Skip to main content Accessibility help
×
Home
  • Print publication year: 2012
  • Online publication date: June 2012

7 - Pharmacology of adjunct anesthetic drugs

from Section 1 - General considerations

References

1. Vauzella C, Stagnara P, Jouvinroux P. Functional monitoring of spinal cord activity during spinal surgery. Clin Orthop 1973; 93: 73–8.
2. Hall JE, Levine CR, Sudhir HG. Intraoperative awakening to monitor spinal cord function during Harrington rod instrumentation and spinal fusion. J Bone Joint Surg 1978; 60A: 533–6.
3. Grottke O, Dietrich PJ, Wiegels S, Wappler F. Intraoperative wake up test and postoperative emergence in patients undergoing spinal surgery: a comparison of intravenous and inhaled anesthetic techniques using short acting anesthetics. Anesth Analg 2004; 99: 1521–7.
4. McTaggart Cowan RA. Somatosensory evoked potentials during spinal surgery. Can J Anaesth 1998; 45: 387–92.
5. Grundy BL. Intraoperative monitoring of somatosensory evoked potentials. Anesthesiology 1983; 58: 72–87.
6. Lyon R, Lieberman JA, Grabovac ME, Hu S. Strategies for managing decreased motor evoked signals while distracting the spine during correction of scoliosis. J Neurosurg Anesthesiol 2004; 16: 167–70.
7. Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials. Anesthesiology 2003; 99: 716–23.
8. Pathak KS, Ammadio BS, Scoles PV. Effects of halothane, enflurane, and isoflurane in nitrous oxide on multi-level somatosensory evoked potentials. Anesthesiology 1989; 70: 207–14.
9. Pathak KS, Ammadio M, Kalamchi A, et al. Effects of halothane, enflurane, and isoflurane on somatosensory evoked potentials during nitrous oxide anesthesia. Anesthesiology 1987; 66: 753–7.
10. Scholz J, Bischoff P, Szafarczyk W. Comparison of sevoflurane and isoflurane in ambulatory surgery; Results of a multicenter study. Anesthetist 1996; 45: 580–6.
11. Haghighi SS, Sirintrapun SJ, Johnson JC. Suppression of spinal and cortical somatosensory evoked potentials by desflurane anesthesia. J Neurosurg Anesthesiol 1996; 8: 148–53.
12. Vaugha DJ, Thornton C, Wright DR. Effects of different concentrations of sevoflurane and desflurane on subcortical somatosensory evoked potentials in anesthetized, non-stimulated patients. Br J Anaesth 2001; 86: 59–67.
13. Samra SK, Vanderzant CW, Domer PA, Sackellares JC. Differential effects of isoflurane on human median nerve somatosensory evoked potentials. Anesthesiology 1987; 66: 29–35.
14. Sebel PS, Flynn PJ, Ingram DA. Effect of nitrous oxide on visual, auditory and somatosensory evoked potentials. Br J Anaesth 1984; 56: 1403–7.
15. Kalkman CJ, Traast H, Zuurmond WA, Bovill JG. Differential effects of propofol and nitrous oxide on posterior tibial nerve somatosensory cortical evoked potentials during alfentanil anaesthesia. Br J Anaesth 1991; 66: 483–9.
16. Schaney CR, Sanders J, Kuhn P, LaJohn S, Heard C. Nitrous oxide with propofol reduces somatosensory evoked potential amplitude in children and adolescents. Spine 2005; 30: 689–93.
17. Rodola F, D’Avolio R, Chierichini, et al. Wake-up test during major spinal surgery under remifentanil balanced anaesthesia. Eur Rev Med Pharmacol Sci 2000; 4: 67–70.
18. Shimoji K, Kano T, Nakashima H. The effects of thiamylal sodium on electrical activities of the central and peripheral nervous system in man. Anesthesiology 1974; 40: 234–9.
19. Ganes T, Lundar T. The effect of thiopentone on somatosensory evoked responses and EEGs in comatose patients. J Neurol Neurosurg Psychiatry 1983; 46: 509–14.
20. Koht A, Schutz W, Schmidt G. Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effect of fentanyl and nitrous oxide. Anesth Analg 1988; 67: 582–9.
21. Sloan TB, Ronai AK, Toleikis JR. Improvement of somatosensory evoked potentials by etomidate. Anesth Analg 1988; 67: 582–9.
22. McPherson RW, Sell B, Traystman RJ. Effects of thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology 1986; 65: 584–8.
23. Nathan N, Tabaraud F, Lacroix F. Influence of propofol concentrations on multiple transcranial motor evoked potentials. Br J Anaesth 2003; 91: 493–9.
24. Pechstein U, Nadstawek J, Zentner J. Isoflurane plus nitrous oxide versus propofol for recording of motor evoked potentials after high frequency repetitive electrical stimulation. Electrocephalogr Clin Neurophysiol 1998; 108: 175–83.
25. Kajiyama S, Sanuki M, Kinoshita H. Effect of bolus propofol administration on muscle evoked potential (MsEP) during spine surgery. Masui 2001; 50: 867–73.
26. Russell D, Wilkes MP, Hunter SC, et al. Manual compared to targeted infusion of propofol. Br J Anaesth 1995; 75: 562–6.
27. Nathan N, Tabaraud F, Lacroix F, et al. Influence of propofol concentrations on multipulse transcranial motor evoked potentials. Br J Anaesth 2003; 91: P3493–7.
28. Albertin A, LaColla L, Gandolfi A, et al. Greater peripheral blood flow but less bleeding with propofol versus sevoflurane during spine surgery. Spine 2008; 33: 2017–22.
29. Holzman A, Schmidt H, Gebhardt MM, et al. Propofol-induced alterations in the microcirculation of hamster striated muscle. Br J Anaesth 1995; 75: 452–6.
30. Schubert A, Drummond JC, Peterson DO, Saidman LJ. The effect of high-dose fentanyl on human median somatosensory evoked responses. Can J Anaesth 1987; 34: 35–40.
31. Pathak KS, Brown RH, Cascorbi HF, Nash CL. Effects of fentanyl and morphine on intraoperative somatosensory cortical-evoked potentials. Anesth Analg 1984; 63: 833–7.
32. Kimball-Jones PL, Schell RM, Shook JP. The use of remifentanil infusion to allow intraoperative awakening for intentional fracturing of the anterior cervical spine. Anesth Analg 1999; 89: 1059–61.
33. Imani F, Jafarian A, Hassani V, Khan ZH. Propofol-alfentanil vs. propofol-remifentanil for posterior spinal fusion including wake-up test. Br J Anaesth 2006; 96: 583–6.
34. Ngwenyama NE, Knanyezi E, Anderson J, Hoernschmeyer DG, Tobias JD. Effects of dexmedetomidine on propofol and remifentanil infusion rates during total intravenous anesthesia for spine surgery in adolescents. Pediatr Anesth 2008; 18: 1190–5.
35. Bala E, Sessler DI, Nair DR, et al. Motor and somatosensory potentials are well maintained in patients given dexmedetomidine during spine surgery. Anesthesiology 2008; 109: 417–25.
36. Anschel DJ, Aherne A, Soto RG. Successful intraoperative spinal cord monitoring during scoliosis surgery using a total intravenous anesthetic regimen including dexmedetomidine. J Clin Neurophysiol 2008; 25: 56–61.
37. Tobias JD, Goble TJ, Bates G, et al. Effects of dexmedetomidine on intraoperative motor and somatosensory evoked potential monitoring during spinal surgery in adolescents. Pediatr Anesth 2008; 18: 1082–88.
38. Mahmoud M, Sadhasivam S, Salisbury S, et al. Susceptibility of transcranial electric motor-evoked potentials to varying targeted blood levels of dexmedetomidine during spine surgery. Anesthesiology 2010; 112: 1364–73.
39. Mahmoud M, Sadhasivam S, Sestokas AK, Samuels P, McAuliffe J. Loss of transcranial electric motor evoked potentials during pediatric spine surgery with dexmedetomidine. Anesthesiology 2007; 106: 393–6.
40. Hadi BA, Al Ramadani R, Daas R, Naylor I, Zeiko R. Remifentanil in combination with ketamine versus remifentanil in spinal fusion surgery- a double blind study. Int J Clin Pharmacol Ther 2010; 48: 542–8.
41. Ubags LH, Kalkman CJ, Been HD, et al. The use of ketamine or etomidate to supplement sufentanil/nitrous oxide anesthesia does not disrupt the monitoring of myogenic transcranial motor evoked responses. J Neurosurg Anesthesiol 1997; 9: 228–33.
42. Yang LH, Lin SM, Lee WY, et al. Intraoperative transcranial electrical motor evoked potential monitoring during spinal surgery under intravenous ketamine or etomidate anesthesia. Acta Neurochir 1994; 127: 191–7.
43. Grundy BL, Brown RH, Greenbergh BA. Diazepam alters cortical potentials. Anesthesiology 1979; 51: 538–43.