Skip to main content Accessibility help
×
Home
  • Print publication year: 2014
  • Online publication date: June 2014

Part III - Environmental Effects

References

Alberts, J.J., Takacs, M., and Schalles, J. (2004). Ultraviolet-visible and fluorescence spectral evidence of natural organic matter (NOM) changes along an estuarine salinity gradient. Estuaries, 27(2), 296–310.
Amon, R.M.W., Budeus, G., and Meon, B. (2003). Dissolved organic carbon distribution and origin in the Nordic Seas: Exchanges with the Arctic Ocean and the North Atlantic. J. Geophys. Res. Oceans, 108, 3221, doi:10.1029/2002JC001594.
Anderson, N.J. and Stedmon, C.A. (2007). The effect of evapoconcentration on dissolved organic carbon concentration and quality in lakes of SW Greenland. Freshwater Biol., 52, 280–289.
Antunes, M.C.G., Pereira, C.C.C., and Esteves da Silva, J.C.G. (2007). MCR of the quenching of the EEM of fluorescence of dissolved organic matter by metal ions. Anal. Chim. Acta, 595(1–2), 9–18.
Arts, M.T., Robarts, R.D., Kasai, F., Waiser, M.J., Tumber, V.P., Plante, A.J., Rai, H., and de Lange, H.J. (2000). The attenuation of ultraviolet radiation in high dissolved organic carbon waters of wetlands and lakes on the northern Great Plains. Limnol. Oceanogr., 45, 292–299.
Avena, M.J. and Wilkinson, K.J. (2002). Disaggregation kinetics of a peat humic acid: Mechanism and pH effects. Environ. Sci. Technol., 36(23), 5100–5105.
Baalousha, M., Motelica- Heino, M., and Le Coustumer, P. (2006). Conformation and size of humic substances: Effects of major cation concentration and type, pH, salinity, and residence time. Colloids Surf. A: Physicochem. Eng. Aspects, 272(1–2), 48–55.
Baker, A. (2005). Thermal fluorescence quenching properties of dissolved organic matter. Water Res., 39(18), 4405–4412.
Baker, A. and Spencer, R.G.M. (2004). Characterization of dissolved organic matter from source to sea using fluorescence and absorbance spectroscopy. Sci. Total Environ., 333(1–3), 217–232.
Baker, A., Elliott, S., and Lead, J.R. (2007). Effects of filtration and pH perturbation on freshwater organic matter fluorescence. Chemosphere, 67(10), 2035–2043.
Baker, A., Tipping, E., Thacker, S.A., and Gondar, D. (2008). Relating dissolved organic matter fluorescence and functional properties. Chemosphere, 73(11), 1765–1772.
Banaitis, M.R. Waldrip-Dail, H., Diehl, M.S., Holmes, B.C., Hunt, J.F., Lynch, R.P., and Ohno, T. (2006). Investigating sorption-driven dissolved organic matter fractionation by multidimensional fluorescence spectroscopy and PARAFAC. J. Colloid Interf. Sci., 304(1), 271–276.
Batchelli, S., Muller, F.L.L., Baalousha, M., and Lead, J.R. (2009). Size fractionation and optical properties of colloids in an organic-rich estuary (Thurso, UK). Mar. Chem., 113(3–4), 227–237.
Belzile, C. and Guo, L.D. (2006). Optical properties of low molecular weight and colloidal organic matter: Application of the ultrafiltration permeation model to DOM absorption and fluorescence. Mar. Chem., 98(2–4), 183–196.
Belzile, C., Johannessen, S.C., Gosselin, M., Demers, S., and Miller, W.L. (2000). Ultraviolet attenuation by dissolved and particulate constituents of first-year ice during late spring in an Arctic polynya. Limnol. Oceanogr., 45(6), 1265–1273.
Belzile, C., Gibson, J.A.E., and Vincent, W.F. (2002). Colored dissolved organic matter and dissolved organic carbon exclusion from lake ice: Implications for irradiance transmission and carbon cycling. Limnol. Oceanogr., 47(5), 1283–1293.
Benner, R. (2002). Chemical composition and reactivity. In D.A. Hansell and C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (pp. 59–90). San Diego: Academic Press.
Benner, R., Pakulski, J.D., McCarthy, M., Hedges, J.I., and Hatcher, P.G. (1992). Bulk chemical characteristics of dissolved organic matter in the ocean. Science, 255(5051), 1561–1564.
Biers, E.J., Zepp, R.G., and Moran, M.A. (2007). The role of nitrogen in chromophoric and fluorescent dissolved organic matter formation. Mar. Chem., 103(1–2), 46–60.
Blough, N.V., Zafiriou, O.C., and Bonilla, J. (1993). Optical absorption spectra of waters from the Orinoco River outflow: Terrestrial input of colored organic matter to the Caribbean. J. Geophys. Res., 98(C2), 2271–2278.
Boehme, J. and Wells, M. (2006). Fluorescence variability of marine and terrestrial colloids: Examining size fractions of chromophoric dissolved organic matter in the Damariscotta River estuary. Mar. Chem., 101(1–2), 95–103.
Boehme, J.R. and Coble, P.G. (2000). Characterization of colored dissolved organic matter using high-energy laser fragmentation. Environ. Sci. Technol., 34(15), 3283–3290.
Boyd, T.J. and Osburn, C.L. (2004). Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries. Mar. Chem., 89(1–4), 189–210.
Boyd, T.J., Wolgast, D.M., Rivera- Duarte, I., Holm- Hansen, O., Hewes, C.D., Zirino, A., and Chadwick, D.B. (2005). Effects of dissolved and complexed copper on heterotrophic bacterial production in San Diego Bay. Microb. Ecol., 49(3), 353–366.
Boyd, T.J., Barham, B.P., Hall, G.J., and Osburn, C.L. (2010a). Variation in ultrafiltered and LMW organic matter fluorescence properties under simulated estuarine mixing transects: 1. Mixing alone. J. Geophys. Res., 115, G00F13.
Boyd, T.J., Barham, B.P., Hall, G.J., Schumann, B.S., Paerl, R.W., and Osburn, C.L. (2010b). Variation in ultrafiltered and LMW organic matter fluorescence properties under simulated estuarine mixing transects: 2. Mixing with photoexposure. J. Geophys. Res., 115, G00F14.
Buesseler, K.O. Bauer, J.E., Chen, R.F., Eglinton, T.I., Gustafsson, O., Landing, W., Mopper, K., Moran, S.B., Santschi, P.H., Vernon-Clark, R. and Wells, M.L. (1996). An intercomparison of cross-flow filtration techniques used for sampling marine colloids: Overview and organic carbon results. Mar. Chem., 55(1–2), 1–31.
Cabaniss, S.E. and Shuman, M.S. (1986). Combined ion-selective electrode and fluorescence quenching detection for copper-dissolved organic matter titrations. Anal. Chem., 58(2), 398–401.
Cabaniss, S.E. and Shuman, M.S. (1987). Synchronous fluorescence spectra of natural waters: Tracing sources of dissolved organic matter. Mar. Chem., 21(1), 37–50.
Cabaniss, S.E. and Shuman, M.S. (1988). Copper binding by dissolved organic matter: I. Suwannee River fulvic acid equilibria. Geochim. Cosmochim. Acta, 52(1), 185–193.
Cabaniss, S.E. (1992). Synchronous fluorescence spectra of metal-fulvic acid complexes. Environ. Sci. Technol., 26(6), 1133–1139.
Cao, Y., Conklin, M., and Betterton, E. (1995). Competitive complexation of trace metals with dissolved humic acid. Environ. Health Perspect., 103, 29–32.
Cilenti, A., Provenzano, M.R., and Senesi, N. (2005). Characterization of dissolved organic matter from saline soils by fluorescence spectroscopy. Environ. Chem. Lett., 3(2), 53–56.
Clark, C.D., Jimenez- Morais, J., Jones, G., Zanardi- Lamardo, E., Moore, C.A., and Zika, R.G. (2002). A time-resolved fluorescence study of dissolved organic matter in a riverine to marine transition zone. Mar. Chem., 78(2–3), 121–135.
Clark, C.D., Litz, L.P., and Grant, S.B. (2008). Salt marshes as a source of chromophoric dissolved organic matter (CDOM) to Southern California coastal waters. Limnol.Oceanogr., 53(5), 1923–1933.
Coble, P.G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation emission matrix spectroscopy. Mar. Chem., 51(4), 325–346.
Coble, P.G. (2007). Marine optical biogeochemistry: The chemistry of ocean color. Chem.Rev., 107(2), 402–418.
Coble, P.G., Del Castillo, C.E., and Avril, B. (1998). Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Res. Pt. Ii, 45(10–11), 2195–2223.
Conmy, R.N., Coble, P.G., Chen, R.F., and Gardner, G.B. (2004). Optical properties of colored dissolved organic matter in the Northern Gulf of Mexico. Mar. Chem., 89(1–4), 127–144.
Conmy, R.N., Coble, P.G., Cannizzaro, J.P., and Heil, C.A. (2009). Influence of extreme storm events on West Florida Shelf CDOM distributions. J. Geophys. Res. Biogeosci., 114, G00F04, doi:10.1029/2009JG000981
Conte, P. and Piccolo, A. (1999). Conformational arrangement of dissolved humic substances. Influence of solution composition on association of humic molecules. Environ. Sci. Technol., 33(10), 1682–1690.
Cory, R.M., McNeill, K., Cotner, J.P., Amado, A., Purcell, J.M., and Marshall, A.G. (2010). Singlet Oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter. Environ. Sci. Technol., 44(10), 3683–3689.
da Silva, J. and Tauler, R. (2006). Multivariate curve resolution of synchronous fluorescence spectra matrices of fulvic acids obtained as a function of pH. Appl. Spectrosc., 60(11), 1315–1321.
daSilva, J. and Machado, A. (1996). Characterization of the binding sites for Al(III) and Be(II) in a sample of marine fulvic acids. Mar. Chem., 54(3–4), 293–302.
da Silva, J.C.G., Machado, A., and Oliveira, C.J.S. (1998). Effect of pH on complexation of Fe(III) with fulvic acids. Environ. Toxicol. Chem., 17(7), 1268–1273.
Del Castillo, C.E., Coble, P.G., Morell, J.M., Lopez, J.M., and Corredor, J.E. (1999). Analysis of the optical properties of the Orinoco River plume by absorption and fluorescence spectroscopy. Mar. Chem., 66(1–2), 35–51.
Del Vecchio, R. and Blough, N.V. (2002). Photobleaching of chromophoric dissolved organic matter in natural waters: Kinetics and modeling. Mar. Chem., 78(4), 231–253.
Del Vecchio, R. and Blough, N.V. (2004). Spatial and seasonal distribution of chromophoric dissolved organic matter and dissolved organic carbon in the Middle Atlantic Bight. Mar. Chem., 89(1–4), 169–187.
Eftink, M. (1991). Fluorescence techniques for studying protein structure. In C.H. Suelter (Ed.), Methods of Biochemical Analysis: Protein Structure Determination, Vol. 35 (pp. 127–205). Hoboken, NJ: John Wiley & Sons.
Elkins, K.M. and Nelson, D.J. (2001). Fluorescence and FT-IR spectroscopic studies of Suwannee river fulvic acid complexation with aluminum, terbium and calcium. J. Inorg. Biochem., 87(1–2), 81–96.
Elkins, K.M. and Nelson, D.J. (2002). Spectroscopic approaches to the study of the interaction of aluminum with humic substances. Coord, Chem. Rev., 228(2), 205–225.
Esteves, V.I., Santos, E.B.H., and Duarte, A.C. (1999). Study of the effect of pH, salinity and DOC on fluorescence of synthetic mixtures of freshwater and marine salts. J. Environ. Monit., 1(3), 251–254.
Floge, S.A. and Wells, M.L. (2007). Variation in colloidal chromophoric dissolved organic matter in the Damariscotta Estuary, Maine. Limnol. Oceanogr., 52(1), 32–45.
Fox, L.E. (1983). The removal of dissolved humic acid during estuarine mixing. Estuar. Coast. Shelf Sci., 16(4), 431–440.
Francko, D.A. and Heath, R.T. (1982). UV-sensitive complex phosphorus: Association with dissolved humic material and iron in a bog lake. Limnol. Oceanogr., 27(3), 564–569.
Fu, P.Q., Wu, F.C., Liu, C.Q., Wang, F.Y., Li, W., Yue, L.X., and Guo, Q.J. (2007). Fluorescence characterization of dissolved organic matter in an urban river and its complexation with Hg(II). Appl. Geochem., 22(8), 1668–1679.
Gennings, C., Molot, L.A., and Dillon, P.J. (2001). Enhanced photochemical loss of organic carbon in acidic waters. Biogeochemistry, 52(3), 339–354.
Ghosh, K. and Schnitzer, M. (1979). UV and visible absorption spectroscopic investigations in relation to macromolecular characteristics of humic substances. J. Soil Sci., 30(4), 735–745.
Ghosh, K. and Schnitzer, M. (1980). Macromolecular structures of humic substances. Soil Sci., 129(5), 266–276.
Gibson, J.A.E., Vincent, W.F., and Pienitz, R. (2001). Hydrologic control and diurnal photobleaching of CDOM in a subarctic lake. Arch. Hydrobiol., 152(1), 143–159.
Goldstone, J.V., Del Vecchio, R., Blough, N.V., and Voelker, B.M. (2004). A multicomponent model of chromophoric dissolved organic matter photobleaching. Photochem. Photobiol., 80(1), 52–60.
Gone, D.L., Seidel, J.L., Batiot, C., Bamory, K., Ligban, R., and Biemi, J. (2009). Using fluorescence spectroscopy EEM to evaluate the efficiency of organic matter removal during coagulation-flocculation of a tropical surface water (Agbo reservoir). J. Hazard. Mater., 172(2–3), 693–699.
Gonsior, M., Peake, B.M., Cooper, W.T., Podgorski, D., D’Andrilli, J., and Cooper, W.J. (2009). Photochemically induced changes in dissolved organic matter identified by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol., 43(3), 698–703.
Graber, E.R. and Rudich, Y. (2006). Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys., 6, 729–753.
Grebel, J.E., Pignatello, J.J., Song, W.H., Cooper, W.J., and Mitch, W.A. (2009). Impact of halides on the photobleaching of dissolved organic matter. Mar. Chem., 115(1–2), 134–144.
Green, S.A., Morel, F.M.M., and Blough, N.V. (1992). Investigation of the electrostatic properties of humic substances by fluorescence quenching. Environ. Sci. Technol., 26(2), 294–302.
Gueguen, C., Guo, L.D., Yamamoto-Kawai, M., and Tanaka, N. (2007). Colored dissolved organic matter dynamics across the shelf-basin interface in the western Arctic Ocean. J. Geophys. Res. Oceans, 112, C05038, doi:10.1029/2006JC003584.
Guo, L.D. and Santschi, P.H. (1997). Composition and cycling of colloids in marine environments. Rev. Geophys., 35(1), 17–40.
Hefner, K.H., Fisher, J.M., and Ferry, J.L. (2006). A multifactor exploration of the photobleaching of Suwannee River dissolved organic matter across the freshwatersaltwater interface. Environ. Sci. Technol., 40(12), 3717–3722.
Henderson, R.K., Baker, A., Murphy, K.R., Hamblya, A., Stuetz, R.M., and Khan, S.J. (2009). Fluorescence as a potential monitoring tool for recycled water systems: A review. Water Res., 43(4), 863–881.
Hosse, M. and Wilkinson, K.J. (2001). Determination of electrophoretic mobilities and hydrodynamic radii of three humic substances as a function of pH and ionic strength. Environ. Sci. Technol., 35(21), 4301–4306.
Hudson, N., Baker, A., Reynolds, D.M., Carliell- Marquet, C., and Ward, D. (2009). Changes in freshwater organic matter fluorescence intensity with freezing/thawing and dehydration/rehydration. J. Geophys. Res. Biogeosci., 114, G00F08, doi:10.1029/2008JG000915
Huguet, A., Vacher, L., Saubusse, S., Etcheber, H., Abril, G., Relexans, S., Ibalot, F., and Parlanti, E. (2010). New insights into the size distribution of fluorescent dissolved organic matter in estuarine waters. Org. Geochem., 41(6), 595–610.
Kaiser, K. and Guggenberger, G. (2000). The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org. Geochem., 31(7–8), 711–725.
Kieber, R.J., Zhou, X.L., and Mopper, K. (1990). Formation of carbonyl compounds from UV-induced photodegradation of humic substances in natural waters: Fate of riverine carbon in the sea. Limnol. Oceanogr., 35(7), 1503–1515.
Kieber, R.J., Hydro, L.H., and Seaton, P.J. (1997). Photooxidation of triglycerides and fatty acids in seawater: Implication toward the formation of marine humic substances. Limnol. Oceanogr., 42, 1454–1462.
Kieber, R.J., Willey, J.D., Whitehead, R.F., and Reid, S.N. (2007). Photobleaching of chromophoric dissolved organic matter (CDOM) in rainwater. J. Atmos. Chem., 58(3), 219–235.
Kong, L. and Ferry, J.L. (2003). Effect of salinity on the photolysis of chrysene adsorbed to a smectite clay. Environ. Sci. Technol., 37(21), 4894–4900.
Korshin, G.V., Kumke, M.U., Li, C.W., and Frimmel, F.H. (1999). Influence of chlorination on chromophores and fluorophores in humic substances. Environ. Sci. Technol., 33(8), 1207–1212.
Koussai, A.M. and Zika, R.G. (1990). Light-induced alteration of the photophysical properties of dissolved organic matter in seawater. 1. Photoreversible properties of natural water fluorescence. Nether. J. Sea Res., 27(1), 25–32.
Kowalczuk, P., Cooper, W.J., Whitehead, R.F., Durako, M.J., and Sheldon, W. (2003). Characterization of CDOM in an organic-rich river and surrounding coastal ocean in the South Atlantic Bight. Aquat. Sci., 65(4), 384–401.
Kowalczuk, P., Durako, M.J., Young, H., Kahn, A.E., Cooper, W.J., and Gonsior, M. (2009). Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Interannual variability. Mar. Chem., 113(3–4), 182–196.
Kujawinski, E.B., Del Vecchio, R., Blough, N.V., Klein, G.C., and Marshall, A.G. (2004). Probing molecular-level transformations of dissolved organic matter: Insights on photochemical degradation and protozoan modification of DOM from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Mar. Chem., 92(1–4), 23–37.
Kumke, M.U., Specht, C.H., Brinkmann, T., and Frimmel, F.H. (2001). Alkaline hydrolysis of humic substances – spectroscopic and chromatographic investigations. Chemosphere, 45(6–7), 1023–1031.
Laane, R. (1982). Influences of pH on the fluorescence of dissolved organic matter. Mar. Chem., 11(4), 395–401.
Lakowicz, J. (2006). Principles of Fluorescence Spectroscopy. New York: Springer Science+Business Media.
Lakshman, S., Mills, R., Patterson, H., and Cronan, C. (1993). Apparent differences in binding site distributions and aluminum(III) complexation for three molecular weight fractions of a coniferous soil fulvic acid. Anal. Chim. Acta, 282(1), 101–108.
Lead, J.R., De Momi, A., Goula, G., and Baker, A. (2006). Fractionation of freshwater colloids and particles by SPLITT: Analysis by electron microscopy and 3D excitation-emission matrix fluorescence. Anal. Chem., 78(11), 3609–3615.
Leenheer, J.A., Noyes, T.I., Rostad, C.E., and Davisson, M.L. (2004). Characterization and origin of polar dissolved organic matter from the Great Salt Lake. Biogeochemistry, 69(1), 125–141.
Levesque, M. (1972). Fluorescence and gel filtration of humic compounds. Soil Sci., 113(5), 346–353.
Liu, X. and Millero, F.J. (2002). The solubility of iron in seawater. Mar. Chem., 77(1), 43–54.
Liu, R.X., Lead, J.R., and Baker, A. (2007). Fluorescence characterization of cross flow ultrafiltration derived freshwater colloidal and dissolved organic matter. Chemosphere, 68(7), 1304–1311.
Lochmuller, C.H. and Saavedra, S.S. (1986). Conformational changes in soil fulvic acid measured by time-dependent fluorescence depolarization. Anal. Chem., 58(9), 1978–1981.
Lu, X.Q. and Jaffe, R. (2001). Interaction between Hg(II) and natural dissolved organic matter: A fluorescence spectroscopy based study. Water Res., 35(7), 1793–1803.
Luster, J., Lloyd, T., Sposito, G., and Fry, I.V. (1996). Multi-wavelength molecular fluorescence spectrometry for quantitative characterization of copper(II) and aluminum(III) complexation by dissolved organic matter. Environ. Sci. Technol., 30(5), 1565–1574.
Ma, J.H., Del Vecchio, R., Golanoski, K.S., Boyle, E.S., and Blough, N.V. (2010). Optical properties of humic substances and CDOM: Effects of borohydride reduction. Environ. Sci. Technol., 44(14), 5395–5402.
Ma, X.D. and Green, S.A. (2004). Photochemical transformation of dissolved organic carbon in Lake Superior – An in-situ experiment. J. Great Lakes Res., 30, 97–112.
Mac, M. and Wirz, J. (1993). Deriving intrinsic electron-transfer rates from nonlinear Stern-Volmer dependencies for fluorescence quenching of aromatic molecules by inorganic anions in acetonitrile. Chem. Phys. Lett., 211(1), 20–26.
Mac, M. (1995). Fluorescence quenching of aromatic molecules by inorganic anions in polar solvents. J. Luminesc., 65(3), 143–151.
Maloney, K.O., Morris, D.P., Moses, C.O., and Osburn, C.L. (2005). The role of iron and dissolved organic carbon in the absorption of ultraviolet radiation in humic lake water. Biogeochemistry, 75(3), 393–407.
Mantoura, R.F.C. and Woodward, E.M.S. (1983). Conservative behavior of riverine dissolved organic carbon in the Severn Estuary – Chemical and geochemical implications. Geochim. Cosmochim. Acta, 47(7), 1293–1309.
Maranger, R. and Pullin, M.J. (2002). Elemental complexation by dissolved organic matter in lakes: Implications for Fe speciation and the bioavailability of Fe and P. In S. Findlay and R. Sinsabaugh (Eds.), Dissolved Organic Matter in Aquatic Ecosystems (pp. 186–217). San Diego: Academic Press.
Mariot, M., Dudal, Y., Furian, S., Sakamoto, A., Valles, V., Fort, M., and Barbiero, L. (2007). Dissolved organic matter fluorescence as a water-flow tracer in the tropical wetland of Pantanal of Nhecolandia, Brazil. Sci. Total Environ., 388, 184–193.
Mayer, L.M., Schick, L.L., and Loder, T.C. (1999). Dissolved protein fluorescence in two Maine estuaries. Mar. Chem., 64(3), 171–179.
McKnight, D.M., Boyer, E.W., Westerhoff, P.K., Doran, P.T., Kulbe, T., and Andersen, D.T. (2001). Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr., 46, 38–48.
Means, J.C. (1995). Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons. Mar. Chem., 51(1), 3–16.
Miller, W.L. (1998). Effects of UV radiation on aquatic humus: Photochemical principles and experimental considerations. In D.O. Hessen and L.J. Tranvik (Eds.), Aquatic Humic Substances: Ecology and Biogeochemistry (pp. 125–141). Berlin: Springer-Verlag.
Miller, W.L. and Zepp, R.G. (1995). Photochemical production of dissolved inorganic carbon from terrestrial organic matter: Significance to the oceanic organic carbon cycle. Geophys. Res. Lett., 22(4), 417–420.
Milne, P.J. and Zika, R.G. (1989). Luminescence quenching of dissolved of dissolved organic matter in seawater. Mar. Chem., 27(3–4), 147–164.
Minor, E.C., Pothen, J., Dalzell, B.J., Abdulla, H., and Mopper, K. (2006). Effects of salinity changes on the photodegradation and ultraviolet-visible absorbance of terrestrial dissolved organic matter. Limnol. Oceanogr., 51(5), 2181–2186.
Mobed, J.J., Hemmingsen, S.L., Autry, J.L., and McGown, L.B. (1996). Fluorescence characterization of IHSS humic substances: Total luminescence spectra with absorbance correction. Environ. Sci. Technol., 30(10), 3061–3065.
Mopper, K., Feng, Z.M., Bentjen, S.B., and Chen, R.F. (1996). Effects of cross-flow filtration on the absorption and fluorescence properties of seawater. Mar. Chem., 55(1–2), 53–74.
Mopper, K., Stubbins, A., Ritchie, J.D., Bialk, H.M., and Hatcher, P.G. (2007). Advanced instrumental approaches for characterization of marine dissolved organic matter: Extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy. Chem. Rev., 107(2), 419–442.
Moran, M. A., Sheldon, W.M., and Zepp, R.G. (2000). Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol. Oceanogr., 45(6), 1254–1264.
Ohno, T., Amirbahman, A., and Bro, R. (2008). Parallel factor analysis of excitation-emission matrix fluorescence spectra of water soluble soil organic matter as basis for the determination of conditional metal binding parameters. Environ. Sci. Technol., 42(1), 186–192.
Ortega-Retuerta, E., Pulido-Villena, E., and Reche, I. (2007). Effects of dissolved organic matter photoproducts and mineral nutrient supply on bacterial growth in mediterranean inland waters. Microb. Ecol., 54, 161–169.
Osburn, C.L., and Morris, D.P. (2003). Photochemistry of chromophoric dissolved organic matter in natural waters. In E.W. Hebling and H.E. Zagarese (Eds.), UV Effects in Aquatic Organisms and Ecosystems (pp. 185–217). London: Royal Society of Chemistry.
Osburn, C.L., Zagarese, H.E., Morris, D.P., Hargreaves, B.R., and Cravero, W.E. (2001). Calculation of spectral weighting functions for the solar photobleaching of chromophoric dissolved organic matter in temperate lakes. Limnol. Oceanogr., 46(6), 1455–1467.
Osburn, C.L., O’Sullivan, D.W., and Boyd, T.J. (2009a). Increases in the longwave photobleaching of chromophoric dissolved organic matter in coastal waters. Limnol. Oceanogr., 54(1), 145–159.
Osburn, C.L., Retamal, L., and Vincent, W.F. (2009b). Photoreactivity of chromophoric dissolved organic matter transported by the Mackenzie River to the Beaufort Sea. Mar. Chem., 115(1–2), 10–20.
Osburn, C.L., Wigdahl, C.R., Fritz, S.C., and Saros, J.E. (2011). Dissolved organic matter composition and photoreactivity in prairie lakes of the US Great Plains. Limnol. Oceanogr., 56(6), 2371–2390.
O’Sullivan, D.W., Neale, P.J., Coffin, R.B., Boyd, T.J., and Osburn, S.L. (2005). Photochemical production of hydrogen peroxide and methylhydroperoxide in coastal waters. Mar. Chem., 97(1–2), 14–33.
Otero, M., Mendonca, A., Valega, M., Santos, E.B.H., Pereira, E., Esteves, V.I., and Duarte, A. (2007). Fluorescence and DOC contents of estuarine pore waters from colonized and non-colonized sediments: Effects of sampling preservation. Chemosphere, 67(2), 211–220.
Parlanti, E., Wörz, K., Geoffroy, L., and Lamotte, M. (2000). Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activity in a coastal zone submitted to anthropogenic inputs. Org. Geochem., 31(12), 1765–1781.
Patel-Sorrentino, N., Mounier, S., and Benaim, J.Y. (2002). Excitation–emission fluorescence matrix to study pH influence on organic matter fluorescence in the Amazon basin rivers. Water Res., 36(10), 2571–2581.
Patsayeva, S.V., Fadeev, V.V., Filippova, E.M., Chubarov, V.V., and Yuzhakov, V.I. (1991). Temperature and laser ultraviolet radiation influence on luminescence spectra of dissolved organic matter. Vest. Moskov. Universit. Ser. 3 Fizik. Astronom., 32(6), 71–75.
Provenzano, M.R., Cilenti, A., Gigliotti, G., and Senesi, N. (2008). Spectroscopic investigation on hydrophobic and hydrophilic fractions of dissolved organic matter extracted from soils at different salinities. Clean Soil Air Water, 36(9), 748–753.
Provenzano, M.R., Caricasole, P., Brunetti, G., and Senesi, N. (2010). Dissolved organic matter extracted with water and a saline solution from different soil profiles. Soil Sci., 175(6), 255–262.
Psenner, R. (1999). Living in a dusty world: Airborne dust as a key factor for alpine lakes. Water Air Soil Pollut., 112(3–4), 217–227.
Pullin, M.J. and Cabaniss, S.E. (1997). Physicochemical variations in DOM-synchronous fluorescence: Implications for mixing studies. Limnol. Oceanogr., 42(8), 1766–1773.
Reche, I., Pace, M.L., and Cole, J.J. (1999). Relationship of trophic and chemical conditions to photobleaching of dissolved organic matter in lake ecosystems. Biogeochemistry, 44(3), 259–280.
Ritchie, J.D. and Perdue, E.M. (2003). Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim. Cosmochim. Acta, 67(1), 85–96.
Romera-Castillo, C., Sarmento, H., Alvarez- Salgado, X.A., Gasol, J.M., and Marrase, C. (2010). Production of chromophoric dissolved organic matter by marine phytoplankton. Limnol. Oceanogr., 55, 446–454.
Ryan, D.K. and Weber, J.H. (1982). Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid. Anal. Chem., 54(6), 986–990.
Ryan, D.K., Shia, C.P., and Oconnor, D.V. (1996). Fluorescence spectroscopic studies of Al-fulvic acid complexation in acidic solutions. Humic Fulv. Acids Isolat., Struct., Environ. Role, 651, 125–139.
Saar, R.A. and Weber, J.H. (1980). Comparison of spectrofluorometry and ion-selective electrode potentiometry for determination of complexes between fulvic acid and heavy-metal ions, Anal. Chem., 52, 2095–2100.
Senesi, N. (1990). Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals. 2. The fluorescence spectroscopy approach. Anal. Chim. Acta, 232(1), 77–106.
Senesi, N. and D’Orazio, V. (2005). Fluorescence spectroscopy. In D. Hillel (Ed.), Encyclopedia of Soils in the Environment (pp. 35–52). Amsterdam: Academic Press.
Seredynska-Sobecka, B., Baker, A., and Lead, J.R. (2007). Characterisation of colloidal and particulate organic carbon in freshwaters by thermal fluorescence quenching. Water Res., 41(14), 3069–3076.
Sharpless, C.M. and McGown, L.B. (1999). Effects of aluminum-induced aggregation on the fluorescence of humic substances. Environ. Sci. Technol., 33(18), 3264–3270.
Shaw, P.J., Jones, R.I., and De Haan, H. (2000). The influence of humic substances on the molecular weight distributions of phosphate and iron in epilimnetic lake waters. Freshwater Biol., 45(4), 383–393.
Shizuka, H., Nakamura, M., and Morita, T. (1980). Anion-induced fluorescence quenching of aromatic molecules. J. Phys. Chem., 84(9), 989–994.
Sholkovitz, E.R. (1976). Flocculation of dissolved organic and inorganic matter during mixing of river water and seawater. Geochim. Cosmochim. Acta, 40(7), 831–845.
Sierra, M.M.D., Donard, O.F.X., and Lamotte, M. (1997). Spectral identification and behaviour of dissolved organic fluorescent material during estuarine mixing processes. Mar. Chem., 58(1–2), 51–58.
Smart, P.L., Finlayson, B.L., Rylands, W.D., and Ball, C.M. (1976). Relation of fluorescence to dissolved organic carbon in surface waters. Water Res., 10(9), 805–811.
Specht, C.H., Kumke, M.U., and Frimmel, F.H. (2000). Characterization of NOM adsorption to clay minerals by size exclusion chromatography. Water Res., 34(16), 4063–4069.
Spencer, R.G.M., Ahad, J.M.E., Baker, A., Cowie, G.L., Ganeshram, R., Upstill-Goddard, R.C., and Uher, G. (2007a). The estuarine mixing behaviour of peatland derived dissolved organic carbon and its relationship to chromophoric dissolved organic matter in two North Sea estuaries (UK). Estuar. Coast. Shelf Sci., 74(1–2), 131–144.
Spencer, R.G.M., Bolton, L., and Baker, A. (2007b). Freeze/thaw and pH effects on freshwater dissolved organic matter fluorescence and absorbance properties from a number of UK locations. Water Res., 41(13), 2941–2950.
Stedmon, C.A., Markager, S., and Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem., 82(3–4), 239–254.
Stolpe, B., Guo, L.D., Shiller, A.M., and Hassellov, M. (2010). Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionation. Mar. Chem., 118(3–4), 119–128.
Sun, L.Y., Sun, W.L., and Ni, J.R. (2009). Partitioning of water soluble organic carbon in three sediment size fractions: Effect of the humic substances. J. Environ. Sci. China, 21(1), 113–119.
Treinin, A., Loeff, I., Hurley, J.K., and Linschitz, H. (1983). Charge transfer interactions of excited molecules with inorganic anions – The role of spin orbit coupling in controlling net electron transfer. Chem. Phys. Lett., 95(4–5), 333–338.
Tzortziou, M., Osburn, C.L., and Neale, P.J. (2007). Photobleaching of dissolved organic material from a tidal marsh‐estuarine system of the Chesapeake Bay. Photochem. Photobiol., 83(4), 782–792.
Vahatalo, A.V., Salonen, K., Salkinoja- Salonen, M., and Hatakka, A. (1999). Photochemical mineralization of synthetic lignin in lake water indicates enhanced turnover of aromatic organic matter under solar radiation. Biodegradation, 10(6), 415–420.
Vodacek, A., Blough, N.V., DeGrandpre, M.D., Peltzer, E.T., and Nelson, R.K. (1997). Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: Terrestrial inputs and photooxidation. Limnol. Oceanogr., 42(4), 674–686.
Watkins, A.R. (1974). Kinetics of fluorescence quenching by inorganic anions. J. Phys. Chem., 78(25), 2555–2558.
Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Fram, M.S., Fujii, R., and Mopper, K. (2003). Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol., 37(20), 4702–4708.
Wells, M.L. (2002). Marine colloids and trace metals. In D.A. Hansell and C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (pp. 367–404). San Diego: Academic Press.
Willey, J.D. (1984). The effect of seawater magnesium on natural fluorescence during estuarine mixing and implications for tracer applications. Mar. Chem., 15(1), 19–45.
Wu, F.C., Mills, R.B., Evans, R.D., and Dillon, P.J. (2004). Kinetics of metal-fulvic acid complexation using a stopped-flow technique and three-dimensional excitation emission fluorescence spectrophotometer. Anal. Chem., 76(1), 110–113.
Yamashita, Y. and Jaffe, R. (2008). Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis. Environ. Sci. Technol., 42(19), 7374–7379.
Zanardi-Lamardo, E., Clark, C.D., Moore, C.A., and Zika, R.G. (2002). Comparison of the molecular mass and optical properties of colored dissolved organic material in two rivers and coastal waters by flow field-flow fractionation. Environ. Sci. Tech., 36(13), 2806–2814.
Zhao, J. and Nelson, D.J. (2005). Fluorescence study of the interaction of Suwannee River fulvic acid with metal ions and Al3+-metal ion competition. J. Inorg. Biochem., 99(2), 383–396.
Zhou, J.L. and Rowland, S.J. (1997). Evaluation of the interactions between hydrophobic organic pollutants and suspended particles in estuarine waters. Water Res., 31(7), 1708–1718.
Zhou, J.L., Rowland, S., Mantoura, R.F.C., and Braven, J. (1994). The formulation of humic coatings on mineral particles under simulated estuarine conditions – A mechanistic study. Water Res., 28(3), 571–579.
Zhou, J.L., Rowland, S.J., Mantoura, R.F.C., and Lane, M.C.G. (1997). Desorption of tefluthrin insecticide from soil in simulated rainfall runoff systems – Kinetic studies and modelling. Water Res., 31(1), 75–84.
Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38(1), 45–50.

References

Aitkenhead-Peterson, J.A., McDOwell, W.H., and Neff, J.C. (2003). Sources, production and regulation of allochthonous dissolved organic matter inputs to surface waters. In S.E.G. Findlay and R.L. Sinsabaugh (Eds.), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter (pp. 25–70). Aquatic Ecology Series. San Diego: Academic Press.
Akashi, H. and Gojobori, T. (2002). Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. USA, 99(6), 3695–3700.
Amado, A.M., Cotner, J.B., Suhett, A.L., Esteves, F.D., Bozelli, R.L., and Farjalla, V.F. (2007). Contrasting interactions mediate dissolved organic matter decomposition in tropical aquatic ecosystems. Aquat. Microb. Ecol., 49, 25–34.
Balcarczyk, K.L., Jones, J.B., Jr., Jaffe, R., and Maie, N. (2009). Stream dissolved organic matter bioavailability and composition in watersheds underlain with discontinuous permafrost. Biogeochemistry, 94, 255–270.
Benner, R. (2002). Chemical composition and reactivity. In D.A. Hansell and C.A. Carlson (Eds.), Biogeochemistry of Marine Dissolved Organic Matter (pp. 59–90). San Diego: Academic Press.
Benner, R. and Biddanda, B. (1998). Photochemical transformations of surface and deep marine dissolved organic matter: Effects on bacterial growth. Limnol. Oceanogr., 43, 1373–1378.
Biers E.J., Zepp R.G., and Moran M.A. (2007). The role of nitrogen in chromophoric and fluorescent dissolved organic matter formation. Mar. Chem., 103, 46–60
Boyd, T.J. and Osburn, C.L. (2004). Changes in CDOM fluorescence from allochthonous and autochthonous sources during tidal mixing and bacterial degradation in two coastal estuaries. Mar. Chem., 89, 189–210.
Boyle E.S., Guerriero, N., Thiallet, A., Del Vecchio, R., and Blough, N.V. (2009). Optical properties of humic substances and CDOM: Relation to structure. Environ. Sci. Technol., 43, 2262–2268.
Cammack, W.K., Kalff, J., Prairie, Y.T., and Smith, E.M. (2004). Fluorescent dissolved organic matter in lakes: Relationships with het- erotrophic metabolism. Limnol. Oceanogr., 49, 2034–2045.
Canadell, J.G., Le Quéré, C., Raupach, M.R., Ciais, P., Conway, T.J, et al. (2007). Recent acceleration in CO2 emissions and the response of the global carbon cycle. Proc. Natl. Acad. Sci. USA, 104, 18866–18870.
Coble, P.G. (1996). Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem., 51, 325–346.
Coble, P.G., Del Castillio, C.E., and Avril, B. (1998). Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep-Sea Res. Pt. II, 45, 2195–2223.
Cory, R.M., McKnight, D.M., Chin, Y.P., Miller, P., and Jaros, C.L. (2007). Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations. J. Geophys. Res., 112, G04S51, doi:10.1029/2006JG000343 ER.
Del Vecchio, R. and Blough, N.V. (2004). On the origin of the optical properties of humic substances. Environ. Sci. Technol., 38, 3885–3891.
Determann, S., Lobbes, J.M., Reuter, R., and Rullköter, J. (1998). Ultraviolet fluorescence excitation and emission spectroscopy of marine algae and bacteria. Mar. Chem., 62, 137–156.
Duursma, E.K. (1965). Dissolved organic constituents of sea water. In P. Riley and G. Skirrow (Eds.), Chemical Oceanography, Vol, 1 (pp. 433–477). London: Academic Press.
Ertel, J.R., Hedges, J.I., Devol, A.H., Richey, J.E., and de Nazare Goes Ribeiro, M. (1986). Dissolved humic substances of the Amazon River system. Limnol. Oceanogr., 31, 739–754.
Fellman, J.B., Hood, E., Edwards, R.T., and D’Amore, D.V. (2009a). Changes in the concentration, biodegradability, and fluorescent properties of dissolved organic matter during stormflows in coastal temperate watersheds. J. Geophys. Res., 114, G01021.
Fellman, J.B., Hood, E. D’Amore, D.V., Edwards, R.T., and White, D. (2009b). Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry, 95, 277–293.
Frey, K.E. and Smith, L.C. (2005). Amplified carbon release from vast West Siberian peatlands by 2100. Geophys. Res. Lett., 32, L09401.
Fulton, J.R., McKnight, D.M., Foreman, C., Cory, R., Stedmon, C., and Blunt, E. (2004). Changes in fulvic acid redox state through the oxycline of a permanently ice-covered Antarctic lake. Aquat. Sci., 66, 27–46.
Granéli, W., Lindell, M., and Tranvik, L. (1996). Photo-oxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol. Oceanogr., 41, 698–706.
Guggenberger, G., Kaiser, K., and Zech, W. (1998). Mobilization and immobilization of dissolved organic matter in forest soils. J. Plant Nutr. Soil Sci., 161, 401–408.
Hansell, D.A. and Carlson, C.A. (1998). Net community production of dissolved organic carbon. Global Biogeochem. Cycles, 12, 443–453.
Hansell, D.A., Carlson, C.A., Repeta, D.J., and Schlitzer, R. (2009). Dissolved organic matter in the ocean: New insights stimulated by a controversy. Oceanography, 22, 52–61.
Harvey, G.R., Boran, D.A., Chesal, L.A., and Tokar, J.M. (1983). The structure of marine fulvic and humic acids. Mar. Chem., 12, 119–132.
Harvey, G.R., Boran, D.A., Piotrowicz, S.R., and Weisel, C.P. (1984). Synthesis of marine humic substances from unsaturated lipids. Nature, 309, 244–246.
Hayase, K. and Shinozuka, N. (1995). Vertical distribution of fluorescent organic matter along with AOU and nutrients in the Equatorial Pacific. Mar. Chem., 48, 283–290.
Hedges J.I. (1978). Formation and clay mineral reactions of melanoidins. Geochim. Cosmochim. Acta, 42, 69–76.
Hernes, P.J., Bergamaschi, B.A., Eckard, R.S., and Spencer, R.G.M. (2009). Fluorescence-based proxies for lignin in freshwater dissolved organic matter. J. Geophys. Res., 114, G00F03.
Hood, E., Fellman, J., Spencer, R.G.M., Hernes, P.J., Edwards, R., D’Amore, D., and Scott, D. (2009). Glaciers as a source of ancient and labile organic matter to the marine environment. Nature, 462., 1044–1047.
Houghton, R.A. (2007). Balancing the global carbon budget. Annu. Rev. Earth Planet. Sci., 35, 313–347.
Hudson, N., Baker, A., Ward, D., Reynolds, D.M., Brunsdon, C., Carliell- Marquet, C., and Browning, S. (2008). Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England. Sci. Total Environ., 391(1), 149–158.
Ishiwatari, R. (1992). Macromolecular material (humic substance) in the water column and sediments. Mar. Chem., 39, 151–166
Jiao, N., Herndl, G.J., Hansell, D.A., Benner, R., Kattner, G., Wilhelm, S.W., Kirchman, D.L., Weinbauer, M.G., Luo T., Chen, F., and Azam, F. (2010). Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nature Rev. Microbiol., 8, 593–599.
Jobbágy, E.G. and Jackson, R.B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Applicat., 10, 423–436.
Jørgensen, L., Stedmon, C.A., Kragh, T., Markager, S., Middelboe, M., and Søndergaard, M. (2011). Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar. Chem., 126, 139–148.
Kalbitz, K., Solinger, S., Park, J.H., Michalzik, B., and Matzner, E. (2000). Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci., 165, 277–304.
Kawasaki, N. and Benner, R. (2007). Bacterial release of dissolved organic matter during cell growth and decline: Molecular origin and composition. Limnol. Oceanogr., 51(5),2170–2180.
Kramer, G.D. and Herndl, G.J. (2004). Photo- and bioreactivity of chromophoric dissolved organic matter produced by marine bacterioplankton. Aquat. Microb. Ecol., 36(3), 239–246.
Lakowicz, J.R. (2006). Principles of Fluorescence Spectroscopy, 3rd ed. New York: Springer Science+Business Media.
Lochmuller, C.H. and Saavedra, S.S. (1986). Conformational changes in a soil fulvic acid measured by time dependent fluorescence depolarization. Anal. Chem., 38, 1978–1981.
Louchouarn, P., Opsahl, S., and Benner, R. (2000). Isolation and quantification of dissolved lignin from natural waters using solid-phase extraction (SPE) and GC/MS selected ion monitoring (sim). Anal. Chem., 13, 27802787.
Maie, N., Scully, N., Pisani, O., and Jaffé R. (2007). Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems, Water Res., 41(3), 563–570.
McDowell, W.H. and Wood, T. (1984). Podzolization-Soilo processes control dissolved organic carbon concentrations in stream water. Soil Sci., 137, 23–32.
McKnight, D.M., Aiken, G.R., and Smith, R.L. (1991). Aquatic fulvic acids in microbially based ecosystems: Results from two desert lakes in Antarctica. Limnol. Oceanogr., 36, 998–1006.
McKnight, D.M., Harnish, R., Wershaw, R.L., Baron, J.S., and Schiff, S. (1997). Chemical characteristics of particulate, colloidal, and dissolved organic material in Loch Vale Watershed. Rocky Mt. Natl. Park Biogeochem., 36, 99–124.
Middelboe, M. and Lyck, P.G. (2002). Regeneration of dissolved organic matter by viral lysis in marine microbial communities. Aquat. Microb. Ecol., 27, 187–194.
Monteith, D.T., Stoddard, J.L., Evans, C.D., de Wit, H.A., Forsius, M., Hogasen, T., Wilander, A., Skjelkvale, B.L., Jeffries, D.S., Vuorenmaa, J., Keller, B., Kopacek, J., and Vesely, J. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450, 537–541.
Moran, M.A., Sheldon, W.M., and Zepp, R.G. (2000). Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol. Oceanogr., 45, 1254–1264.
Mulholland, P.J. (2003). Large-scale patterns in dissolved organic carbon concentration, flux and sources. In S.E.G. Findlay and R.L. Sinsabaugh (Eds.), Aquatic Ecosystems: Interactivity of Dissolved Organic Matter (pp. 139–160). Aquatic Ecology Series. San Diego: Academic Press.
Murphy, K.R., Ruiz, G.M., Dunsmuir, W.T.M, and Waite, T.D. (2006). Optimized parameters for rapid fluorescence-based verification of ballast water exchange by ships. Environ. Sci. Technol., 40, 2357–2362.
Murphy, K.R., Stedmon, C.A., Waite, T.D., and Ruiz, G.M. (2008). Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem., 108, 40–58.
Nagata, T. (2000). Production mechanisms of dissolved organic matter. In D.L. Kirchman (Ed.), Microbial Ecology of the Oceans (pp. 121–152). Wiley Series in Ecological and Applied Microbiology. Hoboken, NJ: Wiley-Liss.
Nelson, N.B., Siegel, D.A., Carlson, C.A., and Swan, C. (2010). Tracing global biogeochemical cycles and meridional overturning circulation using chromophoric dissolved organic matter. Geophys. Res. Lett., 37, L03610.
Nieto-Cid, M., Alvarez-Salgado, X.A., and Perez, F.F. (2006). Microbial and photochemical reactivity of fluorescent dissolved organic matter in a coastal upwelling system. Limnol. Oceanogr., 51(3), 1391–1400
Obernosterer, I. and Benner, R. (2004). Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol. Oceanogr., 49, 117–124.
Ogawa, H., Amagi, Y., Koike, I., Kaiser, K., and Benner, R. (2001). Production of refractory dissolved organic matter by bacteria. Science, 292, 917–920.
Opsahl, S. and Benner, R. (1997). Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature, 386, 480–482.
Rember, R.D. and Trefry, J.H. (2004). Increased concentrations of dissolved trace metals and organic carbon during snowmelt in rivers of the Alaskan Arctic. Geochim. Cosmochim. Acta, 68, 477–489.
Reynolds, D.M. and Ahmad, S.R.A. (1997). Rapid and direct determination of wastewater BOD values using a fluorescence technique. Water Res., 31(8), 2012−2018.
Rochelle-Newall, E.J. and Fisher, T.R. (2002). Production of chromophoric dissolved organic matter fluorescence in marine and estuarine environments: An investigation into the role of phytoplankton. Mar. Chem., 77, 7–21.
Romera-Castillo, C., Sarmento, H., Álvarez-Salgado, X.A., Gasol, J.M., and Marrase C. Production of chromophoric dissolved organic matter by marine phytoplankton. Limnol. Oceanogr., 55(1), 2010, 446–454.
Sarkanen, K.V. and Ludwig, C.H. Lignins, Eds. (1971). Occurrences, Formation, Structure and Reactions. New York: Wiley-Interscience.
Senesi, N., Miano, T.M., Provenzano, M.R., and Brunetti, G. (1991). Characterization, differentiation and classification of humic substances by fluorescence spectroscopy. Soil Sci., 152, 259–271.
Spencer, R.G.M., Aiken, G.R., Butler, K.D., Dornblaser, M.M., Striegl, R.G., and Hernes, P. (2009). Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the arctic ocean: A case study of the Yukon river, Alaska, Geophys. Res. Lett., 36, L06401.
Stedmon, C.A. and Markager, S.S. (2005a). Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr., 50(2), 686–697.
Stedmon, C.A. and Markager, S.S. (2005b). Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnol. Oceanogr., 50(5), 1415–1426.
Stedmon, C.A. and Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Methods, 6, 572–579.
Stedmon, C.A., Markager, S., and Bro, R. (2003). Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy. Mar. Chem., 82, 239–254.
Stedmon C.A, Markager, S., Søndergaard, M., Vang, T., Laubel, A., Borch, N.H., and Windelin, A. (2006). Dissolved organic matter (DOM) export to a temperate estuary: Seasonal variations and implications of land use. Estuaries Coasts, 29, 388–400.
Stevensen, F.J. (1982). Biochemistry of the Formation of Humic Substances. In F.J. Stevensen (Ed.), Humus Chemistry (pp. 195–220). New York: John Wiley & Sons.
Strom, S.L., Benner, R., Ziegler, S., and Dagg, M.J. (1997). Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr., 42, 1364–1374.
Tipping, E., Woof, C., Rigg, E., Harrison, A.F., Ineson, P., Taylor, K., Benham, D., Poskitt, J., Rowland, A.P., Bol, R., and Harkness, D.D. (1999). Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment. Environ. Int., 25, 83–95.
Tranvik, L. and Kokalj, S. (1998). Decreased biodegradability of algal DOC due to interactive effects of UV radiation and humic matter. Aquat. Microb. Ecol., 14, 301–307.
Tranvik, L.J. and Bertilsson, S. (2001). Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol. Lett., 4, 458–463.
Tranvik, L.J., Downing, J., and Cotner, J. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr., 54(1), 2298–2314.
Urban-Rich, J., McCarty, J.T., and Shailer, M. (2004). Effects of food concentration and diet on chromophoric dissolved organic matter accumulation and fluorescent composition during grazing experiments with the copepod, Calanus finmarchicus. ICES J. Mar. Sci., 61, 542–551.
Vähätalo, A.V. and Wetzel, R.G. (2004). Photochemical and microbial decomposition of chromophoric dissolved organic matter during long (months-years) exposures. Mar. Chem., 89, 313–326.
Vähätalo, A.V. and Wetzel, R.G. (2008). Long-term photochemical and microbial decomposition of wetland-derived dissolved organic matter with alteration of C-13: C-12 mass ratio. Limnol. Oceanogr., 53, 1387–1392.
Yamamoto, S. and Ishiwatari, R. (1989). A study of the formation mechanism of sedimentary humic substances-II. Protein-based melanoidin model. Org. Geochem., 14, 479–489.
Yamashita, Y. and Tanoue, E. (2003). Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Mar. Chem., 82, 255–271.
Yamashita, Y. and Tanoue, E. (2004). In situ production of chromophoric dissolved organic matter in coastal environments. Geophys. Res. Lett., doi:10.1029/2004GL019734.
Yamashita, Y. and Tanoue, E. (2008). Production of bio-refractory fluorescent dissolved organic matter in the ocean interior. Nature Geosci., 1, 579–582, doi:10.1038/ngeo279.
Zsolnay, A. (2003). Dissolved organic matter: Artefacts, definitions, and functions. Geoderma, 113, 187–209.
Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F. (1999). Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38, 45–50.