Skip to main content Accessibility help
×
Home
  • Print publication year: 2014
  • Online publication date: June 2014

Part IV - Interpretation and Classification

References

Aiken, G., McKnight, D., Harnish, R., and Wershaw, R. (1996), Geochemistry of aquatic humic substances in the Lake Fryxell Basin, Antarctica. Biogeochemistry, 34(3), 157–188.
Akagi, J., Zsolnay, A., and Bastida, F. (2007). Quantity and spectroscopic properties of soil dissolved organic matter (DOM) as a function of soil sample treatments: Air-drying and pre-incubation. Chemosphere, 69, 1040–1046.
American Public Health Association, American Water Works Association, and Water Pollution Control Federation (1965). Standard Methods for the Examination of Water and Wastewater Including Bottom Sediments and Sludges. New York: American Public Health Association, Inc.
Baker, A. (2001). Fluorescence excitation emission matrix characterization of some sewage-impacted rivers. Environ. Sci. Technol., 35(5), 948–953.
Baker, A. (2002). Fluorescence properties of some farm wastes: Implications for water quality monitoring. Water Res., 36(1), 189–195.
Baker, A. and Genty, D. (1999). Fluorescence wavelength and intensity variations of cave waters. J. Hydrol., 217(1–2), 19–34.
Baker, A. and Bolton, L. (2000). Speleothem organic acid luminescence intensity ratios: a new palaeoenvironmental proxy. Cave Karst Sci., 27, 121–124.
Baker, A., Genty, D., and Smart, P. (1998). High-resolution records of soil humification and paleoclimate change from variations in speleothem luminescence excitation and emission wavelengths. Geology, 26(10), 903–906.
Beggs, K.M.H., Summers, R.S., and McKnight, D.M. (2009). Characterizing chlorine oxidation of dissolved organic matter and disinfection by-product formation with fluorescence spectroscopy and parallel factor analysis. J. Geophys. Res., 114(G4), G04001.
Bu, X., Wang, L., Ma, W., Yu, X., Mcdowell, W.H., and Ruan, H. (2010). Spectroscopic characterization of hot-water extractable organic matter from soils under four different vegetation types along an elevation gradient in the Wuyi Mountains. Geoderma, 159, 139–146.
Cannavo, P., Dudal, Y., Boudenne, J.-L., and Lafolie, F. (2004). Potential for fluorescence spectroscopy to assess the quality of soil water-extracted organic matter. Soil Sci., 169(10), 688–696.
Chen, Y., Senesi, N., and Schnitzer, N. (1977). Information provided on humic substances by E4/E6 ratios. Soil Sci. Soc. Am. J., 41(2), 352–358.
Coble, P. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem., 51(4), 325–346.
Corvasce, M., Zsolnay, A., D’Orazio, V., Lopez, R., and Miano, T. (2006). Characterization of water extractable organic matter in a deep soil profile. Chemosphere, 62(10), 1583–1590.
Cory, R. and McKnight, D. (2005). Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol., 39(21), 8142–8149.
Cory, R.M., McKnight, D.M., Chin, Y.-P., Miller, P., and Jaros, C.L. (2007). Chemical characteristics of fulvic acids from arctic surface waters: Microbial contributions and photochemical transformations. J. Geophys. Res. Biogeochem., 112(G4), G04S51.
Cory, R.M., Miller, M.P., McKnight, D.M., J Guerard, J.J., and Miller, P.L. (2010). Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceanogr. Meth., 8, 67–78.
Ewald, M. and Belin, C. (1987). Fluorescence from photic zone water in the Atlantic Ocean. Sci. Total Environ., 62, 149–155.
Fellman, J.B., Miller, M.P., Cory, R.M., D’Amore, D.V., and White, D. (2009). Characterizing dissolved organic matter using parafac modeling of fluorescence spectroscopy: A comparison of two models. Environ. Sci. Technol., 43(16), 6228–6234.
Fellman, J.B., Hood, E., and Spencer, R.G.M. (2010). Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: A review. Limnol. Oceanogr., 55(6), 2452–2462.
Fulton, J.R., McKnight, D.M., Foreman, C.M., Cory, R.M., Stedmon, C., and Blunt, E. (2004). Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake. Aquat. Sci., 66, 27–46.
Gonsoir, M., Peake, B.M., Cooper, W.J., Jaffe, R., Young, H., Kahn, A.E., and Kowalczuk, P. (2008). Spectral characterization of chromophoric dissolved organic matter (CDOM) in a fjord (Doubtful Sound, New Zealand). Aquat. Sci., 70, 397–409.
Hassouna, M., Massiani, C., Dudal, Y., Pech, N., and Theraulaz, F. (2010). Changes in water extractable organic matter (WEOM) in a calcareous soil under field conditions with time and soil depth. Geoderma, 155(1–2), 75–85.
Holbrook, R., DeRose, P., Leigh, S., Rukhin, A., and Heckert, N. (2006). Excitation–emission matrix fluorescence spectroscopy for natural organic matter characterization: A quantitative evaluation of calibration and spectral correction procedures. Appl. Spectrosc., 60(7), 791–799.
Hood, E., McKnight, D., and Williams, M. (2003). Sources and chemical character of dissolved organic carbon across an alpine/subalpine ecotone, Green Lakes Valley, Colorado Front Range, United States. Water Resour. Res, 39(7), 1188–1200.
Hood, E., Williams, M., and McKnight, D. (2005). Sources of dissolved organic matter (DOM) in a Rocky Mountain stream using chemical fractionation and stable isotopes. Biogeochemistry, 74(2), 231–255.
Hudson, N., Baker, A., and Reynolds, D. (2007). Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review. River Res. Appl., 23(6), 631–649.
Hudson, N., Baker, A., Ward, D, Reynolds, D., Brunsdon, C., Carliell-Marquet, C., and Browning, S. (2008). Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England. Sci. Total Environ., 391(1), 149–158.
Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J.M., and Parlanti, E. (2009). Properties of fluorescent dissolved organic matter in the gironde estuary. Org. Geochem., 40(6), 706–719.
Jaffé, R., Boyer, J., Lu, X., Maie, N., Yang, C., Scully, N., and Mock, S. (2004). Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Mar. Chem., 84(3–4), 195–210.
Jaffé, R., McKnight, D., Maie, N., Cory, R., McDowell, W., and Campbell, J. (2008). Spatial and temporal variations in DOM composition in ecosystems: The importance of long-term monitoring of optical properties. J. Geophys. Res., 113, G04032.
Kalbitz, K., and Geyer, W. (2001). Humification indices of water-soluble fulvic acids derived from synchronous fluorescence spectra – effects of spectrometer type and concentration, J. Plant Nutr. Soil Sci., 164(3), 259–265.
Kalbitz, K., Geyer, W., and Geyer, S. (1999). Spectroscopic properties of dissolved humic substances – a reflection of land use history in a fen area. Biogeochemistry, 47(2), 219–238.
Kalbitz, K., Geyer, S., and Geyer, W. (2000). A comparative characterization of dissolved organic matter by means of original aqueous samples and isolated humic substances. Chemosphere, 40(12), 1305–1312.
Kalbitz, K., Schmerwitz, J., Schwesig, D., and Matzner, E. (2003). Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma, 113(3–4), 273–291.
Klapper, L., Mcknight, D.M., Fulton, J.R., Blunt-Harris, E.L., Nevin, K.P., Lovley, D.R., and Hatcher, P.G. (2002). Fulvic acid oxidation state detection using fluorescence spectroscopy. Environ. Sci. Technol., 36(14), 3170–3175.
Laane, R.W.P.M. (1982). Influence of pH on the fluorescence of dissolved organic matter. Mar. Chem., 11, 395–401.
Lakowicz, J. (2006). Principles of Fluorescence Spectroscopy. New York: Springer Science+Business Media.
Lawaetz, A. and Stedmon, C. (2009). Fluorescence intensity calibration using the Raman scatter peak of water. Appl. Spectrosc., 63(8), 936–940.
Lovley, D., Coates, J., Blunt-Harris, E., Phillips, E., and Woodward, J. (1996). Humic substances as electron acceptors for microbial respiration. Nature, 382(6590), 445–448.
McKnight, D., Andrews, E., Spulding, S., and Aiken, G. (1994). Aquatic fulvic acids in algal-rich Antarctic ponds. Limnol. Oceanogr., 39, 1972–1979.
McKnight, D., Boyer, E., Westerhoff, P., Doran, P., Kulbe, T., and Andersen, D. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr., 46(1), 38–48.
McKnight, D.M., Harnish, R., Wershaw, R.L., Baron, J.S., and Schiff, S. (1997). Chemical characteristics of particulate, colloidal, and dissolved organic matter in Loch Vale watershed, Rocky Mountain National Park. Biogeochemistry, 36, 99–124.
McKnight, D.M., Hood, E., and Klapper, L. (2003). Trace organic moieties of dissolved organic material in natural waters. In S.E.G. Findlay and R.L. Sinsabaugh (Eds.), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter (pp. 71–96). San Diego: Elsevier/Academic Press.
Miano, T. and Senesi, N. (1992). Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry. Sci. Total Environ., 117, 41–51.
Miller, M.P., McKnight, D.M., Cory, R.M., Williams, M.W., and Runkel, R.L. (2006). Hyporheic exchange and fulvic acid redox reactions in an alpine stream/wetland ecosystem, Colorado Front Range. Environ. Sci. Technol., 40(19), 5943–5949.
Miller, M.P., McKnight, D.M., Chapra, S.C., and Williams, M.W. (2009). A model of degradation and production of three pools of dissolved organic matter in an alpine lake. Limnol. Oceanogr., 54(6), 2213–2227.
Miller, M.P., Simone, B.E., McKnight, D.M., Cory, R.M., Williams, M.W., and Boyer, E.W. (2010). New light on a dark subject: Comment. Aquat. Sci., pp. 1–7.
Mladenov, N., McKnight, D.M., Macko, S.A., Norris, M., Cory, R.M., and Ramberg, L. (2007). Chemical characterization of DOM in channels of a seasonal wetland. Aquat. Sci., 69(4), 456–471.
Mladenov, N., Huntsman-Mapila, P., Wolski, P., Masamba, W., and McKnight, D. (2008). Dissolved organic matter accumulation, reactivity, and redox state in ground water of a recharge wetland. Wetlands, 28(3), 747–759.
Mladenov, N., López-Ramos, J., McKnight, D., and Reche, I. (2009). Alpine lake optical properties as sentinels of dust deposition and global change. Limnol. Oceanogr., 54(6), 2386–2400.
Mladenov, N., Zheng, Y., Miller, M.P., Nemergut, D.R., Legg, T., Simone, B., Hageman, C., Rahman, M.M., Ahmed, K.M., and McKnight, D.M. (2010). Dissolved organic matter sources and consequences for iron and arsenic mobilization in Bangladesh aquifers. Environ. Sci. Technol., 44(1), 123–128.
Mobed, J., Hemmingsen, S., Autry, J., and McGown, L. (1996). Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction. Environ. Sci. Technol., 30(10), 3061–3065.
Murphy, K., Butler, K., Spencer, R., Stedmon, C., Boehme, J., and Aiken, G. (2010). Measurement of dissolved organic matter fluorescence in aquatic environments: An interlaboratory comparison. Environ. Sci. Technol., 44(24), 9405–9412.
Naden, P.S., Old, G.H., Eliot-Laize, C., Granger, S.J., Hawkins, J.M.B, Bol, R., and Haygarth, P. (2010). Assessment of natural fluorescence as a tracer of diffuse agricultural pollution from slurry spreading on intensely-farmed grasslands. Water Res, 44(6), 1701–1712.
Ohno, T. (2002a). Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ. Sci. Technol., 36(4), 742–746.
Ohno, T. (2002b). Response to comment on “fluorescence inner-filtering correction for determining the humification index of dissolved organic matter.” Environ. Sci. Technol., 36(19), 4196.
Ohno, T., Fernandez, I., Hiradate, S., and Sherman, J. (2007). Effects of soil acidification and forest type on water soluble soil organic matter properties. Geoderma, 140(1–2), 176–187.
Parlanti, E., Wörz, K., Geoffroy, L., and Lamotte, M. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem., 31(12), 1765–1781.
Perrette, Y., Delannoy, J., Desmet, M., Lignier, V., and Destombes, J. (2005). Speleothem organic matter content imaging: The use of a fluorescence index to characterise the maximum emission wavelength. Chem. Geol., 214(3–4), 193–208.
Proctor, C., Baker, A., Barnes, W., and Gilmour, M. (2000). A thousand year speleothem proxy record of North Atlantic climate from Scotland. Clim. Dyn., 16(10), 815–820.
Scott, D.T., McKnight, D.M., Blunt-Harris, E.L., Kolesar, S.E., and Lovley, D.R. (1998). Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol., 32(19), 2984–2989.
Senesi, N., Miano, T., Provenzano, M., and Brunetti, G. (1989). Spectroscopic and compositional comparative characterization of IHSS reference and standard fulvic and humic acids of various origin. Sci. Total Environ., 81, 143–156.
Senesi, N., Miano, T., Provenzano, M., and Brunetti, G. (1991). Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sci., 152(4), 259–271.
Spencer, R.G.M., Bolton, L., and Baker, A. (2007). Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations. Water Res., 41(13), 2941–2950.
Stewart, A. and Wetzel, R. (1980). Fluorescence: Absorbance ratios – a molecular-weight tracer of dissolved organic matter. Limnol. Oceanogr., 25(3), 559–564.
Stewart, A. and Wetzel, R. (1981). Asymmetrical relationships between absorbance, fluorescence, and dissolved organic carbon. Limnol. Oceanogr., 26(3), 590–597.
Trouet, V., Esper, J., Graham, N.E., Baker, A., Scourse, J.D., and Frank, D.C. (2009). Persistent positive North Atlantic oscillation mode dominated the medieval climate anomaly. Science, 324(5923), 78–80.
Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Fram, M.S., Fujii, R., and Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol., 37(20), 4702–4708.
Wilson, H.F. and Xenopoulos, M.A. (2009). Effects of agricultural land use on the composition of fluvial dissolved organic matter. Nature Geosci., 2(1), 37–41.
Zsolnay, A. (2002). Comment on “fluorescence inner-filtering correction for determining the humification index of dissolved organic matter.” Environ. Sci. Technol., 36(19), 4195.
Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38(1), 45–50.

References

Abbas, O., Rebufa, C., Dupuy, N., Permanyer, A., Kister, J., and Azevedo, D.A. (2006). Application of chemometric methods to synchronous UV fluorescence spectra of petroleum oils. Fuel, 85, 2653–2661.
Andersen, C.M. and Bro, R. (2003). Practical aspects of PARAFAC modeling of fluorescence excitation – emission data. J. Chemometr., 17, 200–215.
Antunes, M.C.G. and Esteves Da Silva, J.C.G. (2005). Multivariate curve resolution analysis excitation-emission matrices of fluorescence of humic substances. Anal. Chim. Acta, 546, 52–59.
Antunes, M.C.G, Pereira, C.C.C., and Esteves da Silva, J.C.G. (2007). MCR of the quenching of the EEM of fluorescence of dissolved organic matter by metal ions. Anal. Chim. Acta, 595, 9–18.
Appellof, C.J. and Davidson, E.R. (1981). Strategies for analyzing data from video fluorometric monitoring of liquid-chromatographic effluents. Anal. Chem., 53, 2053–2056.
Bieroza, M., Baker, A., and Bridgeman, J. (2009). Relating freshwater organic matter fluorescence to organic carbon removal efficiency in drinking water treatment. Sci. Total Environ., 407, 1765–1774.
Bilal, M., Jaffrezic, A., Dudal, Y., Le Guillou, C., Menasseri, S., and Walter, C. (2010). Discrimination of farm waste contamination by fluorescence spectroscopy coupled with multivariate analysis during a biodegradation study. J. Agric. Food Chem., 58, 3093–3100.
Boehme, J., Coble, P., Conmy, R., and Stovall-Leonard, A. (2004). Examining CDOM fluorescence variability using principal component analysis: Seasonal and regional modeling of three-dimensional fluorescence in the Gulf of Mexico. Mar. Chem., 89, 3–14.
Booksh, K.S. and Kowalski, B.R. (1994). Theory of analytical chemistry. Anal. Chem., 66, A782–A791.
Bosco, M.V., Garrido, M., and Larrechi, M.S. (2006). Determination of phenol in the presence of its principal degradation products in water during a TiO2-photocatalytic degradation process by three-dimensional excitation–emission matrix fluorescence and parallel factor analysis. Anal. Chim. Acta, 559, 240–247.
Boyle, E.S., Guerriero, N., Thiallet, A., Vecchio, R.D., and Blough, N.V. (2009). Optical Properties of humic substances and CDOM: Relation to structure. Environ. Sci. Technol., 43, 2262–2268.
Bratchell, N. (1989). Cluster analysis. Chemometr. Intell. Lab. Syst., 6, 105–125.
Bro, R. (1996). Multiway calibration Multilinear PLS. J. Chemometr.,10, 47–61.
Bro, R. (1997). PARAFAC: Tutorial and applications. Chemometr. Intell. Lab. Syst., 38, 149–171.
Bro, R. (2003). Multivariate calibration: What is in chemometrics for the analytical chemist? Anal. Chim. Acta, 500, 185–194.
Bro, R. (2006). Review on multiway analysis in chemistry – 2000–2005. Crit. Rev. Anal. Chem., 36, 279–293.
Bro, R. and Kiers, H.A.L. (2003). A new efficient method for determining the number of components in PARAFAC models. J. Chemometr., 17, 274–286.
Bro, R. and Smilde, A.K. (2003). Centering and scaling in component analysis. J. Chemometr., 17, 16–33.
Bro, R., Workman, J.J., Mobley, P.R., and Kowalski, B.R. (1997). Review of chemometrics applied to spectroscopy: 1985–95, Part 3. Multi-way analysis. Appl. Spectrosc. Rev., 32, 237–261.
Bro, R., Harshman, R.A., Sidiropoulos, N.D., and Lundy, M.E. (2009). Modeling multi-way data with linearly dependent loadings. J. Chemometr., 23, 324–340.
Bro, R., Vidal, M., and Mizer, E.E. (2010). Automated modeling of fluorescence EEM data. Chemometr. Intell. Lab. Syst., 106, 86–92.
Brunsdon, C. and Baker, A. (2002). Principal filter analysis for luminescence excitation-emission data. Geophys. Res. Lett., 29, 2156.
Carroll, J.D. and Chang, J.J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika, 35, 283–319.
Chen, M.L., Price, R.M., Yamashita, Y., and Jaffe, R. (2010). Comparative study of dissolved organic matter from groundwater and surface water in the Florida coastal Everglades using multi-dimensional spectrofluorometry combined with multivariate statistics. Appl. Geochem., 25, 872–880.
Coble, P.G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem., 51, 325–346.
Cory, R.M. and McKnight, D.M. (2005). Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol., 39, 8142–8149.
Cory, R.M., Miller, M.P., McKnight, D.M., Guerard, J.J., and Miller, P.L. (2010). Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceanogr. Meth., 8, 67–78.
Del Vecchio, R. and Blough, N.V. (2004). On the origin of the optical properties of humic substances. Environ. Sci. Technol., 38, 3885–3891.
Désiré-Luc Massart, B.G.M., Vandeginste, S.N., Deming, Y.M., and Kaufman, L. (1988). Chemometrics: A Textbook. Amsterdam: Elsevier.
Determann, S., Reuter, R., Wagner, P., and Willkomm, R. (1994). Fluorescent matter in the early Atlantic-ocean. 1. Method of measurement and near-surface distribution. Deep-Sea Res. Pt. I,, 41, 659–675.
Determann, S., Lobbes, J.M., Reuter, R., and Rullkotter, J. (1998). Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Mar. Chem., 62, 137–156.
Engelen, S., Frosch, S., and Jorgensen, B.M. (2009). A fully robust PARAFAC method for analyzing fluorescence data. J. Chemometr., 23, 124–131.
Fellman, J.B., Hood, E., D’Amore, D.V., Edwards, R.T., and White, D. (2009a). Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry, 95, 277–293.
Fellman, J.B., Hood, E., Edwards, R.T., and Jones, J.B. (2009b). Uptake of allochthonous dissolved organic matter from soil and salmon in coastal temperate rainforest streams. Ecosystems, 12, 747–759.
Fellman, J.B., Miller, M.P., Cory, R.M., D’Amore, D.V., and White, D. (2009c). Characterizing dissolved organic matter using PARAFAC modeling of fluorescence spectroscopy: A comparison of two models. Environ. Sci. Technol., 43, 6228–6234.
Gabriel, K.R. (1971). Biplot graphic display of matrices with application to principal component analysis. Biometrika, 58, 453–467.
Geladi, P. and Kowalski, B.R. (1986). Partial least-squares regression: A tutorial. Anal. Chim. Acta, 185, 1–17.
Gibb, S.W., Barlow, R.G., Cummings, D.G., Rees, N.W., Trees, C.C., Holligan, P., and Suggett, D. (2000). Surface phytoplankton pigment distributions in the Atlantic Ocean: An assessment of basin scale variability between 50°N and 50°S. Prog. Oceanogr., 45, 339–368.
Gurden, S.P., Westerhuis, J.A., Bro, R., and Smilde, A.K. (2001). A comparison of multiway regression and scaling methods. Chemometr. Intell. Lab. Syst., 59, 121–136.
Hall, G.J. and Kenny, J.E. (2007). Estuarine water classification using EEM spectroscopy and PARAFAC-SIMCA. Anal. Chim. Acta, 581, 118–124.
Hall, G.J., Clow, K.E., and Kenny, J.E. (2005). Estuarial fingerprinting through multidimensional fluorescence and multivariate analysis. Environ. Sci. Technol., 39, 7560–7567.
Harshman, R.A. and Lundy, M.E. (1994). Parafac – parallel factor-analysis. Comput. Stat. Data Anal., 18, 39–72.
Jaumot, J. and Tauler, R. (2010). MCR-BANDS: A user friendly MATLAB program for the evaluation of rotation ambiguities in multivariate curve resolution. Chemometr. Intell. Lab. Syst., 103, 96–107.
Jiang, F., Lee, F.S-C., Wang, X., and Dai, D. (2008). The application of excitation/emission matrix spectroscopy combined with multivariate analysis for the characterization and source identification of dissolved organic matter in seawater of Bohai Sea, China. Mar. Chem., 110, 109–119.
Kjeldahla, K. and Bro, R. (2010). Some common misunderstandings in chemometrics. J. Chemometr., 24, 558–564.
Kowalczuk, P., Durako, M.J., Young, H., Kahn, A.E., Cooper, W.J., and Gonsior, M. (2009). Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variability. Mar. Chem., 113, 182–196.
Lakowicz, J.R. (2006). Principles of Fluorescence Spectroscopy, 3rd ed. New York: Plenum Press.
Lavine, B. and Workman, J. (2010). Chemometrics. Anal. Chem., 82, 4699–4711.
Lu, F., Chang, C-H., Lee, D.-J., He, P-J., Shao, L-M., and Su, A. (2009). Dissolved organic matter with multi-peak fluorophores in landfill leachate. Chemosphere, 74, 575–582.
Macalady, D.L. and Walton-Day, K. (2009). New light on a dark subject: On the use of fluorescence data to deduce redox states of natural organic matter (NOM). Aquat. Sci., 71, 135–143.
Marhaba, T.F., Bengraine, K., Pu, Y., and Arago, J. (2003). Spectral fluorescence signatures and partial least squares regression: Model to predict dissolved organic carbon in water. J. Hazard. Mater., 97, 83–97.
Martens, H. and Næs, T. (1989). Multivariate Calibration. Chichester: Wiley & Sons.
McKean, J.W. (2004). Robust analysis of linear models. Stat. Sci., 19, 562–570.
Miano, T.M. and Senesi, N. (1992). Synchronous excitation fluorescence spectroscopy applied to soil humic substances chemistry. Sci. Total Environ., 117–118, 41–51.
Miller, M.P. and McKnight, D.M. (2010). Comparison of seasonal changes in fluorescent dissolved organic matter among aquatic lake and stream sites in the Green Lakes Valley. J. Geophys. Res. Biogeosci., 115. G00F12, doi:10.1029/2009jg000985.
Miller, M.P., McKnight, D.M., and Chapra, S.C. (2009a). Production of microbially-derived fulvic acid from photolysis of quinone-containing extracellular products of phytoplankton. Aquat. Sci., 71, 170–178.
Miller, M.P., McKnight, D.M., Chapra, S.C., and Williams, M.W. (2009b). A model of degradation and production of three pools of dissolved organic matter in an alpine lake. Limnol. Oceanogr., 54, 2213–2227.
Mladenov, N., Huntsman-Mapila, P., Wolski, P., Masarnba, W.R.L, and McKnight, D.M. (2008). Dissolved organic matter accumulation, reactivity, and redox state in ground water of a recharge wetland. Wetlands, 28, 747–759.
Mobley, P.R., Kowalski, B.R., Workman, J.J., and Bro, R. (1996). Review of chemometrics applied to spectroscopy: 1985–95, Part 2. Appl. Spectrosc. Rev., 31, 347–368.
Morel, E., Santamaria, K., Perrier, M., Guiot, S.R., and Tartakovsky, B. (2004). Application of multi-wavelength fluorometry for on-line monitoring of an anaerobic digestion process. Water Res., 38, 3287–3296.
Murphy, K.R., Ruiz, G.M., Dunsmuir, W.T.M., and Waite, T.D. (2006). Optimized parameters for fluorescence-based verification of ballast water exchange by ships. Environ. Sci. Technol., 40, 2357–2362.
Murphy, K.R., Stedmon, C.A., Waite, T.D., and Ruiz, G.M. (2008). Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem., 108, 40–58.
Murphy, K.R., Boehme, J.R., Noble, M., Smith, G., and Ruiz, G.M. (2009). Deducing ballast water sources in ships arriving to New Zealand from southeastern Australia. Mar. Ecol. Prog. Ser., 390, 39–53.
Murphy, K.R., Butler, K.D., Spencer, R.G.M., Stedmon, C.A., Boehme, J.R., and Aiken, G.R. (2010). The measurement of dissolved organic matter fluorescence in aquatic environments: An interlaboratory comparison. Environ. Sci. Technol., 44, 9405–9412.
Murphy, K.R., Hambly, A., Singh, S., Henderson, R.K., Baker, A., Stuetz, R., and Khan, S.J. (2011). Organic matter fluorescence in municipal water recycling schemes: Towards a unified PARAFAC model. Environ. Sci. Technol., 45, 2909–2916.
Naes, T., Isaksson, T., Fearn, T., and Davies, T. (2002). A User Friendly Guide to Multivariate Calibration and Classification. Chichester: NIR Publications.
Nelson, C.E., Sadro, S., and Melack, J.M. (2009). Contrasting the influences of stream inputs and landscape position on bacterioplankton community structure and dissolved organic matter composition in high- elevation lake chains. Limnol. Oceanogr., 54, 1292–1305.
Nelson, N.B., and Siegel, D.A. (2002). Chromophoric DOM in the open ocean. In D. A. Hansell and C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (pp. 547–578). San Diego: Academic Press.
Peiris, R.H., Halle, C., Budman, H., Moresoli, C., Peldszus, S., Huck, P.M., and Legge, R.L. (2010). Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices. Water Res., 44, 185–194.
Persson, T. and Wedborg, M. (2001). Multivariate evaluation of the fluorescence of aquatic organic matter. Anal. Chim. Acta, 434, 179–192.
Rinnan, R. and Rinnan, A. (2007). Application of near infrared reflectance (NIR) and fluorescence spectroscopy to analysis of microbiological and chemical properties of arctic soil. Soil Biol. Biochem., 39, 1664–1673.
Rinnan, Å., Riu, J., and Bro, R. (2007). Multi-way prediction in the presence of uncalibrated interferents. J. Chemometr., 21, 76–86.
Riu, J. and Bro, R. (2003). Jack-knife technique for outlier detection and estimation of standard errors in PARAFAC models. Chemometr. Intell. Lab. Syst., 65, 35–49.
Sierra, M.M.D., Giovanela, M., Parlanti, E., and Soriano-Sierra, E.J. (2005). Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere, 58, 715–733.
Simonsson, M., Kaiser, K., Danielsson, R., Andreux, F., and Ranger, J. (2005). Estimating nitrate, dissolved organic carbon and DOC fractions in forest floor leachates using ultraviolet absorbance spectra and multivariate analysis. Geoderma, 124, 157–168.
Smilde, A., Bro, R., and Geladi, P. (2004). Multi-way Analysis: Applications in the Chemical Sciences. Chichester: John Wiley & Sons.
Søndergaard, M., Stedmon, C.A., and Borch, N.H. (2003). Fate of terrigenous dissolved organic matter (DOM) in estuaries: Aggregation and bioavailability. Ophelia, 57, 161–176.
Stedmon, C.A. and Markager, S. (2005a). Resolving the variability of dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr., 50, 686–697.
Stedmon, C.A. and Markager, S. (2005b). Tracing the production and degradation of autochthonous fractions of dissolved organic matter using fluorescence analysis. Limnol. Oceanogr., 50, 1415–1426.
Stedmon, C.A. and Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Meth., 6, 572–579.
Stedmon, C.A., Markager, S., and Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem., 82, 239–254.
Stedmon, C.A., Markager S, Søndergaard, M., Vang, T., Laubel, A., Borch, N.H., and Windelin, A. (2006). Dissolved organic matter (DOM) export to a temperate estuary: Seasonal variations and implications of land use. Estuaries Coasts, 29, 388–400.
Stedmon, C.A., Markager, S., Tranvik, L., Kronberg, L., Slatis, T., and Martinsen, W. (2007). Photochemical production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Mar. Chem., 104, 227–240.
Tauler, R., Smilde, A., and Kowalski, B. (1995). Selectivity, local rank, 3-way data-analysis and ambiguity in multivariate curve resolution. J. Chemometr., 9, 31–58.
Thomas, E.V. (1994). A primer on multivariate calibration. Anal. Chem., 66, 795A–804A.
Tucker, L.R. (1951). A Method for Synthesis of Factor Analysis Studies (Personnel Research Section Report No. 984). Washington, DC: Department of the Army.
Vasel, J.L. and Praet, E. (2002). On the use of fluorescence measurements to characterize wastewater. Water Sci. Technol., 45, 109–116.
Verboven, S. and Hubert, M. (2005). LIBRA: A MATLAB library for robust analysis. Chemometr. Intell. Lab. Syst., 75, 127–136.
Wedborg, M., Persson, T., and Larsson, T. (2007). On the distribution of UV-blue fluorescent organic matter in the Southern Ocean. Deep-Sea Res. Pt. I,54, 1957–1971.
Westerhuis, J., Hoefsloot, H., Smit, S., Vis, D., Smilde, A., van Velzen, E., van Duijnhoven, J., and van Dorsten, F. (2008). Assessment of PLSDA cross validation. Metabolomics, 4, 81–89.
Wolf, G., Almeida, J.S., Crespo, J.G., and Reis, M.A.M. (2007). An improved method for two-dimensional fluorescence monitoring of complex bioreactors. J. Biotechnol., 128, 801–812.
Workman, J.J., Mobley, P.R., Kowalski, B.R., and Bro, R. (1996). Review of chemometrics applied to spectroscopy: 1985–95, Part 1. Appl. Spectrosc. Rev., 31, 73–124.
Yamashita, Y., Jaffe, R., Maie, N., and Tanoue, E. (2008). Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by excitation emission matrix fluorescence and parallel factor analysis (EEM-PARAFAC). Limnol. Oceanogr., 53, 1900–1908.
Yin, H. (2002). ViSOM – A novel method for multivariate data projection and structure visualization. IEEE Trans. Neural Networks, 13, 237–243.