Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2012
  • Online publication date: June 2012

2 - Fluid management

from Section 1 - General considerations


1. Wadsworth R, Anderton JM, Vohra A. The effect of four different surgical prone positions on cardiovascular parameters in healthy volunteers. Anaesthesia 1996; 51: 819–22.
2. Toyota S, Amaki Y. Hemodynamic evaluation of the prone position by transesophageal echocardiography. J Clin Anesth 1998; 10: 32–5.
3. Kim KA, Wang MY. Anesthetic considerations in the treatment of cervical myelopathy. Spine J 2006; 6: 207S–11S.
4. Pearce DJ. The role of posture in laminectomy. Proc R Soc Med 1957; 50: 109–12.
5. Nyren S, Mure M, Jacobsson H, Larsson SA, Lindahl SG. Pulmonary perfusion is more uniform in the prone than in the supine position: scintigraphy in healthy humans. J Appl Physiol 1999; 86: 1135–41.
6. Tobin A, Kelly W. Prone ventilation – it’s time. Anaesth Intensive Care 1999; 27: 194–201.
7. Nieuwdorp M, Meuwese MC, Vink H, Hoekstra JB, Kastelein JJ, Stroes ES. The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol 2005; 16: 507–11.
8. Paptistella M, Chappell D, Hoffmann-Kiefer K, Kammerer T, Conzen P, Rehm M. The role of the glycocalyx in transvascular fluid shifts. Transfus Altern Transfus Med 2010; 11: 92–101.
9. Hu X, Weinbaum S. A new view of Starling’s hypothesis at the microstructural level. Microvasc Res 1999; 58: 281–304.
10. Jacob M, Bruegger D, Rehm M, et al. The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 2007; 73: 575–86.
11. Fleck A, Raines G, Hawker F, et al. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet 1985; 1: 781–4.
12. Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 2000; 101: 1500–2.
13. Rehm M, Bruegger D, Christ F, et al. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 2007; 116: 1896–906.
14. Nieuwdorp M, van Haeften TW, Gouverneur MC, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 2006; 55: 480–6.
15. Bruegger D, Jacob M, Rehm M, et al. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 2005; 289: H1993–9.
16. Jacob M, Chappell D, Rehm M. The ‘third space’ – fact or fiction? Best Pract Res Clin Anaesthesiol 2009; 23: 145–57.
17. Chappell D, Jacob M, Hofmann-Kiefer K, Conzen P, Rehm M. A rational approach to perioperative fluid management. Anesthesiology 2008; 109: 723–40.
18. Jacob M, Bruegger D, Rehm M, Welsch U, Conzen P, Becker BF. Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability. Anesthesiology 2006; 104: 1223–31.
19. Kimberger O, Arnberger M, Brandt S, et al. Goal-directed colloid administration improves the microcirculation of healthy and perianastomotic colon. Anesthesiology 2009; 110: 496–504.
20. Moller H, Hedlund R. Instrumented and noninstrumented posterolateral fusion in adult spondylolisthesis – a prospective randomized study: part 2. Spine (Phila Pa 1976) 2000; 25: 1716–21.
21. Batson OV. The function of the vertebral veins and their role in the spread of metastases. Ann Surg 1940; 112: 138–49.
22. Rose B, Post T, eds. Clinical Physiology of Acid–Base and Electrolyte Disorders. 5th ed. New York: McGraw-Hill; 2001.
23. Rackow EC, Falk JL, Fein IA, et al. Fluid resuscitation in circulatory shock: a comparison of the cardiorespiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med 1983; 11: 839–50.
24. McIlroy DR, Kharasch ED. Acute intravascular volume expansion with rapidly administered crystalloid or colloid in the setting of moderate hypovolemia. Anesth Analg 2003; 96: 1572–7, table of contents.
25. Kozek-Langenecker SA. Effects of hydroxyethyl starch solutions on hemostasis. Anesthesiology 2005; 103: 654–60.
26. von Hoegen I, Waller C. Safety of human albumin based on spontaneously reported serious adverse events. Crit Care Med 2001; 29: 994–6.
27. Kozek-Langenecker SA. Influence of fluid therapy on the haemostatic system of intensive care patients. Best Pract Res Clin Anaesthesiol 2009; 23: 225–36.
28. Barron ME, Wilkes MM, Navickis RJ. A systematic review of the comparative safety of colloids. Arch Surg 2004; 139: 552–63.
29. Kannan S, Milligan KR. Moderately severe anaphylactoid reaction to pentastarch (200/0.5) in a patient with acute severe asthma. Intensive Care Med 1999; 25: 220–2.
30. Herwaldt LA, Swartzendruber SK, Edmond MB, et al. The epidemiology of hemorrhage related to cardiothoracic operations. Infect Control Hosp Epidemiol 1998; 19: 9–16.
31. Cittanova ML, Leblanc I, Legendre C, Mouquet C, Riou B, Coriat P. Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet 1996; 348: 1620–2.
32. Choi PT, Yip G, Quinonez LG, Cook DJ. Crystalloids vs. colloids in fluid resuscitation: a systematic review. Crit Care Med 1999; 27: 200–10.
33. Alderson P, Schierhout G, Roberts I, Bunn F. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 2000: CD000567.
34. Virgilio RW, Rice CL, Smith DE, et al. Crystalloid vs. colloid resuscitation: is one better? A randomized clinical study. Surgery 1979; 85: 129–39.
35. Jungner M, Grande PO, Mattiasson G, Bentzer P. Effects on brain edema of crystalloid and albumin fluid resuscitation after brain trauma and hemorrhage in the rat. Anesthesiology 2010; 112: 1194–203.
36. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 2004; 350: 2247–56.
37. Waters JH, Gottlieb A, Schoenwald P, Popovich MJ, Sprung J, Nelson DR. Normal saline versus lactated Ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg 2001; 93: 817–22.
38. Ho AM, Karmakar MK, Contardi LH, Ng SS, Hewson JR. Excessive use of normal saline in managing traumatized patients in shock: a preventable contributor to acidosis. J Trauma 2001; 51: 173–7.
39. McFarlane C, Lee A. A comparison of Plasmalyte 148 and 0.9% saline for intra-operative fluid replacement. Anaesthesia 1994; 49: 779–81.
40. Scheingraber S, Rehm M, Sehmisch C, Finsterer U. Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 1999; 90: 1265–70.
41. Mathes DD, Morell RC, Rohr MS. Dilutional acidosis: is it a real clinical entity? Anesthesiology 1997; 86: 501–3.
42. Stewart PA. Independent and dependent variables of acid-base control. Respir Physiol 1978; 33: 9–26.
43. Figge J, Rossing TH, Fencl V. The role of serum proteins in acid-base equilibria. J Lab Clin Med 1991; 117: 453–67.
44. Burch JM, Ortiz VB, Richardson RJ, Martin RR, Mattox KL, Jordan GL, Jr. Abbreviated laparotomy and planned reoperation for critically injured patients. Ann Surg 1992; 215: 476–83; discussion 483–4.
45. Yudkin J, Cohen RD, Slack B. The haemodynamic effects of metabolic acidosis in the rat. Clin Sci Mol Med 1976; 50: 177–84.
46. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest 1983; 71: 726–35.
47. Wilkes NJ, Woolf R, Mutch M, et al. The effects of balanced versus saline-based hetastarch and crystalloid solutions on acid-base and electrolyte status and gastric mucosal perfusion in elderly surgical patients. Anesth Analg 2001; 93: 811–16.
48. Thompson RC. ‘Physiological’ 0.9% saline in the fluid resuscitation of trauma. J R Army Med Corps 2005; 151: 146–51.
49. Martin G, Bennett-Guerrero E, Wakeling H, et al. A prospective, randomized comparison of thromboelastographic coagulation profile in patients receiving lactated Ringer’s solution, 6% hetastarch in a balanced-saline vehicle, or 6% hetastarch in saline during major surgery. J Cardiothorac Vasc Anesth 2002; 16: 441–6.
50. Schramko A, Suojaranta-Ylinen R, Kuitunen A, Raivio P, Kukkonen S, Niemi T. Hydroxyethylstarch and gelatin solutions impair blood coagulation after cardiac surgery: a prospective randomized trial. Br J Anaesth 2010; 104: 691–7.
51. Phillips CR, Vinecore K, Hagg DS, et al. Resuscitation of haemorrhagic shock with normal saline vs. lactated Ringer’s: effects on oxygenation, extravascular lung water and haemodynamics. Crit Care 2009; 13: R30.
52. White SA, Goldhill DR. Is Hartmann’s the solution? Anaesthesia 1997; 52: 422–7.
53. Williams EL, Hildebrand KL, McCormick SA, Bedel MJ. The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg 1999; 88: 999–1003.
54. O’Malley CM, Frumento RJ, Hardy MA, et al. A randomized, double-blind comparison of lactated Ringer’s solution and 0.9% NaCl during renal transplantation. Anesth Analg 2005; 100: 1518–24, table of contents.
55. Boldt J, Haisch G, Suttner S, Kumle B, Schellhase F. Are lactated Ringer’s solution and normal saline solution equal with regard to coagulation? Anesth Analg 2002; 94: 378–84, table of contents.
56. Cusi K, Consoli A, DeFronzo RA. Metabolic effects of metformin on glucose and lactate metabolism in noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1996; 81: 4059–67.
57. Miletin MS, Stewart TE, Norton PG. Influences on physicians’ choices of intravenous colloids. Intensive Care Med 2002; 28: 917–24.
58. Laxenaire MC, Charpentier C, Feldman L. Anaphylactoid reactions to colloid plasma substitutes: incidence, risk factors, mechanisms. A French multicenter prospective study. Ann Fr Anesth Reanim 1994; 13: 301–10.
59. Dieterich HJ, Kraft D, Sirtl C, et al. Hydroxyethyl starch antibodies in humans: incidence and clinical relevance. Anesth Analg 1998; 86: 1123–6.
60. Simon DI, Stamler JS, Jaraki O, et al. Antiplatelet properties of protein S-nitrosothiols derived from nitric oxide and endothelium-derived relaxing factor. Arterioscler Thromb 1993; 13: 791–9.
61. Nathan C, Xie QW, Halbwachs-Mecarelli L, Jin WW. Albumin inhibits neutrophil spreading and hydrogen peroxide release by blocking the shedding of CD43 (sialophorin, leukosialin). J Cell Biol 1993; 122: 243–56.
62. Rhee P, Wang D, Ruff P, et al. Human neutrophil activation and increased adhesion by various resuscitation fluids. Crit Care Med 2000; 28: 74–8.
63. Horstick G, Lauterbach M, Kempf T, et al. Early albumin infusion improves global and local hemodynamics and reduces inflammatory response in hemorrhagic shock. Crit Care Med 2002; 30: 851–5.
64. Qiao R, Siflinger-Birnboim A, Lum H, Tiruppathi C, Malik AB. Albumin and Ricinus communis agglutinin decrease endothelial permeability via interactions with matrix. Am J Physiol 1993; 265: C439–46.
65. Haraldsson B, Rippe B. Serum factors other than albumin are needed for the maintenance of normal capillary permselectivity in rat hindlimb muscle. Acta Physiol Scand 1985; 123: 427–36.
66. Vogt NH, Bothner U, Lerch G, Lindner KH, Georgieff M. Large-dose administration of 6% hydroxyethyl starch 200/0.5 total hip arthroplasty: plasma homeostasis, hemostasis, and renal function compared to use of 5% human albumin. Anesth Analg 1996; 83: 262–8.
67. Vogt N, Bothner U, Brinkmann A, de Petriconi R, Georgieff M. Peri-operative tolerance to large-dose 6% HES 200/0.5 in major urological procedures compared with 5% human albumin. Anaesthesia 1999; 54: 121–7.
68. Rozich JD, Paul RV. Acute renal failure precipitated by elevated colloid osmotic pressure. Am J Med 1989; 87: 359–60.
69. Belayev L, Busto R, Zhao W, Clemens JA, Ginsberg MD. Effect of delayed albumin hemodilution on infarction volume and brain edema after transient middle cerebral artery occlusion in rats. J Neurosurg 1997; 87: 595–601.
70. Belayev L, Liu Y, Zhao W, Busto R, Ginsberg MD. Human albumin therapy of acute ischemic stroke: marked neuroprotective efficacy at moderate doses and with a broad therapeutic window. Stroke 2001; 32: 553–60.
71. Delaney AP, Dan A, McCaffrey J, Finfer S. The role of albumin as a resuscitation fluid for patients with sepsis: a systematic review and meta-analysis. Crit Care Med 2011; 39: 386–91.
72. Boldt J, Zickmann B, Rapin J, Hammermann H, Dapper F, Hempelmann G. Influence of volume replacement with different HES-solutions on microcirculatory blood flow in cardiac surgery. Acta Anaesthesiol Scand 1994; 38: 432–8.
73. Rittoo D, Gosling P, Simms MH, Smith SR, Vohra RK. The effects of hydroxyethyl starch compared with gelofusine on activated endothelium and the systemic inflammatory response following aortic aneurysm repair. Eur J Vasc Endovasc Surg 2005; 30: 520–4.
74. Feng X, Yan W, Wang Z, et al. Hydroxyethyl starch, but not modified fluid gelatin, affects inflammatory response in a rat model of polymicrobial sepsis with capillary leakage. Anesth Analg 2007; 104: 624–30.
75. Brandstrup B, Tonnesen H, Beier-Holgersen R, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 2003; 238: 641–8.
76. Treib J, Baron JF, Grauer MT, Strauss RG. An international view of hydroxyethyl starches. Intensive Care Med 1999; 25: 258–68.
77. Bork K. Pruritus precipitated by hydroxyethyl starch: a review. Br J Dermatol 2005; 152: 3–12.
78. Niemi TT, Miyashita R, Yamakage M. Colloid solutions: a clinical update. J Anesth 2010; 24: 913–25.
79. Schortgen F, Lacherade JC, Bruneel F, et al. Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 2001; 357: 911–16.
80. de Jonge E, Levi M, Buller HR, Berends F, Kesecioglu J. Decreased circulating levels of von Willebrand factor after intravenous administration of a rapidly degradable hydroxyethyl starch (HES 200/0.5/6) in healthy human subjects. Intensive Care Med 2001; 27: 1825–9.
81. Omar MN, Shouk TA, Khaleq MA. Activity of blood coagulation and fibrinolysis during and after hydroxyethyl starch (HES) colloidal volume replacement. Clin Biochem 1999; 32: 269–74.
82. Franz A, Braunlich P, Gamsjager T, Felfernig M, Gustorff B, Kozek-Langenecker SA. The effects of hydroxyethyl starches of varying molecular weights on platelet function. Anesth Analg 2001; 92: 1402–7.
83. Westphal M, James MF, Kozek-Langenecker S, Stocker R, Guidet B, Van Aken H. Hydroxyethyl starches: different products – different effects. Anesthesiology 2009; 111: 187–202.
84. Wilkes MM, Navickis RJ, Sibbald WJ. Albumin versus hydroxyethyl starch in cardiopulmonary bypass surgery: a meta-analysis of postoperative bleeding. Ann Thorac Surg 2001; 72: 527–33; discussion 534.
85. Porter SS, Goldberg RJ. Intraoperative allergic reactions to hydroxyethyl starch: a report of two cases. Can Anaesth Soc J 1986; 33: 394–8.
86. Huttner I, Boldt J, Haisch G, Suttner S, Kumle B, Schulz H. Influence of different colloids on molecular markers of haemostasis and platelet function in patients undergoing major abdominal surgery. Br J Anaesth 2000; 85: 417–23.
87. Shippy CR, Appel PL, Shoemaker WC. Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med 1984; 12: 107–12.
88. Walsh SR, Tang T, Bass S, Gaunt ME. Doppler-guided intra-operative fluid management during major abdominal surgery: systematic review and meta-analysis. Int J Clin Pract 2008; 62: 466–70.
89. Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008; 134: 172–8.
90. Hollenberg SM, Ahrens TS, Annane D, et al. Practice parameters for hemodynamic support of sepsis in adult patients: 2004 update. Crit Care Med 2004; 32: 1928–48.
91. Pinsky MR. Clinical significance of pulmonary artery occlusion pressure. Intensive Care Med 2003; 29: 175–8.
92. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 2002; 121: 2000–8.
93. Marik PE. Techniques for assessment of intravascular volume in critically ill patients. J Intensive Care Med 2009; 24: 329–37.
94. Vincent JL, Weil MH. Fluid challenge revisited. Crit Care Med 2006; 34: 1333–7.
95. Sakka SG, Bredle DL, Reinhart K, Meier-Hellmann A. Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care 1999; 14: 78–83.
96. Renner J, Scholz J, Bein B. Monitoring fluid therapy. Best Pract Res Clin Anaesthesiol 2009; 23: 159–71.
97. Benington S, Ferris P, Nirmalan M. Emerging trends in minimally invasive haemodynamic monitoring and optimization of fluid therapy. Eur J Anaesthesiol 2009; 26: 893–905.
98. Manecke GR, Jr., Auger WR. Cardiac output determination from the arterial pressure wave: clinical testing of a novel algorithm that does not require calibration. J Cardiothorac Vasc Anesth 2007; 21: 3–7.
99. Pinsky MR. Cardiovascular issues in respiratory care. Chest 2005; 128: 592S-7S.
100. Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care 2000; 4: 282–9.
101. Pizov R, Ya’ari Y, Perel A. Systolic pressure variation is greater during hemorrhage than during sodium nitroprusside-induced hypotension in ventilated dogs. Anesth Analg 1988; 67: 170–4.
102. Berkenstadt H, Margalit N, Hadani M, et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 2001; 92: 984–9.
103. Reuter DA, Kirchner A, Felbinger TW, et al. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med 2003; 31: 1399–404.
104. Espersen K, Jensen EW, Rosenborg D, et al. Comparison of cardiac output measurement techniques: thermodilution, Doppler, CO2-rebreathing and the direct Fick method. Acta Anaesthesiol Scand 1995; 39: 245–51.
105. Chytra I, Pradl R, Bosman R, Pelnar P, Kasal E, Zidkova A. Esophageal Doppler-guided fluid management decreases blood lactate levels in multiple-trauma patients: a randomized controlled trial. Crit Care 2007; 11: R24.
106. Biais M, Bernard O, Ha JC, Degryse C, Sztark F. Abilities of pulse pressure variations and stroke volume variations to predict fluid responsiveness in prone position during scoliosis surgery. Br J Anaesth 2010; 104: 407–13.