Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-07-06T23:44:11.995Z Has data issue: false hasContentIssue false

11 - Photovoltaics

from Part II - Advances and challenges

Published online by Cambridge University Press:  23 November 2018

Sergey V. Gaponenko
Affiliation:
National Academy of Sciences of Belarus
Hilmi Volkan Demir
Affiliation:
Nanyang Technological University, Singapore
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Applied Nanophotonics , pp. 363 - 379
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further reading

Beard, M. C., Luther, J. M., Semonin, O. E., and Nozik, A. J. (2012). Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors. Acc Chem Res, 46, 12521260.Google Scholar
Borchert, H. (2014). Solar Cells Based on Colloidal Nanocrystals. Springer.Google Scholar
Chattopadhyay, S., Huang, Y. F., Jen, Y. J., et al. (2010). Anti-reflecting and photonic nanostructures. Mater Sci Eng, R, 69, 135.Google Scholar
Kim, J. Y., Voznyy, O., Zhitomirsky, D., and Sargent, E. H. (2013). 25th anniversary article: colloidal quantum dot materials and devices – a quarter-century of advances. Adv Mater, 25, 49865010.CrossRefGoogle ScholarPubMed
Kramer, I. J., and Sargent, E. H. (2014). The architecture of colloidal quantum dot solar cells: materials to devices. Chem Rev, 114, 863882.Google Scholar
Otnes, G., and Borgström, M. T. (2016). Towards high efficiency nanowire solar cells. Nano Today, 12, 3145.CrossRefGoogle Scholar
Polman, A., Knight, A., Garnett, E. K., Ehrler, B., and Sinke, W. C. (2016). Photovoltaic materials: present efficiencies and future challenges. Science, 352, 307318.CrossRefGoogle ScholarPubMed

References

Arinze, E., Qiu, B., Nyirjesy, G., and Thon, S. M. (2016). Plasmonic nanoparticle enhancement of solution-processed solar cells: practical limits and opportunities. ACS Photonics, 3, 158173.CrossRefGoogle Scholar
Atwater, H. A., and Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nat Mater, 9, 205213.Google Scholar
Beard, M. C., Luther, J. M., and Nozik, A. J. (2014). The promise and challenge of nanostructured solar cells. Nat Nanotechnol, 9, 951954.Google Scholar
Carey, G. H., Levina, L., Comin, R., Voznyy, O., and Sargent, E. H. (2015). Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Adv Mater, 27, 33253330.CrossRefGoogle ScholarPubMed
Chuang, C.-H. M., Brown, P. R., Bulović, V., and Bawendi, M. G. (2014). Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater, 13, 796801.Google Scholar
Clapham, P. B., and Hutley, M. C. (1973). Reduction of lens reflexion by the “moth eye” principle. Nature, 244, 281282.CrossRefGoogle Scholar
Ellingson, R. J., Beard, M. C., Johnson, J. C., et al. (2005). Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett, 5, 865871.Google Scholar
Grätzel, M. (2009). Recent advances in sensitized mesoscopic solar cells. Acc Chem Res, 42, 17881798.CrossRefGoogle ScholarPubMed
Green, M. A., Emery, K., Hishikawa, Y., et al. (2017). Solar cell efficiency tables (version 49). Prog Photovoltaics: Res Appl, 25, 313.CrossRefGoogle Scholar
Ip, A. H., Thon, S. M., Hoogland, S., et al. (2012). Hybrid passivated colloidal quantum dot solids. Nature Nanotechn, 7, 577582.Google Scholar
Kamat, P. V. (2008). Quantum dot solar cells: semiconductor nanocrystals as light harvesters. J Phys Chem C, 112, 1873718753.Google Scholar
Kamat, P. V. (2013). Quantum dot solar cells: the next big thing in photovoltaics. J Phys Chem Lett, 4, 908918.Google Scholar
Kholmicheva, N., Moroz, P., Rijal, U., et al. (2014). Plasmonic nanocrystal solar cells utilizing strongly confined radiation. ACS Nano, 8, 1254912559.Google Scholar
Lin, G. J., Lai, K. Y., Lin, C. A., Lai, Y.-L., and He, J. H. (2011). Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays. IEEE Electron Device Lett, 32, 11041106.Google Scholar
McDonald, S. A., Konstantatos, G., Zhang, S., et al. (2005). Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater, 4, 138142.Google Scholar
Meinardi, F., Colombo, A., Velizhanin, K. A., et al. (2014). Large-area luminescent solar concentrators based on “Stokes-shift-engineered” nanocrystals in a mass-polymerized PMMA matrix. Nat Photonics, 8, 392399.Google Scholar
Min, W.-L., Jiang, B., and Jiang, P. (2008a). Bioinspired self-cleaning antireflection coatings. Adv Mater, 20, 15.Google Scholar
Min, W.-L., Betancourt, A. P., Jiang, P., and Jiang, B. (2008b). Bioinspired broadband antireflection coatings on GaSb. Appl Phys Lett, 92, 141109.Google Scholar
Nozik, A. J. (2008). Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett, 457, 311.Google Scholar
NREL (2017). Best research-cell efficiency chart. Available at https://www.nrel.gov/pv/assets/images/efficiency-chart.png (accessed June 22, 2017).Google Scholar
Piliego, C., Protesescu, L., Bisri, S. Z., Kovalenko, M. V., and Loi, M. A. (2013). 5.2% efficient PbS nanocrystal Schottky solar cells. Energy Environ Sci, 6, 30543059.Google Scholar
Pryce, I. M., Koleske, D. D., Fischer, A. J., and Atwater, H. A. (2010). Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells. Appl Phys Lett, 96, 153501.Google Scholar
Schaller, R. D., and Klimov, V. I. (2004). High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys Rev Lett, 92, 186601.CrossRefGoogle ScholarPubMed
Sun, C.-H., Jiang, P., and Jiang, B. (2008). Broadband moth-eye antireflection coating on silicon. Appl Phys Lett, 92, 061112.Google Scholar
Wilson, S. J., and Hutley, M. C. (1982). The optical properties of “moth eye” antireflection surfaces. Optica Acta, 29, 9931009.Google Scholar
Yu, P., Chang, C. H., Chiu, C. H., et al. (2009). Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns. Adv Mater, 21, 16181621.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Photovoltaics
  • Sergey V. Gaponenko, National Academy of Sciences of Belarus, Hilmi Volkan Demir, Nanyang Technological University, Singapore
  • Book: Applied Nanophotonics
  • Online publication: 23 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781316535868.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Photovoltaics
  • Sergey V. Gaponenko, National Academy of Sciences of Belarus, Hilmi Volkan Demir, Nanyang Technological University, Singapore
  • Book: Applied Nanophotonics
  • Online publication: 23 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781316535868.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Photovoltaics
  • Sergey V. Gaponenko, National Academy of Sciences of Belarus, Hilmi Volkan Demir, Nanyang Technological University, Singapore
  • Book: Applied Nanophotonics
  • Online publication: 23 November 2018
  • Chapter DOI: https://doi.org/10.1017/9781316535868.012
Available formats
×