Skip to main content Accessibility help
×
Home
  • Print publication year: 2011
  • Online publication date: April 2011

Section 2 - Physiologic substrates of drug action

Related content

Powered by UNSILO

References

1. Chalmers DJ. Facing up to the problem of consciousness. J Conscious Stud 1995; 2: 200–19.
2. Laureys S. Eyes open, brain shut. Sci AM 2007; 296(5): 84–9.
3. Lydic R, Baghdoyan HA. Sleep, anesthesiology, and the neurobiology of arousal state control. Anesthesiology 2005; 103: 1268–95.
4. Tung A, Mendelson WB. Anesthesia and sleep. Sleep Med Rev 2004; 8: 213–25.
5. Clement EA, Richard A, Thwaites M, et al. Cyclic and sleep-like spontaneous alternations of brain state under urethane anaesthesia. PLoS ONE 2008; 3: e2004.
6. Koblin DD. Urethane: help or hindrance? Anesth Analg 2002; 94: 241–2.
7. Massimini M, Ferrarelli F, Huber R, et al. Breakdown of cortical effective connectivity during sleep. Science 2005; 309: 2228–32.
8. Tononi G, Koch C. The neural correlates of consciousness: an update. Ann N Y Acad Sci 2008; 1124: 239–61.
9. Alkire MT, Haier RJ, Fallon JH. Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn 2000; 9: 370–86.
10. White NS, Alkire MT. Impaired thalamocortical connectivity in humans during general-anesthesia-induced unconsciousness. Neuroimaging 2003; 19: 402–11.
11. John ER, Prichep LS. The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiology 2005; 102: 447–71.
12. John ER, Prichep LS, Kox W, et al. Invariant reversible QEEG effects of anesthetics. Conscious Cogn 2001; 10: 165–83.
13. Laureys S, Faymonville ME, Luxen A, et al. Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 2000; 355: 1790–1.
14. Tononi G. An information integration theory of consciousness. BMC Neurosci 2004; 5: 42.
15. Tononi G, Sporns O. Measuring information integration. BMC Neurosci 2003; 4: 31.
16. Velly LJ, Rey MF, Bruder NJ, et al. Differential dynamic of action on cortical and subcortical structures of anesthetic agents during induction of anesthesia. Anesthesiology 2007; 107: 202–12.
17. Plourde G, Garcia-Asensi A, Backman S, et al. Attenuation of the 40-hertz auditory steady state response by propofol involves the cortical and subcortical generators. Anesthesiology 2008; 108: 233–42.
18. Mashour GA, LaRock E. Inverse zombies, anesthesia awareness, ad the hard problem of uncousciousness. Conscious Cogn 2008; 17:1163–8.
19. Sandin RH, Enlund G, Samuelsson P, Lennmarken C. Awareness during anaesthesia: a prospective case study. Lancet 2000; 355: 707–11.
20. Sebel PS, Bowdle TA, Ghoneim MM, et al. The incidence of awareness during anesthesia: a multicenter United States study. Anesth Analg 2004; 99: 833–9.
21. Errando CL, Sigl JC, Robles M, et al. Awareness with recall during general anaesthesia: a prospective observational evaluation of 4001 patients. Br J Anaesth 2008; 101: 178–85.
22. Pollard RJ, Coyle JP, Gilbert RL, Beck JE. Intraoperative awareness in a regional medical system: a review of 3 years' data. Anesthesiology 2007; 106: 269–74.
23. Mashour GA, Wang LYJ, Turner CR, et al. A retrospective study of intraoperative awareness with methodological implications. Anesth Analg 2009; 108: 521–6.
24. Lennmarken C, Sydsjo G. Psychological consequences of awareness and their treatment. Best Pract Res Clin Anaesthesiol 2007; 21: 357–67.
25. Monk TG, Saini V, Weldon BC, Sigl JC. Anesthetic management and one-year mortality after noncardiac surgery. Anesth Analg 2005; 100: 4–10.
26. Gibbs FA, Gibbs LE, Lennox WG. Effect on the electroencephalogram of certain drugs which influence nervous activity. Arch Intern Med 1937; 60: 154–66.
27. Jameson LC, Sloan TB. Using EEG to monitor anesthesia drug effects during surgery. J Clin Monitoring Comp 2006; 20: 445–72.
28. Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology 1998; 89: 980–1002.
29. Bruhn J, Myles PS, Sneyd R, Struys MM. Depth of anaesthesia monitoring: what's available, what's validated and what's next? Br J Anaesth 2006; 97: 85–94.
30. Bowdle TA. Depth of anesthesia monitoring. Anesthesiol Clin 2006; 24: 793–822.
31. Voss L, Sleigh J. Monitoring consciousness: the current status of EEG-based depth of anaesthesia monitors. Best Pract Res Clin Anaesthesiol 2007; 21: 313–25.
32. Dahaba AA. Different conditions that could result in the bispectral index indicating an incorrect hypnotic state. Anesth Analg 2005; 101: 765–73.
33. Yamamura T, Fukuda M, Takeya H, Goto Y, Furukawa K. Fast oscillatory EEG activity induced by analgesic concentrations of nitrous oxide in man. Anesth Analg 1981; 60: 283–8.
34. Rampil IJ, Kim JS, Lenhardt R, Negishi C, Sessler DI. Bispectral EEG index during nitrous oxide administration. Anesthesiology 1998; 89: 671–7.
35. Sakai T, Singh H, Mi WD, Kudo T, Matsuki A. The effect of ketamine on clinical endpoints of hypnosis and EEG variables during propofol infusion. Acta Anaesthesiol Scand 1999; 43: 212–16.
36. Vereecke HE, Struys MM, Mortier EP. A comparison of bispectral index and ARX-derived auditory evoked potential index in measuring the clinical interaction between ketamine and propofol anaesthesia. Anaesthesia 2003; 58: 957–61.
37. Messner M, Beese U, Romstock J, Dinkel M, Tschaikowsky K. The bispectral index declines during neuromuscular block in fully awake persons. Anesth Analg 2003; 97: 488–91.
38. Liu N, Chazot T, Huybrechts I, Law et al. The influence of a muscle relaxant bolus on bispectral and datex-ohmeda entropy values during propofol-remifentanil induced loss of consciousness. Anesth Analg 2005; 101: 1713–18.
39. Ekman A, Lindholm ML, Lennmarken C, Sandin R. Reduction in the incidence of awareness using BIS monitoring. Acta Anaesthesiol Scand 2004; 48: 20–6.
40. Myles PS, Leslie K, McNeil J, Forbes A, Chan MT. Bispectral index monitoring to prevent awareness during anaesthesia: the B-Aware randomised controlled trial. Lancet 2004; 363: 1757–63.
41. Avidan MS, Zhang L, Burnside BA, et al. Anesthesia awareness and the bispectral index. N Engl J Med 2008; 358: 1097–108.
42. Franks NP. General anesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat Rev Neurosci 2008; 9: 370–86.
43. Hallanger AE, Wainer BH. Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J Comp Neurol 1988; 274: 483–515.
44. Herkenham M. Laminar organization of thalamic projections to the rat neocortex. Science 1980; 207: 532–5.
45. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science 1993; 262: 679–85.
46. Semba K. The cholinergic basal forebrain: a critical role in cortical arousal. Adv Exp Med Biol 1991; 295: 197–218.
47. Detari L. Tonic and phasic influence of basal forebrain unit activity on the cortical EEG. Behav Brain Res 2000; 115: 159–70.
48. Jimenez-Capdeville ME, Dykes RW, Myasnikov AA. Differential control of cortical activity by the basal forebrain in rats: a role for both cholinergic and inhibitory influences. J Comp Neurol 1997; 381: 53–67.
49. Aston-Jones G, Chiang C, Alexinsky T. Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Prog Brain Res 1991; 88: 501–20.
50. Steininger TL, Alam MN, Gong H, Szymusiak R, McGinty D. Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res 1999; 840: 138–47.
51. Lu J, Jhou TC, Saper CB. Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 2006; 26: 193–202.
52. Luppi PH, Gervasoni D, Verret L, et al. Paradoxical (REM) sleep genesis: the switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris 2006; 100: 271–83.
53. Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 2001; 24: 726–31.
54. Von Economo C. Sleep as a problem of localization. J Nerv Ment Dis 1930; 71: 248–9.
55. Sherin JE, Shiromani PJ, McCarley RW, Saper CB. Activation of ventrolateral preoptic neurons during sleep. Science 1996; 271: 216–19.
56. Chou TC, Bjorkum AA, Gaus SE, et al. Afferents to the ventrolateral preoptic nucleus. J Neurosci 2002; 22: 977–90.
57. Gallopin T, Fort P, Eggermann E, et al. Identification of sleep-promoting neurons in vitro. Nature 2000; 404: 992–5.
58. Lu J, Bjorkum AA, Xu M, et al. Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosc 2002; 22: 4568–76.
59. Sherin JE, Elmquist JK, Torrealba F, Saper CB. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosc 1998; 18: 4705–21.
60. Gaus SE, Strecker RE, Tate BA, Parker RA, Saper CB. Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species. Neuroscience 2002; 115: 285–94.
61. Lin JS, Sakai K, Jouvet M. Evidence for histaminergic arousal mechanisms in the hypothalamus of cat. Neuropharmacology 1988; 27: 111–22.
62. Steininger TL, Gong H, McGinty D, Szymusiak R. Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J Comp Neurol 2001; 429: 638–53.
63. Yang QZ, Hatton GI. Electrophysiology of excitatory and inhibitory afferents to rat histaminergic tuberomammillary nucleus neurons from hypothalamic and forebrain sites. Brain Res 1997; 773: 162–72.
64. Lu J, Greco MA, Shiromani P, Saper CB. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 2000; 20: 3830–42.
65. Nelson LE, Guo TZ, Lu J, et al. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 2002; 5: 979–84.
66. Suntsova N, Szymusiak R, Alam MN, Guzman-Marin R, McGinty D. Sleep-waking discharge patterns of median preoptic nucleus neurons in rats. J Physiol 2002; 543: 665–77.
67. Suntsova N, Guzman-Marin R, Kumar S, et al. The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J Neurosci 2007; 27: 1616–30.
68. Uschakov A, Gong H, McGinty D, Szymusiak R. Efferent projections from the median preoptic nucleus to sleep- and arousal-regulatory nuclei in the rat brain. Neuroscience 2007; 150: 104–20.
69. Lucas EA, Sterman MB. Effect of a forebrain lesion on the polycyclic sleep-wake cycle and sleep-wake patterns in the cat. Exp Neurol 1975; 46: 368–88.
70. Siegel JM. Brainstem mechanisms generating REM sleep. In: Kryger MH, Roth T, Dement WC, eds., Principles and Practice of Sleep Medicine, 3rd edn. Philadelphia, PA: Saunders, 2000: 112–33.
71. Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch for control of REM sleep. Nature 2006; 441: 589–94.
72. Semba K, Fibiger HC. Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J Comp Neurol 1992; 323: 387–410.
73. Aston-Jones G, Bloom FE. Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1981; 1: 887–900.
74. McGinty DJ, Harper RM. Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 1976; 101: 569–75.
75. Jones BE. Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience 1991; 40: 637–56.
76. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437: 1257–63.
77. Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 1999; 98: 437–51.
78. Marcus JN, Aschkenasi CJ, Lee CE, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 2001; 435: 6–25.
79. Gvilia I, Xu F, McGinty D, Szymusiak R: Homeostatic regulation of sleep: a role for preoptic area neurons. J Neurosci 2006; 26: 9426–33.
80. Baker FC, Shah S, Stewart D, et al. Interleukin 1beta enhances non-rapid eye movement sleep and increases c-Fos protein expression in the median preoptic nucleus of the hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2005; 288: R998–1005.
81. Scammell T, Gerashchenko D, Urade Y, et al. Activation of ventrolateral preoptic neurons by the somnogen prostaglandin D2. Proc Nat Acad Sci U S A 1998; 95: 7754–9.
82. Forman SA, Chin VA. General anesthetics and molecular mechanisms of unconsciousness. Internatl Anesthesiol Clin 2008; 46: 43–53.
83. Campagna JA, Miller KW, Forman SA. Mechanisms of actions of inhaled anesthetics. N Engl J Med 2003; 348: 2110–24.
84. Grace RF. The effect of variable-dose diazepam on dreaming and emergence phenomena in 400 cases of ketamine–fentanyl anaesthesia. Anaesthesia 2003; 58: 904–10.
85. Lu J, Nelson LE, Franks N, et al. Role of endogenous sleep-wake and analgesic systems in anesthesia. J Comp Neurol 2008; 508: 648–62.
86. Alkire MT, McReynolds JR, Hahn EL, Trivedi AN. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology 2007; 107: 264–72.
87. Kelz MB, Sun Y, Chen J, et al. An essential role for orexins in emergence from general anesthesia. Proc Nat Acad Sci U S A 2008; 105: 1309–14.
88. Hudetz AG, Wood JD, Kampine JP. Cholinergic reversal of isoflurane anesthesia in rats as measured by cross-approximate entropy of the electroencephalogram. Anesthesiology 2003; 99: 1125–31.
89. Meuth SG, Budde T, Kanyshkova T, et al. Contribution of TWIK-related acid-sensitive K+ channel 1 (TASK1) and TASK3 channels to the control of activity modes in thalamocortical neurons. J Neurosci 2003; 23: 6460–9.
90. Mashour GA. Integrating the science of consciousness and anesthesia. Anesth Analg 2006; 103: 975–82.
91. MacDonald E, Scheinin M. Distribution and pharmacology of alpha 2-adrenoceptors in the central nervous system. J Physiol Pharmacol 1995; 46: 241–58.
92. Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci 1994; 14: 4467–80.
93. Correa-Sales C, Rabin BC, Maze M. A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology 1992; 76: 948–52.
94. Nacif-Coelho C, Correa-Sales C, Chang LL, Maze M. Perturbation of ion channel conductance alters the hypnotic response to the alpha 2-adrenergic agonist dexmedetomidine in the locus coeruleus of the rat. Anesthesiology 1994; 81: 1527–34.
95. Nelson LE, Lu J, Guo T, et al. The α2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology 2003; 98: 428–36.
96. Venn RM, Bradshaw CJ, Spencer R, et al. Preliminary UK experience of dexmedetomidine, a novel agent for postoperative sedation in the intensive care unit. Anaesthesia 1999; 54: 1136–42.
97. Jones MEP, Coull MT, Egan TD, Maze M. Are subjects more easily aroused during sedation with the alpha2 agonist, dexmedetomdine? Br J Pharmacol 2002; 86: 324P.
98. Huupponen E, Maksimow A, Lapinlampi P, et al. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol Scand 2008; 52: 289–94.
99. Bonhomme V, Maquet P, Phillips C, et al. The effect of clonidine infusion on distribution of regional cerebral blood flow in volunteers. Anesth Analg 2008; 106: 899–909.
100. Pandharipande PP, Pun BT, Herr DL, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial. JAMA 2007; 298: 2644–53.
101. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92: 573–85.
102. de Lecea L, Criado JR, Prospero-Garcia O, et al. A cortical neuropeptide with neuronal depressant and sleep-modulating properties. Nature 1996; 381: 242–5.
103. Lin L, Faraco J, Li R, Kadotani H, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999; 98: 365–76.
104. Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 2000; 6: 991–7.
105. Kushikata T, Hirota K, Yoshida H, et al. Orexinergic neurons and barbiturate anesthesia. Neuroscience 2003; 121: 855–63.
106. Yasuda Y, Takeda A, Fukuda S, et al. Orexin A elicits arousal electroencephalography without sympathetic cardiovascular activation in isoflurane-anesthetized rats. Anesth Analg 2003; 97: 1663–6.
107. Dong HL, Fukuda S, Murata E, Zhu Z, Higuchi T. Orexins increase cortical acetylcholine release and electroencephalographic activation through orexin-1 receptor in the rat basal forebrain during isoflurane anesthesia. Anesthesiology 2006; 104: 1023–32.
108. Lydic R, Biebuyck JF. Sleep neurobiology: relevance for mechanistic studies of anaesthesia. Br J Anaesth 1994; 72: 506–8.