Nature, 342, 163–166.CrossRefGoogle Scholar
Ramage, C. (1971) Monsoon Meteorology. New York: Academic Press, International Geophysics Series, vol. 15, p. 296.Google Scholar
Ramstein, G., Fluteau, F., Besse, J. and Joussaume, S. (1997) Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature, 386, 788–795.CrossRefGoogle Scholar
Rao, Y. P. (1976) South-west Monsoon. New Delhi: India Meteorological Department, p. 367.Google Scholar
Raval, A. and Ramanathan, V. (1989) Observational determination of the greenhouse effect. Nature, 342, 758–762.CrossRefGoogle Scholar
Raymo, M. E. and Ruddiman, W. F. (1992) Tectonic forcing of the late Cenozoic climate. Nature, 359, 117–122.CrossRefGoogle Scholar
Raymo, M. E., Ruddiman, W. F. and Froelich, P. (1988) Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16, 649–653.2.3.CO;2>CrossRefGoogle Scholar
Rea, D. K. (1992) Delivery of Himalayan sediment to northern Indian Ocean and its relation to global climate, sea level, uplift and seawater strontium. In Synthesis of Results from Scientific Drilling in the Indian Ocean, ed. Duncan, R. A., Rea, D. K., Kidd, R. B., Rad, U. and Weissel, J. K.. Amer. Geophys. U. monogr., 70, 387–402.CrossRefGoogle Scholar
Rea, D. K. (1994) The paleoclimatic record provided by Eolian deposition in the deep sea; the geologic history of wind. Rev. Geophys., 32, 159–195.CrossRefGoogle Scholar
Rea, D. K., Basov, I. A., Janecek, T. R.et al. (1993) Proc. Ocean Drill. Prog. Init. Rpts, 145, College Station, TX: Ocean Drilling Program, p. 1040.Google Scholar
Rea, D. K., Snoeckx, H and Joseph, L. H. (1998) Late Cenozoic Eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography, 13, 215–224.CrossRefGoogle Scholar
Reade, J. (2001) Assyrian king-lists, the royal tombs of Ur, and Indus origins. J. Near East. Stud., 60, 1–29.CrossRefGoogle Scholar
Redfield, C. C., Ketchum, B. H. and Richards, F. A. (1963) The influence of organisms on the composition of sea-water. In The Sea, ed. Hill, M. N., New York: Wiley-Interscience, pp. 26–77.Google Scholar
Reichart, G. J., Dulk, M., Visser, H. J., Weijden, C. H. and Zachariasse, W. J. (1997) A 225 kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the Murray Ridge (northern Arabian Sea). Palaeogeog. Palaeoclim. Palaeoeco., 134, 149–169.CrossRefGoogle Scholar
Reiners, P. W., Ehlers, T. A., Mitchell, S. G. and Montgomery, D. R. (2003) Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature, 426, 645–647.CrossRefGoogle ScholarPubMed
Ren, S. N. (2000) The origin and development of settlement and society during the Neolithic Age in China. Archaeology, 7, 48–59 (in Chinese).Google Scholar
Richards, J. F. (1990) The seventeenth-century crisis in South Asia. Mod. Asian Stud., 24, 625–638.CrossRefGoogle Scholar
Richards, J. F. (1996) The Mughal Empire. Cambridge: Cambridge University Press, p. 337.Google Scholar
Richerson, P. J., Boyd, R. and Bettinger, R. L. (2001) Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. Amer. Antiq., 66 (3), 387–412.CrossRefGoogle Scholar
Rodgers, D. W. and Gunatilaka, A. (2002) Bajada formation by monsoonal erosion of a subaerial forebulge, Sultanate of Oman. Sed. Geol., 154, 127–146.CrossRefGoogle Scholar
Rodwell, M. J. and Hoskins, B. J. (1995) A model of the Asian summer monsoon. Part II: cross-equatorial flow and PV behavior. J. Atmos. Sci., 52, 1341–1356.2.0.CO;2>CrossRefGoogle Scholar
Rodwell, M. J. and Hoskins, B. J. (2001) Subtropical anticyclones and summer monsoons. J. Clim., 14, 3192–3211.2.0.CO;2>CrossRefGoogle Scholar
Rogalla, U. and Andruleit, H. (2005) Precessional forcing of coccolithophore assemblages in the northern Arabian Sea; implications for monsoonal dynamics during the last 200,000 years. Mar. Geol., 217, 31–48.CrossRefGoogle Scholar
Rögl, F. and Steininger, F. F. (1984) Neogene Paratethys, Mediterranean and Indo-pacific seaways. In Fossils and Climate, ed. Brenchley, P. J., New York: John Wiley and Sons., pp. 171–200.Google Scholar
Rossignol-Strick, M., Paterne, M., Bassinot, F. C., Emeis, K. C. and Lange, G. J. (1998) An unusual mid-Pleistocene monsoon period over Africa and Asia. Nature, 392, 269–272.CrossRefGoogle Scholar
Roth, J. M., Droxler, A. W. and Kameo, K. (2000) The Caribbean carbonate crash at the middle to late Miocene transition: linkage to the establishment of the modern global ocean conveyor. Proc. Ocean Drill. Prog., Sci. Res., 165, College Station, TX: Ocean Drilling Program, pp. 249–273.Google Scholar
Rowley, D. B. (1996) Age of initiation of collision between India and Asia; a review of stratigraphic data, Earth Planet. Sci. Lett., 145, 1–13.CrossRefGoogle Scholar
Rowley, D. B. and Currie, B. S. (2006) Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 439, 677–681.CrossRefGoogle ScholarPubMed
Rowley, D. B., Pierrehumbert, R. T. and Currie, B. S. (2001) A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth Planet. Sci. Lett., 188, 253–268.CrossRefGoogle Scholar
Ruddiman, W. F. and Kutzbach, J. E. (1989) Forcing of late Cenozoic Northern Hemisphere climate by plateau uplift in southern Asia and the American West. J. Geophys. Res., 94 (15), 18 409–18 427.CrossRefGoogle Scholar
Rutherford, E., Burke, K. and Lytwyn, J. (2001) Tectonic history of Sumba Island, Indonesia, since the Late Cretaceous and its rapid escape into the forearc in the Miocene. J. Asian Earth Sci., 19, 453–479.CrossRefGoogle Scholar
Saito, Y. (1998) Sea levels of the last glacial in the East China Sea continental shelf. Quat. Res., 37, 235–242 (in Japanese with English abstract).CrossRefGoogle Scholar
Saji, N. H., Goswami, B. N., Vinayachandran, P. N. and Yamagata, T. (1999) A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.CrossRefGoogle ScholarPubMed
Sanders, F. (1984) Quasi-geostrophic diagnosis of the Monsoon Depression of 5–8 July, 1979. J. Atmos. Sci. 41, 538–552.2.0.CO;2>CrossRefGoogle Scholar
Schmitz, W. J. and McCartney, M. S. (1993) On the North Atlantic circulation. Rev Geophys., 31, 29–50.CrossRefGoogle Scholar
Schoenbohm, L. M., Burchfiel, B. C., Chen, L. and Yin, J. (2006) Miocene to present activity along the Red River fault, China, in the context of continental extrusion, upper-crustal rotation, and lower-crustal flow. Geol. Soc. Amer. Bull., 118, 672–688.CrossRefGoogle Scholar
Schwenk, T., Spiess, V., Hübscher, C. and Breitzke, M. (2003) Frequent channel avulsions within the active channel–levee system of the middle Bengal Fan – an exceptional channel–levee development derived from Parasound and Hydrosweep data. Deep-Sea Res. II, 50, 1023–1045.CrossRefGoogle Scholar
Searle, M. P. and Godin, L. (2003) The South Tibetan detachment and the Manaslu Leucogranite; a structural reinterpretation and restoration of the Annapurna–Manaslu Himalaya, Nepal. J. Geology, 111, 505–523.CrossRefGoogle Scholar
Shackleton, N. J. and Opdyke, N. D. (1977) Oxygen isotope and palaeomagnetic evidence for early Northern Hemisphere glaciation. Nature, 270, 216–219.CrossRefGoogle Scholar
Shackleton, N. J., Berger, A. and Peltier, W. A. (1990) An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Trans. R. Soc. Edin. Earth Sci., 81, 251–261.CrossRefGoogle Scholar
Shackleton, N. J., Hall, M. A. and Pate, D. (1995) Pliocene stable isotope stratigraphy of ODP Site 846. In: Proc. Ocean Drill Prog., Sci. Rpt, ed. Pisias, N. G.et al., 337–355.Google Scholar
Shaffer, J. G. (1992) The Indus Valley, Baluchistan and Helmand Traditions: Neolithic through Bronze Age. In Chronologies in Old World Archaeology, ed. Ehrich, R. W., Chicago: University of Chicago Press, pp. 425–446.Google Scholar
Sharma, S., Joachimski, M., Sharma, M.et al. (2004) Late glacial and Holocene environmental changes in Ganga plain, northern India. Quat. Sci. Rev., 23, 145–159.CrossRefGoogle Scholar
Sheppard, P. R., Tarasov, P. E., Graumlich, L. J.et al. (2004) Annual precipitation since 515 BCE reconstructed from living and fossil juniper growth of north-eastern Qinghai Province, China. Clim. Dynam., 23, 869–881.CrossRefGoogle Scholar
Shui, T. (2001) Papers on the Bronze Age Archaeology of North-west. Beijing: China Science Press, p. 25 (in Chinese).Google Scholar
Shukla, J. and Paolina, D. A. (1983) The Southern Oscillation and long range forecasting of the summer monsoon rainfall over India. Mon. Wea. Rev., 111, 1830–1837.2.0.CO;2>CrossRefGoogle Scholar
Siddall, M., Rohling, E. J., Almogi-Labin, A.et al. (2003) Sea-level fluctuations during the last glacial cycle. Nature, 423, 583–588.CrossRefGoogle ScholarPubMed
Sikka, D. R. and Gadgil, S. (1980) On the Maximum Cloud Zone and the ITCZ over Indian longitudes during the South-west Monsoon. Mon. Wea. Rev., 108, 1840–1853.2.0.CO;2>CrossRefGoogle Scholar
Sinha, A., Cannariato, K. G., Stott, L. D.et al. (2005) Variability of South-west Indian summer monsoon precipitation during the Bølling-Allerød. Geology, 33, 813–816.CrossRefGoogle Scholar
Sirocko, F. (1995) Abrupt change in monsoonal climate: evidence from the geochemical composition of Arabian Sea sediments. Habilitation Thesis, University of Kiel, p. 216.Google Scholar
Sirocko, F., Sarnthein, M., Erlenkeuser, H.et al. (1993) Century-scale events in monsoonal climate over the last 24 000 years. Nature, 364, 322–324.CrossRefGoogle Scholar
Sirocko, F., Garbe-Schönberg, D., Mclntyre, A. and Molfino, B. (1996) Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation. Science, 272, 526–529.CrossRefGoogle Scholar
Sirocko, F., Garbe-Schoenberg, D. and Devey, C. (2000) Processes controlling trace element geochemistry of Arabian Sea sediments during the last 25 000 years. Global Planet. Change, 26 (1–3), 217–303.CrossRefGoogle Scholar
Sontakke, N. A., Pant, G. B. and Singh, N. (1993) Construction of all-India summer monsoon rainfall series for the period 1844–1991. J. Climat., 6, 1807–1811.2.0.CO;2>CrossRefGoogle Scholar
Spicer, R. A., Harris, N. B. W., Widdowson, M.et al. (2003) Constant elevation of southern Tibet over the past 15 million years. Nature, 421, 622–624.CrossRefGoogle ScholarPubMed
Staubwasser, M., Sirocko, F., Grootes, P. M. and Segl, M. (2003) Climate change at the 4.2 ka BP termination of the Indus valley civilization and Holocene south Asian monsoon variability. Geophys. Res. Lett., 30 (8), 1425, doi: 10.1029/2002GL016822.CrossRefGoogle Scholar
Stevens, T., Armitage, S. J., Lu, H. and Thomas, D. S. G. (2006) Sedimentation and diagenesis of Chinese loess: implications for the preservation of continuous, high-resolution climate records. Geology, 34, 849–852.CrossRefGoogle Scholar
Stott, L., Poulsen, C., Lund, S. and Thunell, R. (2002) Super ENSO and global climate oscillations at millennial timescales. Science, 297, 222–226.CrossRefGoogle Scholar
Stuiver, M. and Braziunas, T. F. (1993) Sun, ocean, climate and atmospheric 14CO2; an evaluation of causal and spectral relationships. The Holocene, 3, 289–305.CrossRefGoogle Scholar
Stuiver, M. and Grootes, P. M. (2000) GISP2 oxygen isotope ratios. Quat. Res., 53, 277–284.CrossRefGoogle Scholar
Sun, D. (2004) Monsoon and westerly circulation changes recorded in the late Cenozoic aeolian sequences of northern China. Global Planet. Change, 41, 63–80.Google Scholar
Sun, D. H., Liu, T. S., Chen, M. Y. and An, Z. S. (1997) Magnetostratigraphy and climate implications of the Red–Clay sequences in the Loess Plateau in China. Sci. in China, 27, 265–270.Google Scholar
Sun, D. H., Shaw, J., An, Z. S., Chen, M. Y. and Yue, L. P. (1998) Magnetostratigraphy and paleoclimatic interpretation of continuous 7.2 Ma late Cenozoic Eolian sediments from the Chinese Loess Plateau. Geophys. Res. Lett., 25, 85–88.CrossRefGoogle Scholar
Sun, X. and Li, X. (1999) Pollen records of the last 37 ka in deep-sea core 17940 from the northern slope of the South China Sea. Mar. Geol., 156, 227–244.CrossRefGoogle Scholar
Sun, X. and Wang, P. (2005) How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeog., Palaeoclim., Palaeoeco., 222, 181–222.CrossRefGoogle Scholar
Sun, Y. and An, Z. (2004) An improved comparison of Chinese loess with deep-sea δ18O record over the interval 1.6–2.6 Ma. Geophys. Res. Lett., 31, 13.Google Scholar
Suzuki, H. (1978) Ideas of the Forest and Ideas of the Desert. Tokyo: NHK Books, p. 222.Google Scholar
Swain, A. M., Kutzbach, J. E. and Hastenrath, S. (1983) Estimates of Holocene precipitation for Rajasthan, India, based on pollen and lake-level data. Quat. Res., 19, 1–17.CrossRefGoogle Scholar
Tada, R., Irino, T. and Koizumi, I. (1999) Land–ocean linkages over orbital and millennial timescales recorded in late Quaternary sediments of the Japan Sea. Paleoceanography, 14, 236–247.CrossRefGoogle Scholar
Tamburini, F., Adatte, T., Foellmi, K., Bernasconi, S. M. and Steinmann, P. (2003) Investigating the history of East Asian monsoon and climate during the last glacial–interglacial period (0–140,000 years); mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea. Mar. Geol., 201, 147–168.CrossRefGoogle Scholar
Tapponnier, P., Xu, Z., Roger, F.et al. (2001) Oblique stepwise rise and growth of the Tibet Plateau. Science, 294, 1671–1677.CrossRefGoogle ScholarPubMed
Thamban, M., Rao, V. P., Schneider, R. R. and Grootes, P. M. (2001) Glacial to Holocene fluctuations in hydrography and productivity along the south-western continental margin of India. Palaeogeogr., Palaeoclimatol., Palaeoecol., 165, 113–127.CrossRefGoogle Scholar
Thiede, R. C., Bookhagen, B., Arrowsmith, J. R.,Sobela, E. R. and Strecker, M. R. (2004) Climatic control on rapid exhumation along the Southern Himalayan Front. Earth Planet. Sci. Lett., 222, 791–806.CrossRefGoogle Scholar
Thiry, M. (2000) Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Sci. Rev., 49, 201–221.CrossRefGoogle Scholar
Thompson, L. G., Mosley-Thompson, E., Davis, M. E.et al. (1989) 100,000 year climate record from Qinghai–Tibetan Plateau ice cores. Science, 246, 474–477.CrossRefGoogle Scholar
Thompson, L. G., Mosley-Thompson, E., Davis, M.et al. (1993) “Recent warming”; ice core evidence from tropical ice cores with emphasis on Central Asia. Global Planet. Change, 7, 145–156.CrossRefGoogle Scholar
Thompson, L. G., Yao, Y., Davis, M. E.et al. (1997) Tropical climate instability: the last glacial cycle from a Qinghai–Tibetan ice core. Science, 276, 1821–1825.CrossRefGoogle Scholar
Thompson, L. G., Yao, T., Mosley-Thompson, E.et al (2000) A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores. Science, 289, 1916–1919.CrossRefGoogle ScholarPubMed
Tomczak, M. and Godfrey, J. S. (1994) Regional Oceanography: An Introduction. Oxford: Pergamon Press, p. 422.Google Scholar
Torrence, C. and Webster, P. J. (1999) Interdecadal changes in the ENSO–Monsoon System. J. Clim., 12, 2679–2690.2.0.CO;2>CrossRefGoogle Scholar
Tosi, M. (1975) The dialectics of state formation in Mesopotamia, Iran, and central Asia. Dialect. Anthrop., 1, 173–180.CrossRefGoogle Scholar
Treloar, P. J., Rex, D. C., Guise, P. G.et al. (1989) K-Ar and Ar-Ar geochronology of the Himalayan collision in NW Pakistan: constraints on the timing of suturing, deformation, metamorphism and uplift. Tectonics, 8, 881–909.CrossRefGoogle Scholar
Treydte, K. S., Schleser, G. H., Helle, G.et al. (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature, 440, 1179–1182.CrossRefGoogle ScholarPubMed
Turner, S., Hawkesworth, C., Liu, J.et al. (1993) Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364, 50–54.CrossRefGoogle Scholar
Underhill, A. P. (1991) Pottery production in chiefdoms: the Longshan period in northern China. World Archaeo., 23, 12–27.CrossRefGoogle Scholar
Underhill, P. A., Passarino, G., Lin, A. A.et al (2001) The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations. Ann. Human Genet., 65, 43–62.CrossRefGoogle ScholarPubMed
Vail, P. R., Mitchum, R. M. and Thompson, S. (1977) Seismic stratigraphy and global changes of sea level; Part 4; global cycles of relative changes of sea level. In Seismic Stratigraphy; Applications to Hydrocarbon Exploration, ed. C. E. Payton. Mem., Amer. Assoc. Petrol. Geol., 26, 83–97.
Van Campo, E. (1991) Pollen transport into Arabian Sea sediments. Proc. Ocean Drill. Prog., Sci. Res., 117, College Station, TX: Ocean Drilling Program, 277–281.CrossRef
Campo, E., Duplessy, J. C. and Rossignol-Strick, M. (1982) Climatic conditions deduced from 150,000 yr oxygen isotope–pollen record from the Arabian sea. Nature, 296, 56–59.CrossRefGoogle Scholar
Vannay, J. C., Sharp, Z. D. and Grasemann, B. (1999) Himalayan inverted metamorphism constrained by oxygen isotope thermometry. Contrib. Mineral. Petrol., 137, 90–101.CrossRefGoogle Scholar
Rad, U., Schulz, H., Riech, V.et al. (1999) Multiple monsoon-controlled breakdown of oxygen-minimum conditions during the past 30,000 years documented in laminated sediments off Pakistan. Palaeogeog., Palaeoclim., Palaeoeco., 152, 129–161.Google Scholar
Walker, C. B., Searle, M. P. and Waters, D. J. (2001) An integrated tectonothermal model for the evolution of the High Himalaya in western Zanskar with constraints from thermobarometry and metamorphic modeling. Tectonics, 20, 810–833.CrossRefGoogle Scholar
Wang, B., Clemens, S. and Liu, P. (2003a) Contrasting the Indian and East Asian monsoons: implications on geologic timescale. Mar. Geol., 201, 5–21.CrossRefGoogle Scholar
Wang, J., Wang, Y., Liu, Z., Li, J. and Xi, P. (1999c) Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of Central Asia. Palaeogeog., Palaeoclim., Palaeoeco., 152, 37–47.CrossRefGoogle Scholar
Wang, L., Sarnthein, M., Erlenkeuser, H.et al. (1999a) East Asian monsoon climate during the late Pleistocene: high-resolution sediment records from the South China Sea. Mar. Geol., 156, 245–284.CrossRefGoogle Scholar
Wang, L., Sarnthein, M., Erlenkeuser, H.et al. (1999b) Holocene variations in Asian monsoon moisture; a bidecadal sediment record from the South China Sea. Geophys. Res. Lett., 26, 2889–2892.CrossRefGoogle Scholar
Wang, P. (2004) Cenozoic deformation and the history of sea–land interactions in Asia. In Continent–Ocean Interactions Within East Asian Marginal Seas, ed. Clift, P. D., Kuhnt, W., Wang, P. and Hayes, D. E., Washington D. C.: American Geophysical Union, Geophys. Monogr. Ser.149, pp. 1–22.CrossRefGoogle Scholar
Wang, P., Zhao, Q., Jian, Z.et al. (2003b). Thirty million year deep-sea records in the South China Sea. Chinese Sci. Bull., 48, 2524–2535.CrossRefGoogle Scholar
Wang, P., Tian, J., Cheng, X., Liu, C. and Xu, J. (2003c) Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event. Geology, 31, 239–242.2.0.CO;2>CrossRefGoogle Scholar
Wang, R. and Abelmann, A. (2002) Radiolarian responses to paleoceanographic events of the southern South China Sea during the Pleistocene. Mar. Micropaleo., 46, 25–44.CrossRefGoogle Scholar
Wang, R. L., Scarpitta, S. C., Zhang, S. C. and Zheng, M. P. (2002) Later Pleistocene/Holocene climate conditions of Qinghai–Xizhang Plateau (Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments. Earth Planet. Sci. Lett., 203, 461–477.CrossRefGoogle Scholar
Wang, Y. J., Cheng, H., Edwards, R. L.et al. (2001a) A high-resolution absolute-dated late Pleistocene Monsoon record from Hulu Cave, China. Science, 294, 2345–2348.CrossRefGoogle ScholarPubMed
Wang, Y., Cheng, H., Edwards, R. L.et al. (2005) The Holocene Asian monsoon; links to solar changes and North Atlantic climate. Science, 308, 854–857.CrossRefGoogle Scholar
Wang, Y., Deng, T. and Biasatti, D. (2006) Ancient diets indicate significant uplift of southern Tibet after ca. 7 Ma. Geology, 34, 309–312.CrossRefGoogle Scholar
Weber, M. E., Wiedicke, M. H., Kudrass, H. R., Huebscher, C. and Erlenkeuser, H. (1997) Active growth of the Bengal Fan during sea-level rise and highstand. Geology, 25, 315–318.2.3.CO;2>CrossRefGoogle Scholar
Webster, P. J. (1987) The elementary monsoon. In Monsoons, ed. Fein, J. S. and Stephens, P. L., New York: John Wiley, pp. 3–32.Google Scholar
Webster, P. J., Magana, V. O., Palmer, T. N.et al. (1998) Monsoons: processes, predictability, and the prospects for prediction, in the TOGA decade. J. Geophys. Res., 103, 14 451–14 510.CrossRefGoogle Scholar
Webster, P. J., Clark, C., Cherikova, G. et al. (2002) The Monsoon as a self-regulating coupled ocean-atmosphere system. In Meteorology at the Millennium, ed. Pearce, R. P.San Diego: Academic Press, International Geophysical Series, vol. 83, 198–219.Google Scholar
Webster, P. J., Holland, G. J., Curry, J. A. and Chang, H.-R. (2005) Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309 (5742), 1844–1846.CrossRefGoogle Scholar
Weiss, H, Courty, M. A. and Wetterstrom, W. (1993) The genesis and collapse of third millennium north Mesopotamian civilization. Science, 261, 995–1004.CrossRefGoogle ScholarPubMed
Whipple, K. X., Kirby, E. and Brocklehurst, S. H. (1999) Geomorphic limits to climate-induced increases in topographic relief. Nature, 401, 39–43.CrossRefGoogle Scholar
White, N. M., Pringle, M., Garzanti, E.et al. (2002) Constraints on the exhumation and erosion of the High Himalayan Slab, NW India, from foreland basin deposits. Earth Planet. Sci. Lett., 195, 29–44.CrossRefGoogle Scholar
Williams, H., Turner, S., Kelley, S. and Harris, N. (2001) Age and compositin of dikes in southern Tibet: new constraints on the timing of east–west extension and its relations to postcollisional volcanism. Geology, 29, 339–342.2.0.CO;2>CrossRefGoogle Scholar
Williams, H. M., Turner, S. P., Pearce, J. A., Kelley, S. P. and Harris, N. B. W. (2004) Nature of the source regions for post-collisional, potassic magmatism in Southern and Northern Tibet from geochemical variations and inverse trace element modeling. J. Petrol., 45, 555–607.CrossRefGoogle Scholar
Wilson, R. J. S., Luckman, B. H. and Esper, J. A. (2005) 500-year dendroclimatic reconstruction of spring/summer precipitation from the lower Bavarian forest region, Germany. Int. J. Climat., 25, 611–630.CrossRefGoogle Scholar
Wobus, C., Heimsath, A., Whipple, A. and Hodges, K. (2005) Active out-of-sequence thrust faulting in the central Nepalese Himalaya. Nature, 434, 1008–1011.CrossRefGoogle ScholarPubMed
Wolfe, J. A., Forest, C. E. and Molnar, P. (1998) Paleobotanical evidence of Eocene and Oligocene paleoaltitudes in midlatitude western North America. Geol. Soc. Amer. Bull., 110, 664–678.2.3.CO;2>CrossRefGoogle Scholar
Woodruff, F. and Savin, S. (1989) Miocene deepwater oceanography. Paleoceanography, 4, 87–140.CrossRefGoogle Scholar
Woodruff, F. and Savin, S. M. (1991) Mid-Miocene isotope stratigraphy in the deep-sea: high resolution correlations, paleoclimatic cycles, and sediment preservation. Paleoceanography, 6, 755–806.CrossRefGoogle Scholar
Woodruff, F., Savin, S. M. and Abel, L. (1990) Miocene benthic foraminifer oxygen and carbon isotopes, Site 709, Indian Ocean. Proc. Ocean Drill. Prog., Sci. Res., 115, College Station, TX: Ocean Drilling Program, pp. 519–528.CrossRef
Wu, G., Pan, B., Guan, Q. and Xia, D. (2005) Terminations and their correlation with insolation in the Northern Hemisphere; a record from a loess section in north-west China. Palaeogeog., Palaeoclim., Palaeoeco., 216, 267–277.CrossRefGoogle Scholar
Xiao, J. L. and An, Z. S. (1999) Three large shifts in East Asian monsoon circulation indicated by loess–Paleosol sequences in China and late Cenozoic deposits in Japan. Palaeogeog., Palaeoclim., Palaeoeco., 154, 179–189.CrossRefGoogle Scholar
Xiao, J. L., Inouchi, Y., Kumai, H.et al. (1997) Eolian quartz flux to Lake Biwa, central Japan over the past 145 000 years. Quat. Res., 48, 48–57.CrossRefGoogle Scholar
Xiao, J. L., An, Z. S., Liu, T. S.et al. (1999) East Asian monsoon variation during the last 130,000 years; evidence from the Loess Plateau of central China and Lake Biwa of Japan. Quat. Sci. Rev., 18, 147–157.CrossRefGoogle Scholar
Xie, P. and Arkin, P. A. (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull. Amer. Meteo. Soc., 78, 2539–2558.2.0.CO;2>CrossRefGoogle Scholar
Xie, S.-P., Xu, H., Saji, N. H., Wang, Y. and Liu, W. T. (2006) Role of narrow mountains in large-scale organization of Asian monsoon convection. J. Clim., 19, 3420–3429.CrossRefGoogle Scholar
Xu, R. (1979) Discovery of Glossopteris flora in southern Tibet and its significance to geology and paleogeography. In A Report of the Scientific Expedition in the Mount Everest Region; 1975, Beijing, China: Sci. Press, pp. 77–88.
Yan, F., Ye, Y. and Mai, X. (1983) The sporo-pollen assemblage in the Luo4 drilling of Lop Lake in Uygur Autonomous Region of Xinjiang and its significance. Seismo. Geo., 5, 75–80 (in Chinese).Google Scholar
Yancheva, G., Nowaczyk, N. R., Mingram, J.et al. (2007) Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445, 74–77.CrossRefGoogle ScholarPubMed
Yang, F., Ma, Z. Q., Xu, T. C. and Ye, S. T. (1992) A Tertiary paleomagnetic stratigraphic profile in Qaidam basin (in Chinese). Acta Pet. Sin., 13 (2), 97–101.Google Scholar
Yang, J., Chen, J., An, Z.et al. (2000) Variations in 87Sr/86Sr ratios of calcites in Chinese loess; a proxy for chemical weathering associated with the East Asian summer monsoon. Palaeogeog., Palaeoclim., Palaeoeco., 157, 151–159.CrossRefGoogle Scholar
Yasuda, Y. (2004) Monsoons and religions. In Monsoon and Civilization, ed. Yasuda, Y. and Shinde, V., New Delhi: Lustre Press, pp. 319–338.Google Scholar
Yasunari, T. (1980) A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during the summer monsoon over India. J. Meteor. Soc. Japan, 58, 225–229.CrossRefGoogle Scholar
Yasunari, T. (1981) Structure of an Indian Summer monsoon system with around 40-day period. J. Meteor. Soc. Japan, 59, 336–354.CrossRefGoogle Scholar
Yin, A., Kapp, P. A., Murphy, M. A.et al. (1999) Significant late Neogene east–west extension in northern Tibet. Geology, 27, 787–790.2.3.CO;2>CrossRefGoogle Scholar
Yoshikawa, S. and Inouchi, Y. (1991) Tephrostratigraphy of the Takashima-oki boring core samples from Lake Biwa, central Japan. Earth Sci. (Chikyu Kagaku), 45, 81–100.Google Scholar
Yoshikawa, S. and Inouchi, Y. (1993) Middle Pleistocene to Holocene explosive volcanism revealed by ashes of the Takashima-oki core samples from Lake Biwa, central Japan. Earth Sci. (Chikyu Kagaku), 47, 97–109.Google Scholar
Young, T. C. (1995) The Uruk World System: the dynamics of expansion of Early Mesopotamian civilization. Bull. Amer. Sch. Orient. Res., 297, 84–85.CrossRefGoogle Scholar
Zachos, J.Pagani, M., Sloan, L., Thomas, E. and Billups, K. (2001) Trends, rhythms and aberrations in global climate 65 Ma to Present. Science, 292, 686–693.CrossRefGoogle ScholarPubMed
Zahn, R. (2003) Monsoon linkages. Nature, 421, 324–325.CrossRefGoogle ScholarPubMed
Zeitler, P. K., Koons, P. O., Bishop, M. P.et al. (2001) Crustal reworking at Nanga Parbat, Pakistan; metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics, 20, 712–728.CrossRefGoogle Scholar
Zhang, P., Molnar, P. and Downs, W. R. (2001) Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature, 410, 891–897.CrossRefGoogle Scholar
Zhao, J., Wang, Y., Collerson, K. D. and Gagan, M. K. (2003) Speleothem U-series dating of semi-synchronous climate oscillations during the last deglaciation. Earth Planet. Sci. Lett., 216, 155–161.CrossRefGoogle Scholar
Zhao, Q., Wang, P., Cheng, X.et al. (2001a) A record of Miocene carbon excursion in the South China Sea. Sci. China, Ser. D, 44, 943–951.CrossRefGoogle Scholar
Zhao, Q., Wang, J., Cheng, X.et al. (2001b) Neogene oxygen isotopic stratigraphy, ODP Site 1148, northern South China Sea. Sci. China, Ser. D, 44, 934–942.CrossRefGoogle Scholar
Zhao, W. L. and Morgan, W. J. P. (1987) Injection of Indian crust into Tibetan lower crust; a two-dimensional finite element model study. Tectonics, 6, 489–504.CrossRefGoogle Scholar
Zheng, H., Powell, C. M., An, Z., Zhou, J. and Dong, G. (2000) Pliocene uplift of the northern Tibetan Plateau. Geology, 28, 715–718.2.0.CO;2>CrossRefGoogle Scholar
Zickfeld, K., Knopf, B., Petoukhov, V. and Schellnhuber, H. J. (2005) Is the Indian summer monsoon stable against global change?Geophys. Res. Lett., 32, L15707, doi: 10.1029/2005GL022771.CrossRefGoogle Scholar
Zielinski, G. A., Mayewski, P. A., Meeker, L. D.et al. (1996) Potential atmospheric impact of the Toba mega-eruption approximately 71 000 years ago. Geophys. Res. Lett., 23 (8), 837–840.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Peter D. Clift, University of Aberdeen, R. Alan Plumb, Massachusetts Institute of Technology
  • Book: The Asian Monsoon
  • Online publication: 01 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535833.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Peter D. Clift, University of Aberdeen, R. Alan Plumb, Massachusetts Institute of Technology
  • Book: The Asian Monsoon
  • Online publication: 01 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535833.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Peter D. Clift, University of Aberdeen, R. Alan Plumb, Massachusetts Institute of Technology
  • Book: The Asian Monsoon
  • Online publication: 01 September 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511535833.008
Available formats
×