Skip to main content Accessibility help
×
Home
  • Print publication year: 2011
  • Online publication date: April 2011

Chapter 39 - Drugs for reversal of neuromuscular blockade

References

1. Griffith H, Johnson GE. The use of curare in general anesthesia. Anesthesiology 1942; 3: 418–20.
2. Läwen A. Über die Verbindung der Lokalanästhesie mit der Narkose, über hohe Extraduralanästhesie und epidurale Injektionen anästhesierender Lösungen bei tabischen Magenkrisen. Beitr Klin Chir 1912; 80: 168–80.
3. Pleasance RE. Curare. Br J Anaesth 1948; 21: 2–23.
4. Burke JC, Linegar CR, Frank MN, McIntyre AR. Eserine and neostigmine antagonism of d-tubocurarine. Anesthesiology 1948; 9: 251–7.
5. Prescott F, Organe G, Rothbotham S. Tubocurarine chloride as an adjunct to anaesthesia. Lancet 1946; 2: 80–4.
6. Naguib M, Flood P, McArdle JJ, Brenner HR. Advances in neurobiology of the neuromuscular junction: implications for the anesthesiologist. Anesthesiology 2002; 96: 202–31.
7. Rosenberry TL. Acetylcholinesterase. Adv Enzymol Relat Areas Mol Biol 1975; 43: 103–218.
8. Sussman JL, Harel M, Frolow F, et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 1991; 253: 872–9.
9. Zhou HX, Wlodek ST, McCammon JA. Conformation gating as a mechanism for enzyme specificity. Proc Natl Acad Sci U S A 1998; 95: 9280–3.
10. Cresnar B, Crne-Finderle N, Breskvar K, Sketelj J. Neural regulation of muscle acetylcholinesterase is exerted on the level of its mRNA. J Neurosci Res 1994; 38: 294–9.
11. Ehrlich G, Viegas-Pequignot E, Ginzberg D, et al. Mapping the human acetylcholinesterase gene to chromosome 7q22 by fluorescent in situ hybridization coupled with selective PCR amplification from a somatic hybrid cell panel and chromosome-sorted DNA libraries. Genomics 1992; 13: 1192–7.
12. McMahan UJ, Sanes JR, Marshall LM. Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature 1978; 271: 172–4.
13. Hall ZW, Sanes JR. Synaptic structure and development: the neuromuscular junction. Cell 1993; 72: 99–121.
14. Payne JP, Hughes R, Al Azawi S. Neuromuscular blockade by neostigmine in anaesthetized man. Br J Anaesth 1980; 52: 69–76.
15. Naguib M, Kopman AF, Ensor JE. Neuromuscular monitoring and postoperative residual curarisation: a meta-analysis. Br J Anaesth 2007; 98: 302–16.
16. Fiekers JF. Interactions of edrophonium, physostigmine and methanesulfonyl fluoride with the snake end-plate acetylcholine receptor-channel complex. J Pharmacol Exp Ther 1985; 234: 539–49.
17. Akaike A, Ikeda SR, Brookes N, et al. The nature of the interactions of pyridostigmine with the nicotinic acetylcholine receptor-ionic channel complex. Patch clamp studies. Mol Pharmacol 1984; 25: 102–12.
18. Magorian TT, Lynam DP, Caldwell JE, Miller RD. Can early administration of neostigmine, in single or repeated doses, alter the course of neuromuscular recovery from a vecuronium-induced neuromuscular blockade? Anesthesiology 1990; 73: 410–14.
19. Bevan JC, Collins L, Fowler C, et al. Early and late reversal of rocuronium and vecuronium with neostigmine in adults and children. Anesth Analg 1999; 89: 333–9.
20. Donati F, Smith CE, Bevan DR. Dose-response relationships for edrophonium and neostigmine as antagonists of moderate and profound atracurium blockade. Anesth Analg 1989; 68: 13–19.
21. Cronnelly R, Morris RB, Miller RD. Edrophonium: duration of action and atropine requirement in humans during halothane anesthesia. Anesthesiology 1982; 57: 261–6.
22. Miller RD, Van Nyhuis LS, Eger EI, Vitez TS, Way WL. Comparative times to peak effect and durations of action of neostigmine and pyridostigmine. Anesthesiology 1974; 41: 27–33.
23. Rupp SM, McChristian JW, Miller RD, Taboada JA, Cronnelly R. Neostigmine and edrophonium antagonism of varying intensity neuromuscular blockade induced by atracurium, pancuronium, or vecuronium. Anesthesiology 1986; 64: 711–17.
24. Naguib M, Abdulatif M, al-Ghamdi A. Dose–response relationships for edrophonium and neostigmine antagonism of rocuronium bromide (ORG 9426)-induced neuromuscular blockade. Anesthesiology 1993; 79: 739–45.
25. Naguib M, Riad W. Dose–response relationships for edrophonium and neostigmine antagonism of atracurium and cisatracurium-induced neuromuscular block. Can J Anaesth 2000; 47: 1074–81.
26. Naguib M, Abdulatif M, al-Ghamdi A, Hamo I, Nouheid R. Dose–response relationships for edrophonium and neostigmine antagonism of mivacurium-induced neuromuscular block. Br J Anaesth 1993; 71: 709–14.
27. Naguib M, Abdulatif M. Priming with anti-cholinesterases-the effect of different combinations of anti-cholinesterases and different priming intervals. Can J Anaesth 1988; 35: 47–52.
28. Jones JE, Hunter JM, Utting JE. Use of neostigmine in the antagonism of residual neuromuscular blockade produced by vecuronium. Br J Anaesth 1987; 59: 1454–8.
29. Harper NJ, Wallace M, Hall IA. Optimum dose of neostigmine at two levels of atracurium-induced neuromuscular block. Br J Anaesth 1994; 72: 82–5.
30. Engbaek J, Ording H, Ostergaard D, Viby-Mogensen J. Edrophonium and neostigmine for reversal of the neuromuscular blocking effect of vecuronium. Acta Anaesthesiol Scand 1985; 29: 544–6.
31. Fisher DM, Cronnelly R, Sharma M, Miller RD. Clinical pharmacology of edrophonium in infants and children. Anesthesiology 1984; 61: 428–33.
32. Gencarelli PJ, Miller RD. Antagonism of org NC 45 (vecuronium) and pancuronium neuromuscular blockade by neostigmine. Br J Anaesth 1982; 54: 53–6.
33. Kopman AF, Kopman DJ, Ng J, Zank LM. Antagonism of profound cisatracurium and rocuronium block: the role of objective assessment of neuromuscular function. J Clin Anesth 2005; 17: 30–5.
34. Lessard MR, Trepanier CA, Rouillard JF. Neostigmine requirements for reversal of neuromuscular blockade following an infusion of mivacurium. Can J Anaesth 1997; 44: 836–42.
35. Beemer GH, Goonetilleke PH, Bjorksten AR. The maximum depth of an atracurium neuromuscular block antagonized by edrophonium to effect adequate recovery. Anesthesiology 1995; 82: 852–8.
36. Caldwell JE, Robertson EN, Baird WL. Antagonism of vecuronium and atracurium: comparison of neostigmine and edrophonium administered at 5% twitch height recovery. Br J Anaesth 1987; 59: 478–81.
37. Berg H, Roed J, Viby-Mogensen J, et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand 1997; 41: 1095–103.
38. Bevan DR, Smith CE, Donati F. Postoperative neuromuscular blockade: a comparison between atracurium, vecuronium, and pancuronium. Anesthesiology 1988; 69: 272–6.
39. Saitoh Y, Toyooka H, Amaha K. Recoveries of post-tetanic twitch and train-of-four responses after administration of vecuronium with different inhalation anaesthetics and neuroleptanaesthesia. Br J Anaesth 1993; 70: 402–4.
40. Miller RD, Way WL, Dolan WM, Stevens WC, Eger EI. The dependence of pancuronium- and d-tubocurarine-induced neuromuscular blockades on alveolar concentrations of halothane and forane. Anesthesiology 1972; 37: 573–81.
41. Miller RD, Crique M, Eger EI. Duration of halothane anesthesia and neuromuscular blockade with d-tubocurarine. Anesthesiology 1976; 44: 206–10.
42. Kelly RE, Lien CA, Savarese JJ, et al. Depression of neuromuscular function in a patient during desflurane anesthesia. Anesth Analg 1993; 76: 868–71.
43. Rupp SM, Miller RD, Gencarelli PJ. Vecuronium-induced neuromuscular blockade during enflurane, isoflurane, and halothane anesthesia in humans. Anesthesiology 1984; 60: 102–5.
44. Gencarelli PJ, Miller RD, Eger EI, Newfield P. Decreasing enflurane concentrations and d-tubocurarine neuromuscular blockade. Anesthesiology 1982; 56: 192–4.
45. Morita T, Tsukagoshi H, Sugaya T, et al. Inadequate antagonism of vecuronium-induced neuromuscular block by neostigmine during sevoflurane or isoflurane anesthesia. Anesth Analg 1995; 80: 1175–80.
46. Reid JE, Breslin DS, Mirakhur RK, Hayes AH. Neostigmine antagonism of rocuronium block during anesthesia with sevoflurane, isoflurane or propofol. Can J Anaesth 2001; 48: 351–5.
47. Lowry DW, Mirakhur RK, McCarthy GJ, Carroll MT, McCourt KC. Neuromuscular effects of rocuronium during sevoflurane, isoflurane, and intravenous anesthesia. Anesth Analg 1998; 87: 936–40.
48. Baurain MJ, d'Hollander AA, Melot C, Dernovoi BS, Barvais L. Effects of residual concentrations of isoflurane on the reversal of vecuronium-induced neuromuscular blockade. Anesthesiology 1991; 74: 474–8.
49. Sunew KY, Hicks RG. Effects of neostigmine and pyridostigmine on duration of succinylcholine action and pseudocholinesterase activity. Anesthesiology 1978; 49: 188–91.
50. Cronnelly R, Stanski DR, Miller RD, Sheiner LB, Sohn YJ. Renal function and the pharmacokinetics of neostigmine in anesthetized man. Anesthesiology 1979; 51: 222–6.
51. Cronnelly R, Stanski DR, Miller RD, Sheiner LB. Pyridostigmine kinetics with and without renal function. Clin Pharmacol Ther 1980; 28: 78–81.
52. Morris RB, Cronnelly R, Miller RD, Stanski DR, Fahey MR. Pharmacokinetics of edrophonium in anephric and renal transplant patients. Br J Anaesth 1981; 53: 1311–14.
53. Morris RB, Cronnelly R, Miller RD, Stanski DR, Fahey MR. Pharmacokinetics of edrophonium and neostigmine when antagonizing d-tubocurarine neuromuscular blockade in man. Anesthesiology 1981; 54: 399–401.
54. Suresh D, Carter JA, Whitehead JP, Goldhill DR, Flynn PJ. Cardiovascular changes at antagonism of atracurium: effects of different doses of premixed neostigmine and glycopyrronium in a ratio of 5:1. Anaesthesia 1991; 46: 877–80.
55. Bowman WC. Pharmacology of Neuromuscular Function, 2nd edn. London: Wright, 1990.
56. Salem MG, Richardson JC, Meadows GA, Lamplugh G, Lai KM. Comparison between glycopyrrolate and atropine in a mixture with neostigmine for reversal of neuromuscular blockade. Studies in patients following open heart surgery. Br J Anaesth 1985; 57: 184–7.
57. van Vlymen JM, Parlow JL. The effects of reversal of neuromuscular blockade on autonomic control in the perioperative period. Anesth Analg 1997; 84: 148–54.
58. Ding Y, Fredman B, White PF. Use of mivacurium during laparoscopic surgery: effect of reversal drugs on postoperative recovery. Anesth Analg 1994; 78: 450–4.
59. Boeke AJ, de Lange JJ, van Druenen B, Langemeijer JJ. Effect of antagonizing residual neuromuscular block by neostigmine and atropine on postoperative vomiting. Br J Anaesth 1994; 72: 654–6.
60. Hovorka J, Korttila K, Nelskyla K, et al. Reversal of neuromuscular blockade with neostigmine has no effect on the incidence or severity of postoperative nausea and vomiting. Anesth Analg 1997; 85: 1359–61.
61. Gild WM, Posner KL, Caplan RA, Cheney FW. Eye injuries associated with anesthesia. A closed claims analysis. Anesthesiology 1992; 76: 204–8.
62. Donati F, Meistelman C, Plaud B. Vecuronium neuromuscular blockade at the adductor muscles of the larynx and adductor pollicis. Anesthesiology 1991; 74: 833–7.
63. Meistelman C, Plaud B, Donati F. Rocuronium (ORG 9426) neuromuscular blockade at the adductor muscles of the larynx and adductor pollicis in humans. Can J Anaesth 1992; 39: 665–9.
64. Wright PM, Caldwell JE, Miller RD. Onset and duration of rocuronium and succinylcholine at the adductor pollicis and laryngeal adductor muscles in anesthetized humans. Anesthesiology 1994; 81: 1110–15.
65. Plaud B, Debaene B, Lequeau F, Meistelman C, Donati F. Mivacurium neuromuscular block at the adductor muscles of the larynx and adductor pollicis in humans. Anesthesiology 1996; 85: 77–81.
66. Hemmerling TM, Schmidt J, Hanusa C, Wolf T, Schmitt H. Simultaneous determination of neuromuscular block at the larynx, diaphragm, adductor pollicis, orbicularis oculi and corrugator supercilii muscles. Br J Anaesth 2000; 85: 856–60.
67. Fisher DM, Szenohradszky J, Wright PM, et al. Pharmacodynamic modeling of vecuronium-induced twitch depression. Rapid plasma-effect site equilibration explains faster onset at resistant laryngeal muscles than at the adductor pollicis. Anesthesiology 1997; 86: 558–66.
68. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979; 25: 358–71.
69. Wierda JM, Kleef UW, Lambalk LM, Kloppenburg WD, Agoston S. The pharmacodynamics and pharmacokinetics of Org 9426, a new non-depolarizing neuromuscular blocking agent, in patients anaesthetized with nitrous oxide, halothane and fentanyl. Can J Anaesth 1991; 38: 430–5.
70. Naguib M, Kopman AF. Low dose rocuronium for tracheal intubation. Middle East J Anesthesiol 2003; 17: 193–204.
71. Hutton P, Burchett KR, Madden AP. Comparison of recovery after neuromuscular blockade by atracurium or pancuronium. Br J Anaesth 1988; 60: 36–42.
72. Kopman AF, Yee PS, Neuman GG. Relationship of the train-of-four fade ratio to clinical signs and symptoms of residual paralysis in awake volunteers. Anesthesiology 1997; 86: 765–71.
73. Waud BE, Waud DR. The relation between tetanic fade and receptor occlusion in the presence of competitive neuromuscular block. Anesthesiology 1971; 35: 456–64.
74. Paton WD, Waud DR. The margin of safety of neuromuscular transmission. J Physiol 1967; 191: 59–90.
75. Viby-Mogensen J, Jensen NH, Engbaek J, et al. Tactile and visual evaluation of the response to train-of-four nerve stimulation. Anesthesiology 1985; 63: 440–3.
76. Dupuis JY, Martin R, Tetrault JP. Clinical, electrical and mechanical correlations during recovery from neuromuscular blockade with vecuronium. Can J Anaesth 1990; 37: 192–6.
77. Baillard C, Gehan G, Reboul-Marty J, et al. Residual curarization in the recovery room after vecuronium. Br J Anaesth 2000; 84: 394–5.
78. Baillard C, Clec'h C, Catineau J, et al. Postoperative residual neuromuscular block: a survey of management. Br J Anaesth 2005; 95: 622–6.
79. Kopman AF, Ng J, Zank LM, Neuman GG, Yee PS. Residual postoperative paralysis. Pancuronium versus mivacurium, does it matter? Anesthesiology 1996; 85: 1253–9.
80. Viby-Mogensen J, Jorgensen BC, Ording H. Residual curarization in the recovery room. Anesthesiology 1979; 50: 539–41.
81. Debaene B, Plaud B, Dilly MP, Donati F. Residual paralysis in the PACU after a single intubating dose of nondepolarizing muscle relaxant with an intermediate duration of action. Anesthesiology 2003; 98: 1042–8.
82. Murphy GS, Szokol JW, Marymont JH, et al. Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg 2008; 107: 130–7.
83. Eriksson LI, Sundman E, Olsson R, et al. Functional assessment of the pharynx at rest and during swallowing in partially paralyzed humans: simultaneous videomanometry and mechanomyography of awake human volunteers. Anesthesiology 1997; 87: 1035–43.
84. Sundman E, Witt H, Olsson R, et al. The incidence and mechanisms of pharyngeal and upper esophageal dysfunction in partially paralyzed humans: pharyngeal videoradiography and simultaneous manometry after atracurium. Anesthesiology 2000; 92: 977–84.
85. Eriksson LI. The effects of residual neuromuscular blockade and volatile anesthetics on the control of ventilation. Anesth Analg 1999; 89: 243–51.
86. Sorgenfrei IF, Viby-Mogensen J, Swiatek FA. [Does evidence lead to a change in clinical practice? Danish anaesthetists' and nurse anesthetists' clinical practice and knowledge of postoperative residual curarization]. Ugeskr Laeger 2005; 167: 3878–82.
87. Bartkowski RR. Incomplete reversal of pancuronium neuromuscular blockade by neostigmine, pyridostigmine, and edrophonium. Anesth Analg 1987; 66: 594–8.
88. Beemer GH, Bjorksten AR, Dawson PJ, et al. Determinants of the reversal time of competitive neuromuscular block by anticholinesterases. Br J Anaesth 1991; 66: 469–75.
89. Murphy GS, Szokol JW, Marymont JH, et al. Intraoperative acceleromyographic monitoring reduces the risk of residual neuromuscular blockade and adverse respiratory events in the postanesthesia care unit. Anesthesiology 2008; 109: 389–98.
90. Naguib M, el-Gammal M, Daoud W, et al. Human plasma cholinesterase for antagonism of prolonged mivacurium-induced neuromuscular blockade. Anesthesiology 1995; 82: 1288–92.
91. Belmont MR, Horochiwsky Z, Eliazo RF, Savarese JJ. Reversal of AV430A with cysteine in rhesus monkeys. Anesthesiology 2004: A-1180.
92. Bom A, Bradley M, Cameron K, et al. A novel concept of reversing neuromuscular block: chemical encapsulation of rocuronium bromide by a cyclodextrin-based synthetic host. Angew Chem 2002; 41: 266–70.
93. Adam JM, Bennett DJ, Bom A, et al. Cyclodextrin-derived host molecules as reversal agents for the neuromuscular blocker rocuronium bromide: synthesis and structure–activity relationships. J Med Chem 2002; 45: 1806–16.
94. Tarver GJ, Grove SJ, Buchanan K, et al. 2-O-substituted cyclodextrins as reversal agents for the neuromuscular blocker rocuronium bromide. Bioorg Med Chem 2002; 10: 1819–27.
95. Cameron KS, Clark JK, Cooper A, et al. Modified gamma-cyclodextrins and their rocuronium complexes. Org Lett 2002; 4: 3403–6.
96. Zhang MQ. Drug-specific cyclodextrins: the future of rapid neuromuscular block reversal? Drugs Future 2003; 28: 347–54.
97. Gijsenbergh F, Ramael S, Houwing N, van Iersel T. First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide. Anesthesiology 2005; 103: 695–703.
98. Sorgenfrei IF, Norrild K, Larsen PB, et al. Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex: a dose-finding and safety study. Anesthesiology 2006; 104: 667–74.
99. Sparr HJ, Vermeyen KM, Beaufort AM, et al. Early reversal of profound rocuronium-induced neuromuscular blockade by sugammadex in a randomized multicenter study: efficacy, safety, and pharmacokinetics. Anesthesiology 2007; 106: 935–43.
100. Epemolu O, Bom A, Hope F, Mason R. Reversal of neuromuscular blockade and simultaneous increase in plasma rocuronium concentration after the intravenous infusion of the novel reversal agent Org 25969. Anesthesiology 2003; 99: 632–7.
101. Naguib M. Sugammadex: another milestone in clinical neuromuscular pharmacology. Anesth Analg 2007; 104: 575–81.
102. Shields M, Giovannelli M, Mirakhur RK, et al. Org 25969 (sugammadex), a selective relaxant binding agent for antagonism of prolonged rocuronium-induced neuromuscular block. Br J Anaesth 2006; 96: 36–43.
103. Suy K, Morias K, Cammu G, et al. Effective reversal of moderate rocuronium- or vecuronium-induced neuromuscular block with sugammadex, a selective relaxant binding agent. Anesthesiology 2007; 106: 283–8.
104. Groudine SB, Soto R, Lien C, Drover D, Roberts K. A randomized, dose-finding, phase II study of the selective relaxant binding drug, sugammadex, capable of safely reversing profound rocuronium-induced neuromuscular block. Anesth Analg 2007; 104: 555–62.
105. de Boer HD, Driessen JJ, Marcus MA, et al. Reversal of rocuronium-induced (1.2 mg/kg) profound neuromuscular block by sugammadex: a multicenter, dose-finding and safety study. Anesthesiology 2007; 107: 239–44.
106. Puhringer FK, Rex C, Sielenkamper AW, et al. Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points: an international, multicenter, randomized, dose-finding, safety assessor-blinded, phase II trial. Anesthesiology 2008; 109: 188–97.
107. Flockton EA, Mastronardi P, Hunter JM, et al. Reversal of rocuronium-induced neuromuscular block with sugammadex is faster than reversal of cisatracurium-induced block with neostigmine. Br J Anaesth 2008; 100: 622–30.
108. Lee C, Jahr JS, Candiotti K, et al. Reversal of profound neuromuscular block by sugammadex administered 3 minutes after rocuronium: A comparison with spontaneous recovery from succinylcholine. Anesthesiology In press.
109. Naguib M. Sugammadex may replace best clinical practice: A misconception. Anesth Analg 2007; 105: 1506–7.
110. Eleveld DJ, Kuizenga K, Proost JH, Wierda JM. A temporary decrease in twitch response during reversal of rocuronium-induced muscle relaxation with a small dose of sugammadex. Anesth Analg 2007; 104: 582–4.
111. de Boer HD, van Egmond J, van de Pol F, Bom A, Booij LH. Sugammadex, a new reversal agent for neuromuscular block induced by rocuronium in the anaesthetized Rhesus monkey. Br J Anaesth 2006; 96: 473–9.
112. Naguib M. Different priming techniques, including mivacurium, accelerate the onset of rocuronium. Can J Anaesth 1994; 41: 902–7.
113. Naguib M, Abdulatif M, Selim M, al-Ghamdi A. Dose–response studies of the interaction between mivacurium and suxamethonium. Br J Anaesth 1995; 74: 26–30.
114. Bom AH, Hope F. A higher than required dose of sugammadex prevents the creation of a situation similar to “priming”. Anesthesiology 2007: A989.
115. Staals LM, Snoeck MM, Driessen JJ, et al. Multicentre, parallel-group, comparative trial evaluating the efficacy and safety of sugammadex in patients with end-stage renal failure or normal renal function. Br J Anaesth 2008; 101: 492–7.
116. Naguib M, Brull SJ. Sugammadex: a novel selective relaxant binding agent. Expert Rev Clin Pharmacol 2009; 2: 37–53.