Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: April 2011

Chapter 24 - Mechanisms of anesthetic action

from Section 3 - Essential drugs in anesthetic practice

References

1. Meyer H. Theorie der Alkoholnarkose. Arch Exp Pathol Pharmakol 1899; 42: 109–18.
2. Franks NP, Lieb WR. Where do general anaesthetics act? Nature 1978; 274: 339–42.
3. Franks NP, Lieb WR. Is membrane expansion relevant to anaesthesia? Nature 1981; 292: 248–51.
4. Koblin DD, Chortkoff BS, Laster MJ, et al. Polyhalogenated and perfluorinated compounds that disobey the Meyer-Overton hypothesis. Anesth Analg 1994; 79: 1043–8.
5. Franks NP, Lieb WR. Stereospecific effects of inhalational general anesthetic optical isomers on nerve ion channels. Science 1991; 254: 427–30.
6. Tomlin SL, Jenkins A, Lieb WR, Franks NP. Stereoselective effects of etomidate optical isomers on gamma-aminobutyric acid type A receptors and animals. Anesthesiology 1998; 88: 708–17.
7. Wittmer LL, Hu Y, Kalkbrenner M, et al. Enantioselectivity of steroid-induced gamma-aminobutyric acidA receptor modulation and anesthesia. Mol Pharmacol 1996; 50: 1581–6.
8. Franks NP, Lieb WR. Do general anaesthetics act by competitive binding to specific receptors? Nature 1984; 310: 599–601.
9. Franks NP, Jenkins A, Conti E, Lieb WR, Brick P. Structural basis for the inhibition of firefly luciferase by a general anesthetic. Biophys J 1998; 75: 2205–11.
10. Forman SA, Chin VA. General anesthetics and molecular mechanisms of unconciousness. Int Anesthesiol Clin 2008; 46: 43–53.
11. Wu XS, Sun JY, Evers A, Crowder M, Wu LG. Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology 2004; 100: 663–70.
12. Humphrey JA, Hamming KS, Thacker CM, et al. A Putative cation channel and its novel regulator: cross-species conservation of effects on general anesthesia. Curr Biol 2007; 17: 624–9.
13. Jurd R, Arras M, Lambert S, et al. General anesthetic actions in vivo strongly attenuated by a point mutation in the GABA(A) receptor beta3 subunit. FASEB J 2003; 17: 250–2.
14. Hacking DF. ?Knock, and it shall be opened?: knocking out and knocking in to reveal mechanisms of disease and novel therapies. Early Hum Dev 2008; 84: 821–7.
15. Sear JW. What makes a molecule an anaesthetic? Studies on the mechanisms of anaesthesia using a physicochemical approach Br J Anaesth 2009; 103: 50–60.
16. Mehdipour AR, Hemmateenejad B, Miri R. QSAR studies on the anesthetic action of some polyhalogenated ethers. Chem Biol Drug Des 2007; 69: 362–8.
17. Abraham MH, Acree WE, Mintz C, Payne S. Effect of anesthetic structure on inhalation anesthesia: implications for the mechanism. J Pharm Sci 2008; 97: 2373–84.
18. Dundee JW. Molecular structure–activity relationships of barbiturates. In: Halsey MJ, Millar RA, Sutton JA, eds., Molecular Mechanism of General Anesthesia. New York, NY: Churchill Livingstone, 1974: 16–31.
19. Andrews PR, Mark LC. Structural specificity of barbiturates and related drugs. Anesthesiology 1982; 57: 314–20.
20. Krasowski MD, Jenkins A, Flood P, et al. General anesthetic potencies of a series of propofol analogs correlate with potency for potentiation of gamma-aminobutyric acid (GABA) current at the GABA(A) receptor but not with lipid solubility. J Pharmacol Exp Ther 2001; 297: 338–51.
21. Krasowski MD, Hong X, Hopfinger AJ, Harrison NL. 4D-QSAR analysis of a set of propofol analogues: mapping binding sites for an anesthetic phenol on the GABA(A) receptor. J Med Chem 2002; 45: 3210–21.
22. Atucha E, Hammerschmidt F, Zolle I, Sieghart W, Berger ML. Structure–activity relationship of etomidate derivatives at the GABA(A) receptor: comparison with binding to 11beta-hydroxylase. Bioorg Med Chem Lett 2009; 19: 4284–7.
23. Veleiro AS, Burton G. Structure–activity relationships of neuroactive steroids acting on the GABAA receptor. Curr Med Chem 2009; 16: 455–72.
24. Phillips GH. Structure–activity relationships in steroidal aensthetics. J Steroid Biochem 1975; 6: 607–13.
25. Chisari M, Eisenmann LN, Krishnan K, et al. The influence of neuroactive steroid lipophilicity on GABAA receptor modulation: evidence for a low-affinity interaction. J Neurophysiol 2009; 102: 1254–64.
26. Franks NP, Lieb WR. Inhibitory synapses: anaesthetics set their sites on ion channels. Nature 1997; 389: 334–5.
27. Belelli D, Callachan H, Hill-Venning C, Peters JA, Lambert JJ. Interaction of positive allosteric modulators with human and Drosophila recombinant GABA receptors expressed in Xenopus laevis oocytes. Br J Pharmacol 1996; 118: 563–76.
28. Lambert JJ, Belelli D, Hill-Venning C, Callachan H, Lambert JJ. Neurosteroid modulation of native and recombinant GABAA receptors. Cell Mol Neurobiol 1996; 16: 155–74.
29. Robertson B. Actions of anaesthetics and avermectin on GABAA chloride channels in mammalian dorsal root ganglion neurones. Br J Pharmacol 1989; 98: 167–76.
30. Hill-Venning C, Belleli D, Peters JA, Lambert JJ. Subunit-dependent interaction of the general anaesthetic etomidate with the gamma-aminobutyric acid type A receptor. Br J Pharmacol 1997; 120: 749–56.
31. Belelli D, Lambert JJ, Peters JA, Wafford K, Whiting PJ. The interaction of the general anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single amino acid. Proc Natl Acad Sci U S A 1997; 94: 11031–6.
32. Desai R, Ruesch D, Forman SA. Gamma-amino butyric acid type A receptor mutations at beta2N265 alter etomidate efficacy while preserving basal and agonist-dependent activity. Anesthesiology 2009; 111: 774–84.
33. Li GD, Chiara DC, Cohen JB, Olsen RW. Neurosteroids allosterically modulate binding of the anesthetic etomidate to gamma-aminobutyric acid type A receptors. J Biol Chem 2009; 284: 11771–5.
34. McGurk KA, Pistis M, Belelli D, Hope AG, Lambert JJ. The effect of a transmembrane amino acid on etomidate sensitivity of an invertebrate GABA receptor. Br J Pharmacol 1998; 124: 13–20.
35. Siegwart R, Jurd R, Rudolph U. Molecular determinants for the action of general anesthetics at recombinant alpha(2)beta(3)gamma(2)gamma-aminobutyric acid(A) receptors. J Neurochem 2002; 80: 140–8.
36. Li GD, Chiara DC, Sawyer GW, et al. Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J Neurosci 2006; 26: 11599–605.
37. Reynolds DS, Rosahl TW, Cirone J, et al. Sedation and anesthesia mediated by distinct GABA(A) receptor isoforms. J Neurosci 2003; 23: 8608–17.
38. Zecharia AY, Nelson LE, Gent TC, et al. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse. J Neurosci 2009; 29: 2177–87.
39. Cheng VY, Martin LJ, Elliot EM, et al. Alpha5 GABAA receptors mediate the amnestic but not sedative-hypnotic effects of the general anesthetic etomidate. J Neurosci 2006; 26: 3713–20.
40. Paris A, Phillipp M, Tonner PH, et al. Activation of alpha 2B-adrenoceptors mediates the cardiovascular effects of etomidate. Anesthesiology 2003; 99: 889–95.
41. Cotten JF, Forman SA, Laha JK, et al. Carboetomidate: a pyrrole analog of etomidate designed not to suppress adrenocortical function. Anesthesiology 2010; 112: 637–44.
42. Hales TG, Lambert JJ. The actions of propofol on inhibitory amino acid receptors of bovine adrenomedullary chromaffin cells and rodent central neurones. Br J Pharmacol 1991; 104: 619–28.
43. Sanna E, Mascia MP, Klein RL, et al. Actions of the general anesthetic propofol on recombinant human GABAA receptors: influence of receptor subunits. J Pharmacol Exp Ther 1995; 274: 353–60.
44. Krasowski MD, Nishikawa K, Nikolaeva N, Lin A, Harrison NL. Methionine 286 in transmembrane domain 3 of the GABAA receptor beta subunit controls a binding cavity for propofol and other alkylphenol general anesthetics. Neuropharmacology 2001; 41: 952–64.
45. Li GD, Chiara DC, Cohen JB, Olsen RW. Numerous classes of general anesthetics inhibit etomidate binding to γ-aminobutyric acid type A (GABAA) receptors. J Biol Chem 285: 8615–20.
46. Campagna-Slater V, Weaver DF. Anaesthetic binding sites for etomidate and propofol on a GABAA receptor model. Neurosci Lett 2007; 418: 28–33.
47. Nelson LE, Guo TZ, Lu J, et al. The sedative component of anesthesia is mediated by GABA(A) receptors in an endogenous sleep pathway. Nat Neurosci 2002; 5: 979–84.
48. Flood P, Ramirez-Latorre J, Role L. Alpha 4 beta 2 neuronal nicotinic acetylcholine receptors in the central nervous system are inhibited by isoflurane and propofol, but alpha 7-type nicotinic acetylcholine receptors are unaffected. Anesthesiology 1997; 86: 859–65.
49. Pistis M, Belelli D, Peters JA, Lambert JJ. The interaction of general anaesthetics with recombinant GABAA and glycine receptors expressed in Xenopus laevis oocytes: a comparative study. Br J Pharmacol 1997; 122: 1707–19.
50. Peters JA, Kirkness EF, Callachan H, Lambert JJ, Turner AJ. Modulation of the GABAA receptor by depressant barbiturates and pregnane steroids. Br J Pharmacol 1988; 94: 1257–69.
51. Cestari IN, Uchida I, Li L, Burt D, Yang J. The agonistic action of pentobarbital on GABAA beta-subunit homomeric receptors. Neuroreport 1996; 7: 943–7.
52. Serafini R, Bracamontes J, Steinbach JH. Structural domains of the human GABAA receptor 3 subunit involved in the actions of pentobarbital. J Physiol 2000; 524 Pt 3: 649–76.
53. Feng, HJ, Bianchi MT, Macdonald RL. Pentobarbital differentially modulates alpha1beta3delta and alpha1beta3gamma2L GABAA receptor currents. Mol Pharmacol 2004; 66: 988–1003.
54. Thompson SA, Whiting PJ, Wafford KA. Barbiturate interactions at the human GABAA receptor: dependence on receptor subunit combination. Br J Pharmacol 1996; 117: 521–7.
55. Mathers DA, Wan X, Puil E. Barbiturate activation and modulation of GABA(A) receptors in neocortex. Neuropharmacology 2007; 52: 1160–8.
56. Marszalec W, Narahashi T. Use-dependent pentobarbital block of kainate and quisqualate currents. Brain Res 1993; 608: 7–15.
57. Dildy-Mayfield JE, Eger EI, Harris RA. Anesthetics produce subunit-selective actions on glutamate receptors. J Pharmacol Exp Ther 1996; 276: 1058–65.
58. Taverna FA, Cameron BR, Hampson DL, Wang LY, MacDonald JF. Sensitivity of AMPA receptors to pentobarbital. Eur J Pharmacol 1994; 267: R3–5.
59. Yamakura T, Sakimura K, Mishina M, Shimoji K. The sensitivity of AMPA-selective glutamate receptor channels to pentobarbital is determined by a single amino acid residue of the alpha 2 subunit. FEBS Lett 1995; 374: 412–14.
60. Downie DL, Franks NP, Lieb WR. Effects of thiopental and its optical isomers on nicotinic acetylcholine receptors. Anesthesiology 2000; 93: 774–83.
61. Wan X, Mathers DA, Puil E. Pentobarbital modulates intrinsic and GABA-receptor conductances in thalamocortical inhibition. Neuroscience 2003; 121: 947–58.
62. Belelli D, Lambert JJ. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 2005; 6: 565–75.
63. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM. Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 1986; 232: 1004–7.
64. Harrison NL, Majewska MD, Harrington JW, Barker JL. Structure–activity relationships for steroid interaction with the gamma-aminobutyric acidA receptor complex. J Pharmacol Exp Ther 1987; 241: 346–53.
65. Callachan H, Cottrell GA, Hather NY, et al. Modulation of the GABAA receptor by progesterone metabolites. Proc R Soc Lond B Biol Sci 1987; 231: 359–69.
66. Belelli D, Casula A, Ling A, Lambert JJ. The influence of subunit composition on the interaction of neurosteroids with GABA(A) receptors. Neuropharmacology 2002; 43: 651–61.
67. Evers AS, Chen ZW, Manion BD, et al. A Synthetic 18-Norsteroid distinguishes between two neuroactive steroid binding sites on GABAA receptors. J Pharmacol Exp Ther 2010; 333: 404–13.
68. Hosie AM, Wilkins ME, da Silva HM, Smart TG. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature 2006; 444: 486–9.
69. Hosie AM, Clarke L, da Silva H, Smart TG. Conserved site for neurosteroid modulation of GABA A receptors. Neuropharmacology 2009; 56: 149–54.
70. Mihalek RM, Banerjee PK, Korpi ER, et al. Attenuated sensitivity to neuroactive steroids in gamma-aminobutyrate type A receptor delta subunit knockout mice. Proc Natl Acad Sci U S A 1999; 96: 12905–10.
71. Dickinson R, White I, Lieb WR, Franks NP. Stereoselective loss of righting reflex in rats by isoflurane. Anesthesiology 2000; 93: 837–43.
72. Dickinson R, Franks NP, Lieb WR. Can the stereoselective effects of the anesthetic isoflurane be accounted for by lipid solubility? Biophys J 1994; 66: 2019–23.
73. van Swinderen B, Saifee O, Shebester L, et al. A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1999; 96: 2479–84.
74. Kayser EB, Morgan PG, Sedensky MM. GAS-1: a mitochondrial protein controls sensitivity to volatile anesthetics in the nematode Caenorhabditis elegans. Anesthesiology 1999; 90: 545–54.
75. Homanics GE, Harrison NL, Quinlan JJ, et al. Normal electrophysiological and behavioral responses to ethanol in mice lacking the long splice variant of the gamma2 subunit of the gamma-aminobutyrate type A receptor. Neuropharmacology 1999; 38: 253–65.
76. Hall AC, Lieb WR, Franks NP. Stereoselective and non-stereoselective actions of isoflurane on the GABAA receptor. Br J Pharmacol 1994; 112: 906–10.
77. Jones MV, Harrison NL. Effects of volatile anesthetics on the kinetics of inhibitory postsynaptic currents in cultured rat hippocampal neurons. J Neurophysiol 1993; 70: 1339–49.
78. Moody EJ, Harris BD, Skolnick P. Stereospecific actions of the inhalation anesthetic isoflurane at the GABAA receptor complex. Brain Res 1993; 615: 101–6.
79. Mihic SJ, Ye Q, Wick MJ, et al. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 1997; 389: 385–9.
80. Krasowski MD, Harrison NL. The actions of ether, alcohol and alkane general anaesthetics on GABAA and glycine receptors and the effects of TM2 and TM3 mutations. Br J Pharmacol 2000; 129: 731–43.
81. Nishikawa K, Jenkins A, Paraskevakis I, Harrison NL. Volatile anesthetic actions on the GABAA receptors: contrasting effects of alpha 1(S270) and beta 2(N265) point mutations. Neuropharmacology 2002; 42: 337–45.
82. Koltchine VV, Finn SE, Jenkins A, et al. Agonist gating and isoflurane potentiation in the human gamma-aminobutyric acid type A receptor determined by the volume of a second transmembrane domain residue. Molecular Pharmacology 1999; 56: 1087–93.
83. Jenkins A, Greenblatt EP, Faulkner HJ, et al. Evidence for a common binding cavity for three general anesthetics within the GABAA receptor. J Neurosci 2001; 21: RC136.
84. Hemmings HC, Akabas MH, Goldstein PA, et al. Emerging molecular mechanisms of general anesthetic action. Trends Pharmacol Sci 2005; 26: 503–10.
85. Sonner JM, Werner DF, Elsen FP, et al. Effect of isoflurane and other potent inhaled anesthetics on minimum alveolar concentration, learning, and the righting reflex in mice engineered to express alpha1 gamma-aminobutyric acid type A receptors unresponsive to isoflurane. Anesthesiology 2007; 106: 107–13.
86. Rudolph U, Mohler H. Analysis of GABAA receptor function and dissection of the pharmacology of benzodiazepines and general anesthetics through mouse genetics. Annu Rev Pharmacol Toxicol 2004; 44: 475.
87. Quinlan JJ, Homanics GE, Firestone LL. Anesthesia sensitivity in mice that lack the beta3 subunit of the gamma-aminobutyric acid type A receptor. Anesthesiology 1998; 88: 775–80.
88. Downie DL, Hall AC, Lieb WR, Franks NP. Effects of inhalational general anaesthetics on native glycine receptors in rat medullary neurones and recombinant glycine receptors in Xenopus oocytes. Br J Pharmacol 1996; 118: 493–502.
89. Harrison NL, Kugler JL, Jones MV, Greenblatt EP, Pritchett DB. Positive modulation of human gamma-aminobutyric acid type A and glycine receptors by the inhalation anesthetic isoflurane. Mol Pharmacol 1993; 44: 628–32.
90. Wakamori M, Ikemoto Y, Akaike N. Effects of two volatile anesthetics and a volatile convulsant on the excitatory and inhibitory amino acid responses in dissociated CNS neurons of the rat. J Neurophys 1991; 66: 2014–21.
91. Mihic SJ, Ye Q, Wick MJ, et al. Sites of alcohol and volatile anaesthetic action on GABA(A) and glycine receptors. Nature 1997; 389: 385–9.
92. Yamakura T, Mihic SJ, Harris RA. Amino acid volume and hydropathy of a transmembrane site determine glycine and anesthetic sensitivity of glycine receptors. J Biol Chem 1999; 274: 23006–12.
93. Zhang Y, Wu S, Eger EI, Sonner JM. Neither GABAA nor strychnine-sensitive glycine receptors are the sole mediators of MAC for isoflurane. Anesth Analg 2001; 92: 123–7.
94. Violet JM, Downie DL, Nakisa RC, Lieb WR, Franks NP. Differential sensitivities of mammalian neuronal and muscle nicotinic acetylcholine receptors to general anesthetics. Anesthesiology 1997; 86: 866–74.
95. Dani JA, Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol Toxicol 2007; 47: 699–729.
96. Gotti C, Zoli M, Clementi F. Brain nicotinic acetylcholine receptors: native subtypes and their relevance. Trends Pharmacol Sci 2006; 27: 482–91.
97. Eger EI, Zhang Y, Laster M, et al. Acetylcholine receptors do not mediate the immobilization produced by inhaled anesthetics. Anesth Analg 2002; 94: 1500–4.
98. Flood P, Sonner JM, Gong D, Coates KM. Heteromeric nicotinic inhibition by isoflurane does not mediate MAC or loss of righting reflex. Anesthesiology 2002; 97: 902–5.
99. Raines DE, Claycomb RJ, Forman SA. Nonhalogenated anesthetic alkanes and perhalogenated nonimmobilizing alkanes inhibit alpha(4)beta(2) neuronal nicotinic acetylcholine receptors. Anesth Analg 2002; 95: 573–7.
100. Zhang Y, Eger EI, Dutton RC, Sonner JM. Inhaled anesthetics have hyperalgesic effects at 0.1 minimum alveolar anesthetic concentration. Anesth Analg 2000; 91: 462–6.
101. Flood P, Sonner JM, Gong D, Coates KM. Isoflurane hyperalgesia is modulated by nicotinic inhibition. Anesthesiology 2002; 97: 192–8.
102. Honore E. Nat Rev Neurosci 2007; 8: 251–61.
103. Franks N, Lieb W. Volatile general anaesthetics activate a novel K+ current. Nature 1988; 333: 662–4.
104. Winegar BD, Owen DF, Yost CS, Forsayeth, Mayeri E. Volatile general anesthetics produce hyperpolarization of Aplysia neurons by activation of a discrete population of baseline potassium channels. Anesthesiology 1996; 85: 889–900.
105. Gray AT, Winegar BD, Leonoudakis DJ, Forsayeth, Yost CS. TOK1 is a volatile anesthetic stimulated K+ channel. Anesthesiology 1998; 88: 1076–84.
106. Patel AJ, Honoré E, Lesage F, et al. Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 1999; 2: 422–6.
107. Andres-Enguix I, Caley A, Yustos R, et al. Determinants of the anesthetic sensitivity of two-pore domain acid-sensitive potassium channels: molecular cloning of an anesthetic-activated potassium channel from Lymnaea stagnalis. J Biol Chem 2007; 282: 20977–90.
108. Heurteaux C, Guy N, Laigle C, et al. TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 2004; 23: 2684–95.
109. Linden AM, Aller MI, Leppä E, et al. The in vivo contributions of TASK-1-containing channels to the actions of inhalation anesthetics, the α2 adrenergic sedative dexmedetomidine, and cannabinoid agonists. J Pharmacol Exp Ther 2006; 317: 615–26.
110. Linden AM, Sandu C, Aller MI, et al. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics. J Pharmacol Exp Ther 2007; 323: 924–34.
111. Gerstin KM, Gong DH, Abdallah M, et al. Mutation of KCNK5 or Kir3.2 potassium channels in mice does not change minimum alveolar anesthetic concentration. Anesth Analg 2003; 96: 1345–9.
112. Shimizu E, Tang YP, Rampon C, Tsien JZ. NMDA receptor-dependent synaptic reinforcement as a crucial process for memory consolidation. Science 2000; 290: 1170–4.
113. Rampon C, Tang YP, Goodhouse J, et al. Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 2000; 3: 238–44.
114. Nakazawa K, Sun LD, Quirk MC, et al. Hippocampal CA3 NMDA receptors are crucial for memory acquisition of one-time experience. Neuron 2003; 38: 305–15.
115. Nakazawa K, Quirk MC, Chitwood RA, et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 2002; 297: 211–18.
116. Tsien JZ, Huerta PT, Tonegawa S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 1996; 87: 1327–38.
117. Tang YP, Shimizu E, Dube GR, et al, Genetic enhancement of learning and memory in mice. Nature 1999; 401: 63–9.
118. Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science 2001; 294: 1030–8.
119. de Sousa SL, Dickinson R, Lieb WR, Franks NP. Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology 2000; 92: 1055–66.
120. Hollmann MW, Liu HT, Hoenemann CW, Liu WH, Durieux ME. Modulation of NMDA receptor function by ketamine and magnesium. Part II: interactions with volatile anesthetics. Anesth Analg 2001; 92: 1182–91.
121. Ogata J, Shiraishi M, Namba T, et al. Effects of anesthetics on mutant N-methyl-D-aspartate receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther 2006; 318: 434–43.
122. Yamakura T, Harris RA. Effects of gaseous anesthetics nitrous oxide and xenon on ligand-gated ion channels. Comparison with isoflurane and ethanol. Anesthesiology 2000; 93: 1095–101.
123. Westphalen RI, Hemmings HC. Selective depression by general anesthetics of glutamate versus GABA release from isolated cortical nerve terminals. J Pharmacol Exp Ther 2003; 304: 1188–96.
124. Lingamaneni R, Birch ML, Hemmings HC. Widespread inhibition of sodium channel-dependent glutamate release from isolated nerve terminals by isoflurane and propofol. Anesthesiology 2001; 95: 1460–6.
125. Schlame M, Hemmings HC. Inhibition by volatile anesthetics of endogenous glutamate release from synaptosomes by a presynaptic mechanism. Anesthesiology 1995; 82: 1406–16.
126. Rehberg B, Xiao YH, Duch DS. Central nervous system sodium channels are significantly suppressed at clinical concentrations of volatile anesthetics. Anesthesiology 1996; 84: 1223–33.
127. Wu XS, Sun JY, Evers AS, Crowder M, Wu LG. Isoflurane inhibits transmitter release and the presynaptic action potential. Anesthesiology 2004; 100: 663–70.
128. Westphalen RI, Krivitski M, Amarosa A, Guy N, Hemmings HC. Reduced inhibition of cortical glutamate and GABA release by halothane in mice lacking the K+ channel, TREK-1. Br J Pharmacol 2007; 152: 939–45.
129. Metz LB, Dasgupta N, Liu C, Hunt SJ, Crowder CM. An evolutionarily conserved presynaptic protein is required for isoflurane sensitivity in Caenorhabditis elegans. Anesthesiology 2007; 107: 971–82.
130. Anis NA, Berry SC, Burton NR, Lodge D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 1983; 79: 565–75.
131. Harrison NL, Simmonds MA. Quantitative studies on some antagonists of N-methyl D-aspartate in slices of rat cerebral cortex. Br J Pharmacol 1985; 84: 381–91.
132. Thomson AM, West DC, Lodge D. An N-methylaspartate receptor-mediated synapse in rat cerebral cortex: a site of action of ketamine? Nature 1985; 313: 479–81.
133. Orser BA, Pennefather PS, MacDonald JF. Multiple mechanisms of ketamine blockade of N-methyl-D-aspartate receptors. Anesthesiology 1997; 86: 903–17.
134. Sato Y, Kobayashi E, Hakamata Y, et al. Chronopharmacological studies of ketamine in normal and NMDA ε 1 receptor knockout mice. Br J Anaesth 2004; 92: 859–64.
135. MacDonald JF, Bartlett MC, Mody I, et al. Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones. J Physiol 1991; 432: 483–508.
136. Idvall J, Ahlgren I, Aronsen KR, Stenberg P. Ketamine infusions: pharmacokinetics and clinical effects. Br J Anaesth 1979; 51: 1167–73.
137. Dayton PG, Stiller RL, Cook DR, Perel JM. The binding of ketamine to plasma proteins: emphasis on human plasma. Eur J Clin Pharmacol 1983; 24: 825–31.
138. Keana JF, Scherz MW, Quarum M, Sonders MS, Weber E. Synthesis and characterization of a radiolabelled derivative of the phencyclidine/N-methyl-D-aspartate receptor ligand (+) MK-801 with high specific radioactivity. Life Sci 1988; 43: 965–73.
139. Zeilhofer HU, Swandulla D, Geisslinger G, Brune K. Differential effects of ketamine enantiomers on NMDA receptor currents in cultured neurons. Eur J Pharmacol 1992; 213: 155–8.
140. White PF, Schüttler J, Shafer A, et al. Comparative pharmacology of the ketamine isomers. Studies in volunteers. Br J Anaesth 1985; 57: 197–203.
141. Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 2007; 7: 39–47.
142. Furuya R, Oka K, Watanabe I, et al. The effects of ketamine and propofol on neuronal nicotinic acetylcholine receptors and P2x purinoceptors in PC12 cells. Anesth Analg 1999; 88: 174–80.
143. Scheller M, Bufler J, Hertle I, et al. Ketamine blocks currents through mammalian nicotinic acetylcholine receptor channels by interaction with both the open and the closed state. Anesth Analg 1996; 83: 830–6.
144. Flood P, Krasowski MD. Intravenous anesthetics differentially modulate ligand-gated ion channels. Anesthesiology 2000; 92: 1418–25.
145. Friederich P, Dybek A, Urban BW. Stereospecific interaction of ketamine with nicotinic acetylcholine receptors in human sympathetic ganglion-like SH-SY5Y cells. Anesthesiology 2000; 93: 818–24.
146. Sasaki T, Andoh T, Watanabe I, et al. Nonstereoselective inhibition of neuronal nicotinic acetylcholine receptors by ketamine isomers. Anesth Analg 2000; 91: 741–8.
147. Udesky JO, Spence NZ, Achiel R, Lee C, Flood P. The role of nicotinic inhibition in ketamine-induced behavior. Anesth Analg 2005; 101: 407–11.
148. Jevtović-Todorović V, Todorović SM, Mennerick S, et al. Nitrous oxide (laughing gas) is an NMDA antagonist, neuroprotectant and neurotoxin. Nat Med 1998; 4: 460–3.
149. Mennerick S, Jevtovic-Todorovic V, Todorovic SM, et al. Effect of nitrous oxide on excitatory and inhibitory synaptic transmission in hippocampal cultures. J Neurosci 1998; 18: 9716–26.
150. Russell GB, Graybeal JM. Direct measurement of nitrous oxide MAC and neurologic monitoring in rats during anesthesia under hyperbaric conditions. Anesth Analg 1992; 75: 995–9.
151. Nagele P, Metz LB, Crowder CM. Nitrous oxide (N2O) requires the N-methyl-D-aspartate receptor for its action in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2004; 101: 8791–6.
152. Gruss M, Bushell TJ, Bright DP, et al. Two-pore-domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 2004; 65: 443–52.
153. Franks NP, Dickinson R, de Sousa SL, Hall AC, Lieb WR. How does xenon produce anaesthesia? Nature 1998; 396: 324.
154. Suzuki T, Ueta K, Sugimoto M, Uchida I, Mashimo T. Nitrous oxide and xenon inhibit the human (alpha 7)5 nicotinic acetylcholine receptor expressed in Xenopus oocyte. Anesth Analg 2003; 96: 443–8.
155. Dickinson R, Peterson BK, Banks P, et al. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor by the anesthetics xenon and isoflurane: evidence from molecular modeling and electrophysiology. Anesthesiology 2007; 107: 756–67.
156. Nagele P, Metz LB, Crowder CM. Xenon acts by inhibition of non-N-methyl-D-aspartate receptor-mediated glutamatergic neurotransmission in Caenorhabditis elegans. Anesthesiology 2005; 103: 508–13.
157. Rampil IJ, Mason P, Singh H. Anesthetic potency (MAC) is independent of forebrain structures in the rat. Anesthesiology 1993; 78: 707–712.
158. Rampil IJ. Anesthetic potency is not altered after hypothermic spinal cord transection in rats. Anesthesiology 1994; 80: 606–10.
159. Antognini JF, Schwartz K. Exaggerated anesthetic requirements in the preferentially anesthetized brain. Anesthesiology 1993; 79: 1244–9.
160. Borges M, Antognini JF. Does the brain influence somatic responses to noxious stimuli during isoflurane anesthesia? Anesthesiology 1994; 81: 1511–15.
161. Overton CE. Studies of Narcosis. London: Chapman & Hall. 1891.
162. Saper CB, Scammell TE, Lu J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437: 1257–63.
163. Rampil IJ, King BS. Volatile anesthetics depress spinal motor neurons. Anesthesiology 1996; 85: 129–34.
164. Antognini JF, Carstens E, Buzin V. Isoflurane depresses motoneuron excitability by a direct spinal action: an F-wave study. Anesth Analg 1999; 88: 681–5.
165. Zhou HH, Mehra M, Leis AA. Spinal cord motoneuron excitability during isoflurane and nitrous oxide anesthesia. Anesthesiology 1997; 86: 302–7.
166. Zorychta E, Esplin DW, Capek R. Action of halothane on transmitter release in the spinal monosynaptic pathway. Fed Proc Am Soc Exp Biol 1975; 34: 2999.
167. Fujiwara N, Higashi H, Fujita S. Mechanism of halothane action on synaptic transmission in motoneurons of the newborn rat spinal cord in vitro. J Physiol 1988; 412: 155.
168. Kullmann DM, Martin RL, Redman SJ. Reduction by general anaesthetics of group Ia excitatory postsynaptic potentials and currents in the cat spinal cord. J Physiol 1989; 412: 277–96.
169. Takenoshita M, Takahashi T. Mechanisms of halothane action on synaptic transmission in motoneurons of the newborn rat spinal cord in vitro. Brain Res 1987; 402: 303–10.
170. Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 2002; 3: 591–605.
171. French JD, Verzeano M, Magoun HW. A neural basis of the anesthetic state. Arch Neurol Psychiatry 1953; 69: 519–29.
172. Alkire MT, Haier RJ, Fallon JH. Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn 2000; 9: 370–86.
173. Kaisti KK, Långsjö JW, Aalto S, et al. Effects of sevoflurane, propofol, and adjunct nitrous oxide on regional cerebral blood flow, oxygen consumption, and blood volume in humans. Anesthesiology 2003; 99: 603–13.
174. Laitio RM, Kaisti KK, Låangsjö JW, et al. Effects of xenon anesthesia on cerebral blood flow in humans: a positron emission tomography study. Anesthesiology 2007; 106: 1128–33.
175. Feldman SM, Waller HJ. Dissociation of electrocortical activation and behavioral arousal. Nature 1962; 196: 1320–2.
176. Seth AK, Baars BJ, Edelman DB. Criteria for consciousness in humans and other mammals. Conscious Cogn 2005; 14: 119–39.
177. Alkire MT, Miller J. General anesthesia and the neural correlates of consciousness. Prog Brain Res 2005; 150: 229–44.
178. Alkire MT, McReynolds, Hahn EL, Trivedi AN et al. Thalamic microinjection of nicotine reverses sevoflurane-induced loss of righting reflex in the rat. Anesthesiology 2007; 107: 264–72.
179. Angel A. Central neuronal pathways and the process of anaesthesia. Br J Anaesth 1993; 71: 148–63.
180. Nakakimura K, Sakabe T, Funatsu N, Maekawa T, Takeshita H. Metabolic activation of intercortical and corticothalamic pathways during enflurane anesthesia in rats. Anesthesiology 1988; 68: 777–82.
181. Vahle-Hinz C, Detsch O, Siemers M, Kochs E. Contributions of GABAergic and glutamatergic mechanisms to isoflurane-induced suppression of thalamic somatosensory information transfer. Exp Brain Res 2007; 176: 159–72.
182. Frost EAM. Electroencephalography and evoked potential monitoring. In: Saidman LJ, Smith NT, eds., Monitoring in Anesthesia. Boston, MA: Butterworth-Heinemann, 1993: 203–23.
183. Alkire MT, Hudetz AG, Tononi G. Consciousness and anesthesia. Science 2008; 322: 876–80.
184. Richards CD, Russel WJ, Smaje JC. The action of ether and methoxyflurane on synaptic transmission in isolated preparations of the mammalian cortex. J Physiol 1975; 248: 121–42.
185. Nicoll RA. The effects of anaesthetics on synaptic excitation and inhibition in the olfactory bulb. J Physiol 1972; 223: 803–14.
186. Richards CD, White AN. The actions of volatile anaesthetics on synaptic transmission in the dentate gyrus. J Physiol 1975; 252: 241–57.
187. MacIver MB, Roth SH. Inhalational anaesthetics exhibit pathway-specific and differential actions on hippocampal synaptic responses in vitro. Br J Anaesth 1988; 60: 680–91.
188. Gage PW, Robertson B. Prolongation of inhibitory postsynaptic currents by pentobarbitone, halothane and ketamine in CA1 pyramidal cells in rat hippocampus. Br J Pharmacol 1985; 85: 675–81.
189. Fujiwara N, Higashi H, Nishi S, et al, Changes in spontaneous firing patterns of rat hippocampal neurones induced by volatile anaesthetics. J Physiol 1988; 402: 155–75.