Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T14:52:51.639Z Has data issue: false hasContentIssue false

Further Reading and References

Published online by Cambridge University Press:  24 May 2010

Panagiotis A. Tsonis
Affiliation:
University of Dayton, Ohio
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Anatomy of Gene Regulation
A Three-dimensional Structural Analysis
, pp. 259 - 270
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Branden, C., and Tooze, J. (1999). Introduction to protein structure, Garland, New York
Lewin, B. (2000). Genes VII, Oxford, New York
Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., and Darnell, J. (2000). Molecular cellular biology, W. H. Freeman, New York
Ptashne, M. (1992). A genetic switch, Cell Press and Blackwell Scientific Publications, Cambridge, MA
Singer, M., and Berg, P. (1991). Genes and genomes. University Science Books, Mill Valley, CA
Weaver, R. F. (1999). Molecular biology, McGraw-Hill, New York
Anderson, J. E., Ptashne, M., and Harrison, S. C. (1987). Structure of the repressor-operator complex of bacteriophage 434. Nature 326: 846–52CrossRefGoogle ScholarPubMed
Andrews, B. J., and Donoviel, M. S. (1995). A heterodimeric transcriptional repressor becomes crystal clear. Science 270: 251–3CrossRefGoogle ScholarPubMed
Antson, A. A., Dodson, E. J., Dodson, G., Greaves, R. B., Chen, X., and Gollnick, P. (1999). Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA. Nature 401: 235–42CrossRefGoogle ScholarPubMed
Arents, G., and Moudrianakis, E. N. (1995). The histone fold: A ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc. Natl. Acad. Sci. USA 92: 11170–4CrossRefGoogle ScholarPubMed
Asturias, F. J., Jiang, Y. W., Myers, L. C., Gustafsson, C. M., and Kornberg, R. D. (1999). Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283: 985–7CrossRefGoogle ScholarPubMed
Ban, N., Freeborn, B., Nissen, P., Penczek, P., Grassucci, R. A., Sweet, R., Frank, J., Moore, P. B., and Steitz, T. A. (1998). A 9 Å resolution X-Ray crystallographic map of the large ribosomal subunit. Cell 93: 1105–15CrossRefGoogle ScholarPubMed
Ban, N., Nissen, P., Hansen, J., Capel, M., Moore, P. B., and Steitz, T. A. (1999). Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit. Nature 400: 841–7CrossRefGoogle ScholarPubMed
Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289: 905–19CrossRefGoogle ScholarPubMed
Bass, B. L. (2000). Double-stranded RNA as a template for gene silencing. Cell 101: 235–8CrossRefGoogle ScholarPubMed
Batey, R. T., Rambo, R. P., Lucast, L., Rha, B., and Doudna, J. A. (2000). Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287: 1232–9CrossRefGoogle ScholarPubMed
Battiste, J. L., Pestova, T. V., Hellen, C. U., and Wagner, G. (2000). The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol. Cell 5: 109–19CrossRefGoogle ScholarPubMed
Baumeister, W., Walz, J., Zuhl, F., and Seemuller, E. (1998). The proteasome: Paradigm of a self-compartmentalizing protease. Cell 92: 367–80CrossRefGoogle ScholarPubMed
Beamer, L. J., and Pabo, C. O. (1992). Refined 1.8 Angstrom crystal structure of the lambda repressor-operator complex. J. Mol. Biol. 227: 177–96CrossRefGoogle Scholar
Becker, S., Groner, B., and Muller, C. W. (1998). Three-dimensional structure of the Stat3β homodimer bound to DNA. Nature 394: 145–51CrossRefGoogle Scholar
Bell, C. E., Frescura, P., Hochschild, A., and Lewis, M. (2000). Crystal structure of the λ repressor C-terminal domain provides a model for cooperative operator binding. Cell 101: 801–11CrossRefGoogle ScholarPubMed
Berger, J. M., Gamblin, S. J., Harrison, S. C., and Wang, J. C. (1996). Structure and mechanism of DNA topoisomerase II. Nature 379: 225–32CrossRefGoogle ScholarPubMed
Biou, V., Shu, F., and Ramakrishnan, V. (1995). X-ray crystallography shows that translational initation factor IF3 consists of two compact α/β domains linked by an α-helix. EMBO J. 14: 4056–64Google Scholar
Birck, C., Poch, O., Romier, C., Ruff, M., Mengus, G., Lavigne, A., Davidson, I., and Moras, D. (1998). Human TAFII28 and TAFII18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell 94: 239–49CrossRefGoogle Scholar
Blum, B., Bakalara, N., and Simpson, L. (1990). A model for RNA editing in kinetoplasmid mitochondria: “Guide” RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 60: 189–98CrossRefGoogle Scholar
Bochkarev, A., Pfuetzner, R. A., Edwards, A. M., and Frappier, L. (1997). Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385: 176–81CrossRefGoogle Scholar
Bogden, C. E., Fass, D., Bergman, N., Nichols, M. D., and Berger, J. M. (1999). The structural basis for terminator recognition by the Rho transcription termination factor. Mol. Cell 3: 487–93CrossRefGoogle ScholarPubMed
Brino, L., Urzhumtsev, A., Mousli, M., Bronner, C., Mitschler, A., Oudet, P., and Moras, D. (2000). Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center. J. Biol. Chem. 275(13): 9468–75CrossRefGoogle ScholarPubMed
Brodersen, D. E., Clemons, W. M. Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., and Ramakrishnan, V. (2000). The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103: 1143–54CrossRefGoogle ScholarPubMed
Bukau, B., and Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell 92: 351–66CrossRefGoogle ScholarPubMed
Bukau, B., Deuerling, E., Pfund, C., and Craig, E. A. (2000). Getting newly synthesized proteins into shape. Cell 101: 119–22CrossRefGoogle ScholarPubMed
Caprara, M. G., Lehnert, V., Lambowitz, A. M., and Westhof, E. (1996). A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core. Cell 87: 1135–45CrossRefGoogle ScholarPubMed
Carrodeguas, J. A., Theis, K., Bogenhagen, D. F., and Kisker, C. (2001). Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase gamma, PolgammaB, functions as a homodimer. Mol. Cell 7: 43–54CrossRefGoogle Scholar
Carter, A. P., Clemons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Hartsch, T., Wimberly, B. T., and Ramakrishnan, V. (2001). Atomic structure of an initiation factor bound to the 30S ribosomal subunit. Science 291: 498–501CrossRefGoogle Scholar
Carter, A. P., Clemmons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Wimberly, B. T., and Ramakrishnan, V. (2000). Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407: 340–8Google ScholarPubMed
Cate, J. H., Yusupov, M. M., Yusupova, G. Z., Earnest, T. N., and Noller, H. F. (1999). X-ray crystal structures of 70S ribosome functional complexes. Science 285: 2095–104CrossRefGoogle ScholarPubMed
Celander, D. W., and Cech, T. R. (1991). Visualizing the higher order folding of a catalytic RNA molecule. Science 251: 401–7CrossRefGoogle ScholarPubMed
Cheetham, G. M. T., and Steitz, T. A. (1999). Structure of a transcribing T7 RNA polymerase initiation complex. Science 286: 2305–9CrossRefGoogle ScholarPubMed
Chen, L., Glover, J. N. M., Hogan, P. G., Rao, A., and Harrison, S. C. (1998). Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392: 42–8CrossRefGoogle Scholar
Cho, H., Ha, N., Kang, L., Chung, K., Back, S., Jang, S., and Oh, B. (1998). Crystal structure of RNA helicase from genotype 1b hepatitis C virus. J. Biol. Chem. 273(24): 15045–52CrossRefGoogle ScholarPubMed
Copertino, D. W., and Hallick, R. B. (1993). Group II and group III introns of twintrons: Potential relationships with nuclear pre-mRNA introns. Trends Biochem. Sci. 18: 467–71CrossRefGoogle ScholarPubMed
Cramer, P., Bushnell, D. A., Fu, J., Gnatt, A. L., Maier-Davis, B., Thompson, N. E., Burgess, R. R., Edwards, A. M., David, P. R., and Kornberg, R. D. (2000). Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288: 640–9CrossRefGoogle ScholarPubMed
Darst, S. A., Edwards, A. M., Kubalek, E. W., and Kornberg, R. D. (1991). Three-dimensional structure of yeast RNA polymerase II at 16 A resolution. Cell 66: 121–8CrossRefGoogle ScholarPubMed
Davenport, R. J., Wuite, G. J. L., Landick, R., and Bustamante, C. (2000). Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287: 2497–500CrossRefGoogle ScholarPubMed
Decanniere, K., Babu, A. M., Reeve, J. N., and Heinemann, U. (2000). Crystal structures of recombinant Hmfa and Hmfb from the hyperthermophilic archaeon methanothermus ferridus. J. Mol. Biol. 303: 35–47CrossRefGoogle Scholar
Dernburg, A. F., Broman, K. W., Fung, J. C., Marshall, W. F., Philips, J., Agard, D. A., and Sedat, J. W. (1996). Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85: 745–59CrossRefGoogle ScholarPubMed
Deo, R. C., Bonanno, J. B., Sonenberg, N., and Burley, S. K. (1999). Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98: 835–45CrossRefGoogle ScholarPubMed
Doublie, S., Tabor, S., Long, A. M., Richardson, C. C., and Ellenberger, T. (1998). Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391: 251–7CrossRefGoogle ScholarPubMed
Ellenberger, T. E., Brandl, C. J., Struhl, K., and Harrison, S. C. (1992). The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: Crystal structure of the protein-DNA complex. Cell 71: 1223–37CrossRefGoogle ScholarPubMed
Elrod-Erickson, M., Benson, T. E., and Pabo, C. O. (1998). High-resolution structures of vatiant Zif268-DNA complexes: Implications for understanding zinc finger-DNA recognition. Structure 6: 451–64CrossRefGoogle ScholarPubMed
Erwin, D., Valentine, J., and Jablonski, D. (1997). The origin of animal body plans. Amer. Sci. 85: 126–37Google Scholar
Escalante, C. R., Yie, J., Thanos, D., and Aggarwal, A. K. (1998). Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature 391: 103–6CrossRefGoogle ScholarPubMed
Fabrera, C., Farrow, M. A., Mukhopadhyay, B., Crecy-Lagard, V., Ortiz, A. R., and Schimmel, P. (2001). An aminoacyl tRNA synthetase whose sequence fits into neither of the two known classes. Nature 411: 110–4CrossRefGoogle Scholar
Feagin, J. E., Abraham, J. M., and Stuart, K. (1988). Extensive editing of the cytochrome c oxidase III transcript in Trypanosoma brucei. Cell 53: 413–22CrossRefGoogle ScholarPubMed
Femino, A. M., Fay, F. S., Fogarty, K., and Singer, R. H. (1998). Visualization of single RNA transcripts in situ. Science 280: 585–90CrossRefGoogle ScholarPubMed
Festenstein, R., Tolaini, M., Corbella, P., Mamalaki, C., Parrington, J., Fox, M., Miliou, A., Jones, M., and Kioussis, D. (1996). Locus control region function and heterochromatin-induced position effect variegation. Science 271: 1123–5CrossRefGoogle ScholarPubMed
Filipski, J., Leblanc, J., Youdale, T., Sikorska, M., and Walker, P. R. (1990). Periodicity of DNA folding in higher order chromatin structures. EMBO J. 9(4): 1319–27Google ScholarPubMed
Fire, A. (1999). RNA-triggered gene silencing. Trends Genet. 15: 358–63CrossRefGoogle ScholarPubMed
Fletcher, C. M., Pestova, T. V., Hellen, C. U., and Wagner, G. (1999). Structure and interactions of the translation initiation factor eIF1. EMBO J. 18: 2631–7CrossRefGoogle ScholarPubMed
Frank, J. (1998). How the ribosome works. Amer. Sci. 86: 428–39CrossRefGoogle Scholar
Franklin, M. C., Wang, J., and Steitz, T. A. (2001). Structure of the replicating complex of a Pol α family DNA polymerase. Cell 105: 657–67CrossRefGoogle ScholarPubMed
Gabashvili, I. S., Agrawal, R. K., Spahn, C. M. T., Grassucci, R. A., Svergun, D. I., Frank, J., and Penczek, P. (2000). Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100: 537–49CrossRefGoogle Scholar
Glasfeld, A., Koehler, A. N., Schumacher, M. A., and Brennan, R. G. (1999). The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions. J. Mol. Biol. 291(2): 347–61CrossRefGoogle ScholarPubMed
Golden, B. L., Gooding, A. R., Podell, E. R., and Cech, T. R. (1998). A preorganized active site in the crystal structure of Tetrahymena ribozyme. Science 282: 259–64CrossRefGoogle ScholarPubMed
Greider, C. W. (1999). Telomeres do D-loop-T-loop. Cell 97: 419–22CrossRefGoogle ScholarPubMed
Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., and Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell 97: 503–14CrossRefGoogle Scholar
Gulbis, J. M., Kelman, Z., Hurwitz, J., O'Donnell, M., and Kuriyan, J. (1996). Structure of the C-terminal region of p21 complexed with human PCNA. Cell 87: 297–306CrossRefGoogle ScholarPubMed
Hakansson, K., Doherty, A. J., Shuman, S., and Wigley, D. B. (1997). X-Ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzyme. Cell 89: 545–53CrossRefGoogle Scholar
Hard, T., Kellenbach, E., Boelens, R., Maler, B. A., Dahlman, K., Freedman, L. P., Carlstedt-Duke, J., Yamamoto, K. R., Gustafsson, J., and Kaptein, R. (1990). Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249: 157–60CrossRefGoogle ScholarPubMed
Harrison, C. J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. U., and Kuriyan, J. (1997). Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276: 431–5CrossRefGoogle ScholarPubMed
Hodel, A. E., Gershon, P. D., and Quiocho, F. A. (1998). Structural basis for sequencing-nonspecific recognition of 5′-capped mRNA by a cap-modifying enzyme. Mol. Cell 1: 443–7CrossRefGoogle ScholarPubMed
Hopkin, K. (1997). Spools, switches, or scaffolds: How might histones regulate transcription? J. NIH Res. 9: 34–7Google Scholar
Horvath, M. P., Schweiker, V. L., Bevilacqua, J. M., Ruggles, J. A., and Schultz, S. C. (1998). Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95: 963–74CrossRefGoogle ScholarPubMed
Hosfield, D. J., Mol, C. D., Shen, B., and Tainer, J. A. (1998). Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: Coupling DNA and PCNA binding to FEN-1 activity. Cell 95: 135–46CrossRefGoogle ScholarPubMed
Howard, M. J. (1998). Protein NMR spectroscopy. Curr. Biol. 8(10): R331–3CrossRefGoogle ScholarPubMed
Ito, K., Uno, M., and Nakamura, Y. (2000). A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403: 680–4CrossRefGoogle ScholarPubMed
Jin, Y., Mead, J., Li, T., Wolberger, C., and Vershon, A. K. (1995). Altered DNA recognition and bending by insertions in the α2 tail of the yeast a1/α2 homeodomain heterodimer. Science 270: 290–3CrossRefGoogle Scholar
Joseph, S., Weiser, B., and Noller, H. F. (1997). Mapping the inside of the ribosome with an RNA helical ruler. Science 278: 1093–8CrossRefGoogle ScholarPubMed
Kastner, B. (1998). Purification and electron microscopy of spliceosomal snRNPs. In RNP particles, splicing and autoimmune diseases (J. Scenkel, Ed.), Springer, Berlin, pp. 95–140CrossRef
Kambach, C., Walke, S., Young, R., Avis, J. M., Fortelle, E., Raker, V. A., Luhrmann, R., Li, J., and Nagai, K. (1999). Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96: 375–87CrossRefGoogle ScholarPubMed
Kambach, C., Walke, S., and Nagai, K. (1999). Structure and assembly of the spliceosomal small nuclear ribonucleoprotein particles. Curr. Opin. Struct. Biol. 9: 222–30CrossRefGoogle ScholarPubMed
Kang, C., Zhang, X., Ratliff, R., Moyzis, R., and Rich, A. (1992). Crystal structure of four-stranded Oxytricha telomeric DNA. Nature 356: 126–31CrossRefGoogle ScholarPubMed
Keck, J. L., Roche, D. D., Lynch, A. S., and Berger, J. M. (2000). Structure of the RNA polymerase domain of E. coli primase. Science 287: 2482–6CrossRefGoogle ScholarPubMed
Keenan, R. J., Freymann, D. M., Walter, P., and Stroud, R. M. (1998). Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94: 181–91CrossRefGoogle ScholarPubMed
Kiefer, J. R., Mao, C., Braman, J. C., and Beese, L. S. (1998). Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391: 304–7CrossRefGoogle Scholar
Kim, C. A., and Berg, J. M. (1996). A 2.2 Angstrom resolution crystal structure of a designed zinc finger protein bound to DNA. Nature Struct. Biol. 3: 940–5CrossRefGoogle Scholar
Kissinger, C. R., Liu, B., Martin-Blanco, E., Kornberg, T. B., and Pabo, C. O. (1990). Crystal structure of an engrailed homeodomain-DNA complex at 2.8 Å resolution: A framework for understanding homeodomain-DNA interactions. Cell 63: 579–90CrossRefGoogle ScholarPubMed
Kjeldgaard, M., Nissen, P., Thirup, S., and Nyborg, J. (1993). The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1(1): 35–50CrossRefGoogle ScholarPubMed
Konforti, B. B., Abramovitz, D. L., Duarte, C. M., Karpeisky, A., Beigelan, L., and Pyle, A. M. (1998). Ribozyme catalysis from the major groove of group II intron domain 5. Mol. Cell 1: 433–41CrossRefGoogle ScholarPubMed
Konig, P., Giraldo, R., Chapman, L., and Rhodes, D. (1996). The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85: 125–36CrossRefGoogle ScholarPubMed
Korolev, S., Hsieh, J., Gauss, G. H., Lohman, T. M., and Waksman, G. (1997). Major domain swiveling revealed by the crystal structures of complexes of E. coli rep helicase bound to single-stranded DNA and ADP. Cell 90: 635–47CrossRefGoogle Scholar
Korzheva, N., Mustaev, A., Kozlov, M., Malhotra, A., Nikiforov, V., Goldfarb, A., and Darst, S. A. (2000). A structural model of transcriptional elongation. Science 289: 619–25CrossRefGoogle Scholar
Larsen, C. N., and Finley, D. (1997). Protein translocation channels in the proteasome and other proteases. Cell 91: 431–4CrossRefGoogle ScholarPubMed
Lavoie, B. D., Shaw, G. S., Millner, A., and Chaconas, G. (1996). Anatomy of a flexer-DNA complex inside a higher-order transposition intermediate. Cell 85: 761–71CrossRefGoogle ScholarPubMed
Lawrence, J. B., Singer, R. H., and Marselle, L. M. (1989). Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57: 493–502CrossRefGoogle ScholarPubMed
Leuther, K. K., Bushnell, D. A., and Kornberg, R. D. (1996). Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: Implications for start site selection and initiation complex formation. Cell 85: 773–9CrossRefGoogle ScholarPubMed
Levin, D. S., Bai, W., Yao, N., O'Donnel, M., and Tomkinson, A. E. (1997). An interaction between DNA ligase I and proliferating cell nuclear antigen: Implications for Okazaki fragment synthesis and joining. Proc. Natl. Acad. Sci. USA 94: 12863–8CrossRefGoogle ScholarPubMed
Lewis, M., Chang, G., Horton, N. C., Kercher, M. A., Pace, H. C., Schumacher, M. A., Brennan, R. G., and Lu, P. (1996). Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271: 1247–54CrossRefGoogle ScholarPubMed
Li, T., Stark, M. R., Johnson, A. D., and Wolberger, C. (1995). Crystal structure of the MATa1/MATα2 homeodomain heterodimer bound to DNA. Science 270: 262–9CrossRefGoogle Scholar
Liao, S., Lin, J., Do, H., and Johnson, A. E. (1997). Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90: 31–41CrossRefGoogle ScholarPubMed
Lima, C. D., Wang, L. K., and Shuman, S. (1999). Structure and mechanism of yeast RNA triphosphatase: An essential component of the mRNA capping apparatus. Cell 99: 533–43CrossRefGoogle ScholarPubMed
Liu, D., Ishima, R., Tong, K. I., Bagby, S., Kokubo, T., Muhandiram, D. R., Kay, L. E., Nakatani, Y., and Ikura, M. (1998). Solution structure of a TBP-TAFII230 complex: Protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94: 573–83CrossRefGoogle ScholarPubMed
Love, J. J., Li, X., Case, D. A., Giese, K., Grosschedl, R., and Wright, P. E. (1995). Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376: 791–5CrossRefGoogle ScholarPubMed
Luisi, B. F., Xu, W. X., Otwinowski, Z., Freedman, L. P., Yamamoto, K. R., and Siegler, P. B. (1991). Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352: 497–505CrossRefGoogle ScholarPubMed
Ma, J., Sigler, P. B., Xu, Z., and Karplus, M. (2000). A dynamic model for the allosteric mechanism of GroEL. J. Mol. Biol. 302(2): 303–13CrossRefGoogle ScholarPubMed
Manna, A. C., Pai, K. S., Bussiere, D. E., Davies, C., White, S. W., and Bastia, D. (1996). Helicase-contrahelicase interaction and the mechanism of termination of DNA replication. Cell 87: 881–91CrossRefGoogle ScholarPubMed
Marcotrigiano, J., Gingras, A. C., Sonenberg, N., and Burley, S. K. (1997). Cocrystal structure of the messenger RNA 5′ cap/binding protein (eIF4E) bound to 7/methyl/GDP. Cell 89: 951–61CrossRefGoogle Scholar
Marcotrigiano, J., Lomakin, I. B., Sonenberg, N., Pestova, T. V., Hellen, C. U. T., and Burley, S. K. (2001). A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol. Cell 7: 193–203CrossRefGoogle ScholarPubMed
Marmorstein, R., and Harrison, S. C. (1994). Crystal structure of a PRP1/DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev. 8: 2504–12CrossRefGoogle Scholar
Marmorstein, R., Carey, M., Ptashne, M., and Harrison, S. C. (1992). DNA recognition by GAL4: Structure of a protein-DNA complex. Nature 356: 408–14CrossRefGoogle ScholarPubMed
Martinez/Yamout, M., Legge, G. B., Zhang, O., Wright, P. E., and Dyson, H. J. (2000). Solution structure of the cysteine/rich domain of the Escherichia coli chaperone protein DnaJ. J. Mol. Biol. 300(4): 805–18CrossRefGoogle Scholar
McCutcheon, J. P., Agrawal, R. K., Phillips, S. M., Grassucci, R. A., Gerchman, S. E., Clemons, W. M., Ramakrishnan, V., and Frank, J. (1999). Location of translation initiation factor IF3 on the small ribosomal subunit. Proc. Natl. Acad. Sci. USA 96: 4301–6CrossRefGoogle ScholarPubMed
McKnight, S. L. (1991). Molecular zippers in gene regulation. Scientific American April: 54–64CrossRef
Milkereit, P., Gadal, O., Podtelejnikov, A., Trumlet, S., Gas, N., Petfalski, E., Tollervey, D., Mann, M., Hurt, E., and Tschochner, H. (2001). Maturation and internuclear transport of pre/ribosomes requires Noc proteins. Cell 105: 499–509CrossRefGoogle Scholar
Mooney, R. A., and Landick, R. (1999). RNA polymerase unveiled. Cell 96: 687–90CrossRefGoogle Scholar
Morals Cabral, J. H., Jackson, A. P., Smith, C. V., Shikotra, N., Maxwell, A., and Liddington, R. C. (1997). Crystal structure of the breakage/reunion domain of DNA gyrase. Nature 388: 903–6CrossRefGoogle Scholar
Morshauser, R. C., Hu, W., Wang, H., Pang, Y., Flynn, G. C., and Zuiderweg, E. R. P. (1999). High/resolution solution structure of the 18 kDa substrate/binding domain of the mammalian chaperone protein Hsc70. J. Mol. Biol. 289: 1387–403CrossRefGoogle Scholar
Mueller, F., Sommer, I., Baranov, P., Matadeen, R., Stoldt, M., Wohnert, J., Gorlach, M., Heel, M., and Brimacombe, R. (2000). The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo/electron microscopic reconstruction at 7.5 Å resolution. J. Mol. Biol. 248: 35–59CrossRefGoogle Scholar
Muller, C. W., and Hermann, B. G. (1997). Crystallographic structure of the T-domain-DNA complex of the Brachyury transcription factor. Nature 389: 884–8CrossRefGoogle ScholarPubMed
Murante, R. S., Henricksen, L. A., and Bambara, R. A. (1998). Junction ribonuclease: An activity in Okazaki fragment processing. Proc. Natl. Acad. Sci. USA 95: 2244–9CrossRefGoogle ScholarPubMed
Murray, J. B., Terwey, D. P., Maloney, L., Karpiesky, A., Usman, N., Beigelman, L., and Scott, W. G. (1998). The structural basis of hammerhead ribozyme self/cleavage. Cell 92: 665–73CrossRefGoogle ScholarPubMed
Newton, C. S. (1997). Putting it all together: Building a prereplicative complex. Cell 91: 717–20Google Scholar
Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–30CrossRefGoogle ScholarPubMed
Nolte, R. T., Collins, R. M., Harrison, S. C., and Brown, R. S. (1998). Differing roles for zinc fingers in DNA recognition: Structure of a six finger transcription factor IIIA complex. Proc. Natl. Acad. Sci. USA 95: 2938–43CrossRefGoogle ScholarPubMed
Nudler, E., Kashlev, M., Nikiforov, V., and Goldfarb, A. (1995). Coupling between transcription termination and RNA polymerase inchworming. Cell 81: 351–7CrossRefGoogle ScholarPubMed
Otwinowski, Z., Schevitz, R. W., Zhang, R/G., Lawson, C. L., Joachimiak, A. J., Marmorstein, R., Luisi, B. F., and Sigler, P. B. (1988). Crystal structure of Trp repressor operator complex at atomic resolution. Nature 335: 321–9CrossRefGoogle ScholarPubMed
Pabo, C. O., Aggarwal, A. K., Jordan, S. R., Beamer, L. J., Obeysekare, U. R., and Harrison, S. C. (1990). Conserved residues make similar contacts in two repressor-operator complexes. Science 247: 1210–13CrossRefGoogle ScholarPubMed
Pavletich, N. P., and Pabo, C. O. (1993). Crystal structure of a five-finger GLI-DNA complex: New perspectives on zinc fingers. Science 261: 1701–7CrossRefGoogle ScholarPubMed
Pazin, M. J., and Kadonaga, J. T. (1997). What's up and down with histone deacetylation and transcription? Cell 89: 325–8CrossRefGoogle Scholar
Pennisi, E. (1997). Opening the way to gene activity. Science 275: 155–7CrossRefGoogle ScholarPubMed
Pestova, T. V., Borukhov, S. I., and Hellen, C. U. T. (1998). Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394: 854–9CrossRefGoogle ScholarPubMed
Peter, B. J., Ullsperger, C., Hiasa, H., Marians, K. J., and Cozzarelli, N. R. (1998). The structure of supercoiled intermediates in DNA replication. Cell 94: 819–27CrossRefGoogle ScholarPubMed
Piper, D. E., Batchelor, A. H., Chang, C. P., Clearly, M. L., and Wolberger, C. (1999). Structure of a HoxB1-Pbx1 heterodimer bound to DNA: Role of the hexapeptide and a fourth homeodomain helix in complex formation. Cell 96: 587–97CrossRefGoogle Scholar
Podobnik, M., McInerney, P., O'Donnell, M., and Kuriyan, J. (2000). A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases. J. Mol. Biol. 300(2): 353–62CrossRefGoogle ScholarPubMed
Poglitsch, C. L., Meredith, G. D., Gnatt, A. L., Jensen, G. J., Chang, W., Fu, J., and Kornberg, R. D. (1999). Electron crystal structure of an RNA polymerase transcription elongation complex. Cell 98: 791–8CrossRefGoogle ScholarPubMed
Polacek, N., Gaynor, M., Yassin, A., and Mankin, A. S. (2001). Ribosomal peptidyl treansferase can withstand mutations at the putative catalytic nucleotide. Nature 411: 498–501CrossRefGoogle Scholar
Polyakov, A., Severinova, E., and Darst, S. A. (1995). Three-dimensional structure of E. coli core RNA polymerase: Promoter binding and elongation conformations of the enzyme. Cell 83: 365–73CrossRefGoogle ScholarPubMed
Porse, B. T., and Garret, R. A. (1999). Ribosomal mechanics, antibiotics, and GTP hydrolysis. Cell 97: 423–6CrossRefGoogle ScholarPubMed
Powell, L. M., Wallis, S. C., Pease, R. J., Edwards, Y. H., Knott, T. J., and Scott, J. (1987). A novel form of tissue/specific RNA processing produce apolipoprotein/B48 in intestine. Cell 50: 831–40CrossRefGoogle Scholar
Proudfoot, N. (1996). Ending the message is not so simple. Cell 87: 779–81CrossRefGoogle ScholarPubMed
Raghunathan, S., Kozlov, A. G., Lohman, T. M., and Waksman, G. (2000). Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nature Struct. Biol. 7(8): 648–52CrossRefGoogle ScholarPubMed
Ramakrishnan, V., and Moore, P. B. (2001). Atomic structures at last: the ribosome in 2000. Curr. Opin. Struct. Biol. 144–154CrossRef
Redinbo, M. R., Stewart, L., Kuhn, P., Champoux, J. J., and Hol, W. G. J.(1998). Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 279: 1504–13CrossRefGoogle ScholarPubMed
Rice, P. A., Yang, S/W., Mizuuchi, K., and Nash, H. A. (1996). Crystal structure of an IHF-DNA complex: A protein-induced DNA U-turn. Cell 87: 1295–306CrossRefGoogle ScholarPubMed
Robinson, H., Gao, Y., McCrary, B. S., Edmondson, S. P., Shriver, J. W., and Wang, A. H. J. (1998). The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 392: 202–5CrossRefGoogle ScholarPubMed
Rodgers, D. W., and Harrison, S. C. (1993). The complex between phage 434 repressor DNA-binding domain and operator site O3: Structural differences between consensus and non-consensus half-sites. Structure 1(4): 227–40CrossRefGoogle Scholar
Roll/Mecak, A., Cao, C., Dever, T. E., and Burley, S. K. (2000). X-ray structures of the universal translation initiation factor IF2/eIF5B: Conformational changes on GDP and GDP binding. Cell 103: 781–92CrossRefGoogle Scholar
Rould, M. A., Perona, J. J., Soll, D., and Steitz, T. A. (1989). Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA and ATP at 2.8 Å resolution. Science 246: 1135–42CrossRefGoogle ScholarPubMed
Sachs, A. B. (2000). Cell cycle-dependent translation intitiation: IRES elements prevail. Cell 101: 243–5CrossRefGoogle Scholar
Sawaya, M. R., Guo, S., Tabor, S., Richardson, C. C., and Ellenberger, T. (1999). Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 99: 167–77CrossRefGoogle ScholarPubMed
Sawaya, M. R., Prasad, R., Wilson, S. H., Kraut, J., and Pelletier, H. (1997). Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: Evidence for an induced fit mechanism. Biochemistry 36: 11205–15CrossRefGoogle ScholarPubMed
Schimmel, P., and Ribas de Pouplana, L. (1999). Genetic code origins: Experiments confirm phylogenic predictions and may explain a puzzle. Proc. Natl. Acad. Sci. USA 96: 327–8CrossRefGoogle Scholar
Schultz, S. C., Shields, G. C., and Steitz, T. A. (1991). Crystal structure of a CAP-DNA complex: The DNA is bent by 90 degrees. Science 253: 1001–7CrossRefGoogle ScholarPubMed
Schumacher, M. A., Choi, K. Y., Zaklin, H., and Brennan, R. G. (1994). Crystal structure of the LacI family member, PurR, bound to DNA: Minor groove binding by alpha helices. Science 266: 763–70CrossRefGoogle Scholar
Schwabe, J. W. R., and Rhodes, D. (1991). Beyond zinc fingers: Steroid hormone receptors have a novel structural motif for DNA recognition. Trends Biochem. Sci. 16: 291–6CrossRefGoogle ScholarPubMed
Schwabe, J. W. R., Neuhaus, D., and Rhodes, D. (1990). Solution structure of the DNA/binding domain of the oestrogen receptor. Nature 348: 458–61CrossRefGoogle Scholar
Selmer, M., Al/Karadaghi, S., Hirokawa, G., Kaji, A., and Liljas, A. (1999). Crystal structure of Thermotoga maritima ribosome recycling factor: A tRNA mimic. Science 286: 2349–52CrossRefGoogle ScholarPubMed
Shamoo, Y., and Steitz, T. A. (1999). Building a replisome from interacting pieces: Sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99: 155–65CrossRefGoogle Scholar
Sharkey, M., Graba, Y., and Scott, M. P. (1997). Hox genes in evolution: Protein surfaces and paralog groups. Trends Genet. 13: 145–51CrossRefGoogle ScholarPubMed
Sharp, P. A., and Burge, C. B. (1997). Classification of introns: U2-type or U12-type. Cell 91: 875–9CrossRefGoogle ScholarPubMed
Shimon, L. J. W., and Harrison, S. C. (1993). The phage 434 OR2/R1-69 complex at 2.5 angstroms resolution. J. Mol. Biol. 232: 826–38CrossRefGoogle Scholar
Shimotakahara, S., Gorin, A., Kolbanovskiy, A., Kettani, A., Hingerty, B. E., Amin, S., Broyde, S., Geacintov, N., and Patel, D. J. (2000). Accomodation of S-cis-tamoxifen-N-guanine adduct within a bent and widened DNA minor groove. J. Mol. Biol. 302: 377–93CrossRefGoogle ScholarPubMed
Shippen/Lentz, D., and Blackburn, E. H. (1990). Functional evidence for an RNA template in telomerase. Science 247: 546–52CrossRefGoogle Scholar
Shyu, A., and Wilkinson, M. F. (2000). The double lives of shuttling mRNA binding proteins. Cell 102: 135–8CrossRefGoogle ScholarPubMed
Siegert, R., Leroux, M. R., Scheufler, C., Harti, F. U., and Moarefi, I. (2000). Structure of the molecular chaperone prefoldin: Unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103: 621–32CrossRefGoogle ScholarPubMed
Singer, R. H., and Green, M. R. (1997). Compartmentalization of eukaryotic gene expression: Causes and effects. Cell 91: 291–4CrossRefGoogle ScholarPubMed
Smale, S. T., and Baltimore, D. (1989). The “initiator” as a transcription control element. Cell 57: 103–13CrossRefGoogle Scholar
Sollner/Webb, B. (1991). RNA editing. Curr. Opin. Cell Biol. 3: 1056–61CrossRefGoogle Scholar
Song, H., Mugnier, P., Das, A. K., Webb, H. M., Evans, D. R., Tuite, M. F., Hemmings, B. A., and Barford, D. (2000). The crystal structure of human eukaryotic release factor eRF1/mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100: 311–21CrossRefGoogle ScholarPubMed
Spronk, C. A. E. M., Bonvin, A. M. J. J., Radha, P. K., Melacini, G., Boelens, R., and Kaptein, R. (1999). The solution structure of lac repressor headpiece 62 complexed to symmetrical lac operator. Structure 7: 1483–92CrossRefGoogle ScholarPubMed
Staley, J. P., and Guthrie, C. (1998). Mechanical devices of the spliceosome: Motors, clocks, springs, and things. Cell 92: 315–26CrossRefGoogle ScholarPubMed
Stark, H., Orlova, E. V., Rinke/Appel, J., Junke, N., Mueller, F., Rodnina, M., Wintermeyer, W., Brimacombe, R. and Heel, M. (1997). Arrangement of tRNAs in pre/ and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell 88: 19–28CrossRefGoogle Scholar
Stark, H., Rodnina, M. V., Wieden, H. J., Heel, M., and Wintermeyer, W. (2000). Large/scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100: 301–9CrossRefGoogle ScholarPubMed
Steitz, T. A. (1992). A general structural mechanism of coupling NTP hydrolysis to other processes. Proceedings of the Robert A. Welch Foundation, Houston, TX, pp. 173–86
Stewart, L., Redinbo, M. R., Qiu, X., Hol, W. G. J., and Champoux, J. J. (1998). A model for the mechanism of human topoisomerase I. Science 279: 1534–41CrossRefGoogle ScholarPubMed
Strobel, S. A., and Cech, T. R. (1995). Minor groove recognition of the conserved G-U pair at the Tetrahymena ribozyme reaction site. Science 267: 675–9CrossRefGoogle ScholarPubMed
Su, S., Gao, Y/G., Robinson, H., Liaw, Y/C., Edmondson, S. P., Shriver, J. W., and Wang, A. H/J. (2000). Crystal structure of the chromosomal proteins Sso7d/Sac7d bound to DNA containing T-G mismatched base pairs. J. Mol. Biol. 303: 395–403CrossRefGoogle ScholarPubMed
Subramanya, H. S., Doherty, A. J., Ashford, S. R., and Wigley, D. B. (1996). Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7. Cell 85: 607–15CrossRefGoogle ScholarPubMed
Tan, S., and Richmond, T. J. (1998). Crystal structure of the yeast MATα2/MCM1/DNA ternary complex. Nature 391: 660–6CrossRefGoogle ScholarPubMed
Tan, S., Hunziker, Y., Sargent, D. F., and Richmond, T. J. (1996). Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 381: 127–34CrossRefGoogle ScholarPubMed
Tsai, F. T. F., and Singer, P. B. (2000). Structural basis of preinitiation complex assembly of human Pol II promoters. EMBO J. 19(1): 25–36CrossRefGoogle ScholarPubMed
Tuschi, T., Gohlke, C., Jovin, T. M., Westhof, E., and Eckstein, F. (1994). A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266: 785–9CrossRefGoogle Scholar
Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S., and Wigley, D. B. (1999). Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97: 75–84CrossRefGoogle ScholarPubMed
Wang, D., Meier, T. I., Chan, C. L., Feng, G., Lee, D. N., and Landick, R. (1995). Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex. Cell 81: 341–50CrossRefGoogle ScholarPubMed
Wang, J., Sattar, A. K. M. A., Wang, C. C., Karam, J. D., Konigsberg, W. H., and Steitz, T. A. (1997). Crystal structure of a pol α family replication DNA polymerase from bacteriophage RB69. Cell 89: 1087–99CrossRefGoogle ScholarPubMed
Wang, Y., and Patel, D. J. (1993). Solution structure of the human telomeric repeat d[AG (T AG)] G/tetraplex. Structure 1(4): 263–82CrossRefGoogle Scholar
Wei, X., Samarabandu, J., Devdhar, R. S., Siegel, A. J., Acharya, R., and Berezney, R. (1998). Segregation of transcription and replication sites into higher order domains. Science 281: 1502–4CrossRefGoogle ScholarPubMed
Weichenrieder, O., Wild, K., Strub, K., and Cusak, S. (2000). Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408: 167–73CrossRefGoogle ScholarPubMed
Wells, S. E., Hillner, P. E., Vale, R. D., and Sachs, A. B. (1998). Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2: 135–40CrossRefGoogle ScholarPubMed
Wickner, S., Maurizi, M. R., and Gottesman, S. (1999). Posttranslational quality control: Folding, refolding, and degrading proteins. Science 286: 1888–93CrossRefGoogle ScholarPubMed
Wilson, K. S., and Noller, H. F. (1998). Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 92: 131–9CrossRefGoogle ScholarPubMed
Wilson, K. S.. (1998). Molecular movement inside the translational engine. Cell 92: 337–49CrossRefGoogle ScholarPubMed
Wimberly, B. T., Brodersen, D. E., Clemmons, W. M., Morgan/Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature 407: 327–39Google ScholarPubMed
Wimberly, B. T., Guymon, R., McCutcheon, J. P., White, S. W., and Ramakrishnan, V. (1999). A detailed view of a ribosomal active site: The structure of the L11/RNA complex. Cell 97: 491–502CrossRefGoogle ScholarPubMed
Wintjens, R., Lievin, J., Rooman, M., and Buisine, E. (2000). Contribution of cation-π interactions to the stability of protein-DNA complexes. J. Mol. Biol. 302: 395–410CrossRefGoogle ScholarPubMed
Xing, Y., Johnson, C. V., Moen, P. T. Jr., McNeil, J. A., and Lawrence, J. (1995). Nonrandom gene organization: Structural arrangements of specific pre/mRNA transcription and splicing with SC-35 domains. J. Cell Biol. 131: 1635–47CrossRefGoogle ScholarPubMed
Xu, H. E., Rould, M. A., Xu, W., Epstein, J. A., Maas, R. L., and Pabo, C. O. (1999). Crystal structure of the human pax-6 paired domain-DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. Genes Develop. 13: 1263–75CrossRefGoogle Scholar
Yudkovsky, N., Ranish, J. A., and Hahn, S. (2000). A transcription reinitiation intermediate that is stabilized by activator. Nature 408: 225–9CrossRefGoogle ScholarPubMed
Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., and Hendrickson, W. A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272: 1606–14CrossRefGoogle ScholarPubMed
Branden, C., and Tooze, J. (1999). Introduction to protein structure, Garland, New York
Lewin, B. (2000). Genes VII, Oxford, New York
Lodish, H., Berk, A., Zipursky, S. L., Matsudaira, P., Baltimore, D., and Darnell, J. (2000). Molecular cellular biology, W. H. Freeman, New York
Ptashne, M. (1992). A genetic switch, Cell Press and Blackwell Scientific Publications, Cambridge, MA
Singer, M., and Berg, P. (1991). Genes and genomes. University Science Books, Mill Valley, CA
Weaver, R. F. (1999). Molecular biology, McGraw-Hill, New York
Anderson, J. E., Ptashne, M., and Harrison, S. C. (1987). Structure of the repressor-operator complex of bacteriophage 434. Nature 326: 846–52CrossRefGoogle ScholarPubMed
Andrews, B. J., and Donoviel, M. S. (1995). A heterodimeric transcriptional repressor becomes crystal clear. Science 270: 251–3CrossRefGoogle ScholarPubMed
Antson, A. A., Dodson, E. J., Dodson, G., Greaves, R. B., Chen, X., and Gollnick, P. (1999). Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA. Nature 401: 235–42CrossRefGoogle ScholarPubMed
Arents, G., and Moudrianakis, E. N. (1995). The histone fold: A ubiquitous architectural motif utilized in DNA compaction and protein dimerization. Proc. Natl. Acad. Sci. USA 92: 11170–4CrossRefGoogle ScholarPubMed
Asturias, F. J., Jiang, Y. W., Myers, L. C., Gustafsson, C. M., and Kornberg, R. D. (1999). Conserved structures of mediator and RNA polymerase II holoenzyme. Science 283: 985–7CrossRefGoogle ScholarPubMed
Ban, N., Freeborn, B., Nissen, P., Penczek, P., Grassucci, R. A., Sweet, R., Frank, J., Moore, P. B., and Steitz, T. A. (1998). A 9 Å resolution X-Ray crystallographic map of the large ribosomal subunit. Cell 93: 1105–15CrossRefGoogle ScholarPubMed
Ban, N., Nissen, P., Hansen, J., Capel, M., Moore, P. B., and Steitz, T. A. (1999). Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit. Nature 400: 841–7CrossRefGoogle ScholarPubMed
Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000). The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289: 905–19CrossRefGoogle ScholarPubMed
Bass, B. L. (2000). Double-stranded RNA as a template for gene silencing. Cell 101: 235–8CrossRefGoogle ScholarPubMed
Batey, R. T., Rambo, R. P., Lucast, L., Rha, B., and Doudna, J. A. (2000). Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287: 1232–9CrossRefGoogle ScholarPubMed
Battiste, J. L., Pestova, T. V., Hellen, C. U., and Wagner, G. (2000). The eIF1A solution structure reveals a large RNA-binding surface important for scanning function. Mol. Cell 5: 109–19CrossRefGoogle ScholarPubMed
Baumeister, W., Walz, J., Zuhl, F., and Seemuller, E. (1998). The proteasome: Paradigm of a self-compartmentalizing protease. Cell 92: 367–80CrossRefGoogle ScholarPubMed
Beamer, L. J., and Pabo, C. O. (1992). Refined 1.8 Angstrom crystal structure of the lambda repressor-operator complex. J. Mol. Biol. 227: 177–96CrossRefGoogle Scholar
Becker, S., Groner, B., and Muller, C. W. (1998). Three-dimensional structure of the Stat3β homodimer bound to DNA. Nature 394: 145–51CrossRefGoogle Scholar
Bell, C. E., Frescura, P., Hochschild, A., and Lewis, M. (2000). Crystal structure of the λ repressor C-terminal domain provides a model for cooperative operator binding. Cell 101: 801–11CrossRefGoogle ScholarPubMed
Berger, J. M., Gamblin, S. J., Harrison, S. C., and Wang, J. C. (1996). Structure and mechanism of DNA topoisomerase II. Nature 379: 225–32CrossRefGoogle ScholarPubMed
Biou, V., Shu, F., and Ramakrishnan, V. (1995). X-ray crystallography shows that translational initation factor IF3 consists of two compact α/β domains linked by an α-helix. EMBO J. 14: 4056–64Google Scholar
Birck, C., Poch, O., Romier, C., Ruff, M., Mengus, G., Lavigne, A., Davidson, I., and Moras, D. (1998). Human TAFII28 and TAFII18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell 94: 239–49CrossRefGoogle Scholar
Blum, B., Bakalara, N., and Simpson, L. (1990). A model for RNA editing in kinetoplasmid mitochondria: “Guide” RNA molecules transcribed from maxicircle DNA provide the edited information. Cell 60: 189–98CrossRefGoogle Scholar
Bochkarev, A., Pfuetzner, R. A., Edwards, A. M., and Frappier, L. (1997). Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385: 176–81CrossRefGoogle Scholar
Bogden, C. E., Fass, D., Bergman, N., Nichols, M. D., and Berger, J. M. (1999). The structural basis for terminator recognition by the Rho transcription termination factor. Mol. Cell 3: 487–93CrossRefGoogle ScholarPubMed
Brino, L., Urzhumtsev, A., Mousli, M., Bronner, C., Mitschler, A., Oudet, P., and Moras, D. (2000). Dimerization of Escherichia coli DNA-gyrase B provides a structural mechanism for activating the ATPase catalytic center. J. Biol. Chem. 275(13): 9468–75CrossRefGoogle ScholarPubMed
Brodersen, D. E., Clemons, W. M. Jr., Carter, A. P., Morgan-Warren, R. J., Wimberly, B. T., and Ramakrishnan, V. (2000). The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell 103: 1143–54CrossRefGoogle ScholarPubMed
Bukau, B., and Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell 92: 351–66CrossRefGoogle ScholarPubMed
Bukau, B., Deuerling, E., Pfund, C., and Craig, E. A. (2000). Getting newly synthesized proteins into shape. Cell 101: 119–22CrossRefGoogle ScholarPubMed
Caprara, M. G., Lehnert, V., Lambowitz, A. M., and Westhof, E. (1996). A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core. Cell 87: 1135–45CrossRefGoogle ScholarPubMed
Carrodeguas, J. A., Theis, K., Bogenhagen, D. F., and Kisker, C. (2001). Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase gamma, PolgammaB, functions as a homodimer. Mol. Cell 7: 43–54CrossRefGoogle Scholar
Carter, A. P., Clemons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Hartsch, T., Wimberly, B. T., and Ramakrishnan, V. (2001). Atomic structure of an initiation factor bound to the 30S ribosomal subunit. Science 291: 498–501CrossRefGoogle Scholar
Carter, A. P., Clemmons, W. M., Brodersen, D. E., Morgan-Warren, R. J., Wimberly, B. T., and Ramakrishnan, V. (2000). Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407: 340–8Google ScholarPubMed
Cate, J. H., Yusupov, M. M., Yusupova, G. Z., Earnest, T. N., and Noller, H. F. (1999). X-ray crystal structures of 70S ribosome functional complexes. Science 285: 2095–104CrossRefGoogle ScholarPubMed
Celander, D. W., and Cech, T. R. (1991). Visualizing the higher order folding of a catalytic RNA molecule. Science 251: 401–7CrossRefGoogle ScholarPubMed
Cheetham, G. M. T., and Steitz, T. A. (1999). Structure of a transcribing T7 RNA polymerase initiation complex. Science 286: 2305–9CrossRefGoogle ScholarPubMed
Chen, L., Glover, J. N. M., Hogan, P. G., Rao, A., and Harrison, S. C. (1998). Structure of the DNA-binding domains from NFAT, Fos and Jun bound specifically to DNA. Nature 392: 42–8CrossRefGoogle Scholar
Cho, H., Ha, N., Kang, L., Chung, K., Back, S., Jang, S., and Oh, B. (1998). Crystal structure of RNA helicase from genotype 1b hepatitis C virus. J. Biol. Chem. 273(24): 15045–52CrossRefGoogle ScholarPubMed
Copertino, D. W., and Hallick, R. B. (1993). Group II and group III introns of twintrons: Potential relationships with nuclear pre-mRNA introns. Trends Biochem. Sci. 18: 467–71CrossRefGoogle ScholarPubMed
Cramer, P., Bushnell, D. A., Fu, J., Gnatt, A. L., Maier-Davis, B., Thompson, N. E., Burgess, R. R., Edwards, A. M., David, P. R., and Kornberg, R. D. (2000). Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288: 640–9CrossRefGoogle ScholarPubMed
Darst, S. A., Edwards, A. M., Kubalek, E. W., and Kornberg, R. D. (1991). Three-dimensional structure of yeast RNA polymerase II at 16 A resolution. Cell 66: 121–8CrossRefGoogle ScholarPubMed
Davenport, R. J., Wuite, G. J. L., Landick, R., and Bustamante, C. (2000). Single-molecule study of transcriptional pausing and arrest by E. coli RNA polymerase. Science 287: 2497–500CrossRefGoogle ScholarPubMed
Decanniere, K., Babu, A. M., Reeve, J. N., and Heinemann, U. (2000). Crystal structures of recombinant Hmfa and Hmfb from the hyperthermophilic archaeon methanothermus ferridus. J. Mol. Biol. 303: 35–47CrossRefGoogle Scholar
Dernburg, A. F., Broman, K. W., Fung, J. C., Marshall, W. F., Philips, J., Agard, D. A., and Sedat, J. W. (1996). Perturbation of nuclear architecture by long-distance chromosome interactions. Cell 85: 745–59CrossRefGoogle ScholarPubMed
Deo, R. C., Bonanno, J. B., Sonenberg, N., and Burley, S. K. (1999). Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98: 835–45CrossRefGoogle ScholarPubMed
Doublie, S., Tabor, S., Long, A. M., Richardson, C. C., and Ellenberger, T. (1998). Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391: 251–7CrossRefGoogle ScholarPubMed
Ellenberger, T. E., Brandl, C. J., Struhl, K., and Harrison, S. C. (1992). The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha helices: Crystal structure of the protein-DNA complex. Cell 71: 1223–37CrossRefGoogle ScholarPubMed
Elrod-Erickson, M., Benson, T. E., and Pabo, C. O. (1998). High-resolution structures of vatiant Zif268-DNA complexes: Implications for understanding zinc finger-DNA recognition. Structure 6: 451–64CrossRefGoogle ScholarPubMed
Erwin, D., Valentine, J., and Jablonski, D. (1997). The origin of animal body plans. Amer. Sci. 85: 126–37Google Scholar
Escalante, C. R., Yie, J., Thanos, D., and Aggarwal, A. K. (1998). Structure of IRF-1 with bound DNA reveals determinants of interferon regulation. Nature 391: 103–6CrossRefGoogle ScholarPubMed
Fabrera, C., Farrow, M. A., Mukhopadhyay, B., Crecy-Lagard, V., Ortiz, A. R., and Schimmel, P. (2001). An aminoacyl tRNA synthetase whose sequence fits into neither of the two known classes. Nature 411: 110–4CrossRefGoogle Scholar
Feagin, J. E., Abraham, J. M., and Stuart, K. (1988). Extensive editing of the cytochrome c oxidase III transcript in Trypanosoma brucei. Cell 53: 413–22CrossRefGoogle ScholarPubMed
Femino, A. M., Fay, F. S., Fogarty, K., and Singer, R. H. (1998). Visualization of single RNA transcripts in situ. Science 280: 585–90CrossRefGoogle ScholarPubMed
Festenstein, R., Tolaini, M., Corbella, P., Mamalaki, C., Parrington, J., Fox, M., Miliou, A., Jones, M., and Kioussis, D. (1996). Locus control region function and heterochromatin-induced position effect variegation. Science 271: 1123–5CrossRefGoogle ScholarPubMed
Filipski, J., Leblanc, J., Youdale, T., Sikorska, M., and Walker, P. R. (1990). Periodicity of DNA folding in higher order chromatin structures. EMBO J. 9(4): 1319–27Google ScholarPubMed
Fire, A. (1999). RNA-triggered gene silencing. Trends Genet. 15: 358–63CrossRefGoogle ScholarPubMed
Fletcher, C. M., Pestova, T. V., Hellen, C. U., and Wagner, G. (1999). Structure and interactions of the translation initiation factor eIF1. EMBO J. 18: 2631–7CrossRefGoogle ScholarPubMed
Frank, J. (1998). How the ribosome works. Amer. Sci. 86: 428–39CrossRefGoogle Scholar
Franklin, M. C., Wang, J., and Steitz, T. A. (2001). Structure of the replicating complex of a Pol α family DNA polymerase. Cell 105: 657–67CrossRefGoogle ScholarPubMed
Gabashvili, I. S., Agrawal, R. K., Spahn, C. M. T., Grassucci, R. A., Svergun, D. I., Frank, J., and Penczek, P. (2000). Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100: 537–49CrossRefGoogle Scholar
Glasfeld, A., Koehler, A. N., Schumacher, M. A., and Brennan, R. G. (1999). The role of lysine 55 in determining the specificity of the purine repressor for its operators through minor groove interactions. J. Mol. Biol. 291(2): 347–61CrossRefGoogle ScholarPubMed
Golden, B. L., Gooding, A. R., Podell, E. R., and Cech, T. R. (1998). A preorganized active site in the crystal structure of Tetrahymena ribozyme. Science 282: 259–64CrossRefGoogle ScholarPubMed
Greider, C. W. (1999). Telomeres do D-loop-T-loop. Cell 97: 419–22CrossRefGoogle ScholarPubMed
Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., and Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell 97: 503–14CrossRefGoogle Scholar
Gulbis, J. M., Kelman, Z., Hurwitz, J., O'Donnell, M., and Kuriyan, J. (1996). Structure of the C-terminal region of p21 complexed with human PCNA. Cell 87: 297–306CrossRefGoogle ScholarPubMed
Hakansson, K., Doherty, A. J., Shuman, S., and Wigley, D. B. (1997). X-Ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzyme. Cell 89: 545–53CrossRefGoogle Scholar
Hard, T., Kellenbach, E., Boelens, R., Maler, B. A., Dahlman, K., Freedman, L. P., Carlstedt-Duke, J., Yamamoto, K. R., Gustafsson, J., and Kaptein, R. (1990). Solution structure of the glucocorticoid receptor DNA-binding domain. Science 249: 157–60CrossRefGoogle ScholarPubMed
Harrison, C. J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. U., and Kuriyan, J. (1997). Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276: 431–5CrossRefGoogle ScholarPubMed
Hodel, A. E., Gershon, P. D., and Quiocho, F. A. (1998). Structural basis for sequencing-nonspecific recognition of 5′-capped mRNA by a cap-modifying enzyme. Mol. Cell 1: 443–7CrossRefGoogle ScholarPubMed
Hopkin, K. (1997). Spools, switches, or scaffolds: How might histones regulate transcription? J. NIH Res. 9: 34–7Google Scholar
Horvath, M. P., Schweiker, V. L., Bevilacqua, J. M., Ruggles, J. A., and Schultz, S. C. (1998). Crystal structure of the Oxytricha nova telomere end binding protein complexed with single strand DNA. Cell 95: 963–74CrossRefGoogle ScholarPubMed
Hosfield, D. J., Mol, C. D., Shen, B., and Tainer, J. A. (1998). Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: Coupling DNA and PCNA binding to FEN-1 activity. Cell 95: 135–46CrossRefGoogle ScholarPubMed
Howard, M. J. (1998). Protein NMR spectroscopy. Curr. Biol. 8(10): R331–3CrossRefGoogle ScholarPubMed
Ito, K., Uno, M., and Nakamura, Y. (2000). A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403: 680–4CrossRefGoogle ScholarPubMed
Jin, Y., Mead, J., Li, T., Wolberger, C., and Vershon, A. K. (1995). Altered DNA recognition and bending by insertions in the α2 tail of the yeast a1/α2 homeodomain heterodimer. Science 270: 290–3CrossRefGoogle Scholar
Joseph, S., Weiser, B., and Noller, H. F. (1997). Mapping the inside of the ribosome with an RNA helical ruler. Science 278: 1093–8CrossRefGoogle ScholarPubMed
Kastner, B. (1998). Purification and electron microscopy of spliceosomal snRNPs. In RNP particles, splicing and autoimmune diseases (J. Scenkel, Ed.), Springer, Berlin, pp. 95–140CrossRef
Kambach, C., Walke, S., Young, R., Avis, J. M., Fortelle, E., Raker, V. A., Luhrmann, R., Li, J., and Nagai, K. (1999). Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 96: 375–87CrossRefGoogle ScholarPubMed
Kambach, C., Walke, S., and Nagai, K. (1999). Structure and assembly of the spliceosomal small nuclear ribonucleoprotein particles. Curr. Opin. Struct. Biol. 9: 222–30CrossRefGoogle ScholarPubMed
Kang, C., Zhang, X., Ratliff, R., Moyzis, R., and Rich, A. (1992). Crystal structure of four-stranded Oxytricha telomeric DNA. Nature 356: 126–31CrossRefGoogle ScholarPubMed
Keck, J. L., Roche, D. D., Lynch, A. S., and Berger, J. M. (2000). Structure of the RNA polymerase domain of E. coli primase. Science 287: 2482–6CrossRefGoogle ScholarPubMed
Keenan, R. J., Freymann, D. M., Walter, P., and Stroud, R. M. (1998). Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell 94: 181–91CrossRefGoogle ScholarPubMed
Kiefer, J. R., Mao, C., Braman, J. C., and Beese, L. S. (1998). Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature 391: 304–7CrossRefGoogle Scholar
Kim, C. A., and Berg, J. M. (1996). A 2.2 Angstrom resolution crystal structure of a designed zinc finger protein bound to DNA. Nature Struct. Biol. 3: 940–5CrossRefGoogle Scholar
Kissinger, C. R., Liu, B., Martin-Blanco, E., Kornberg, T. B., and Pabo, C. O. (1990). Crystal structure of an engrailed homeodomain-DNA complex at 2.8 Å resolution: A framework for understanding homeodomain-DNA interactions. Cell 63: 579–90CrossRefGoogle ScholarPubMed
Kjeldgaard, M., Nissen, P., Thirup, S., and Nyborg, J. (1993). The crystal structure of elongation factor EF-Tu from Thermus aquaticus in the GTP conformation. Structure 1(1): 35–50CrossRefGoogle ScholarPubMed
Konforti, B. B., Abramovitz, D. L., Duarte, C. M., Karpeisky, A., Beigelan, L., and Pyle, A. M. (1998). Ribozyme catalysis from the major groove of group II intron domain 5. Mol. Cell 1: 433–41CrossRefGoogle ScholarPubMed
Konig, P., Giraldo, R., Chapman, L., and Rhodes, D. (1996). The crystal structure of the DNA-binding domain of yeast RAP1 in complex with telomeric DNA. Cell 85: 125–36CrossRefGoogle ScholarPubMed
Korolev, S., Hsieh, J., Gauss, G. H., Lohman, T. M., and Waksman, G. (1997). Major domain swiveling revealed by the crystal structures of complexes of E. coli rep helicase bound to single-stranded DNA and ADP. Cell 90: 635–47CrossRefGoogle Scholar
Korzheva, N., Mustaev, A., Kozlov, M., Malhotra, A., Nikiforov, V., Goldfarb, A., and Darst, S. A. (2000). A structural model of transcriptional elongation. Science 289: 619–25CrossRefGoogle Scholar
Larsen, C. N., and Finley, D. (1997). Protein translocation channels in the proteasome and other proteases. Cell 91: 431–4CrossRefGoogle ScholarPubMed
Lavoie, B. D., Shaw, G. S., Millner, A., and Chaconas, G. (1996). Anatomy of a flexer-DNA complex inside a higher-order transposition intermediate. Cell 85: 761–71CrossRefGoogle ScholarPubMed
Lawrence, J. B., Singer, R. H., and Marselle, L. M. (1989). Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell 57: 493–502CrossRefGoogle ScholarPubMed
Leuther, K. K., Bushnell, D. A., and Kornberg, R. D. (1996). Two-dimensional crystallography of TFIIB- and IIE-RNA polymerase II complexes: Implications for start site selection and initiation complex formation. Cell 85: 773–9CrossRefGoogle ScholarPubMed
Levin, D. S., Bai, W., Yao, N., O'Donnel, M., and Tomkinson, A. E. (1997). An interaction between DNA ligase I and proliferating cell nuclear antigen: Implications for Okazaki fragment synthesis and joining. Proc. Natl. Acad. Sci. USA 94: 12863–8CrossRefGoogle ScholarPubMed
Lewis, M., Chang, G., Horton, N. C., Kercher, M. A., Pace, H. C., Schumacher, M. A., Brennan, R. G., and Lu, P. (1996). Crystal structure of the lactose operon repressor and its complexes with DNA and inducer. Science 271: 1247–54CrossRefGoogle ScholarPubMed
Li, T., Stark, M. R., Johnson, A. D., and Wolberger, C. (1995). Crystal structure of the MATa1/MATα2 homeodomain heterodimer bound to DNA. Science 270: 262–9CrossRefGoogle Scholar
Liao, S., Lin, J., Do, H., and Johnson, A. E. (1997). Both lumenal and cytosolic gating of the aqueous ER translocon pore are regulated from inside the ribosome during membrane protein integration. Cell 90: 31–41CrossRefGoogle ScholarPubMed
Lima, C. D., Wang, L. K., and Shuman, S. (1999). Structure and mechanism of yeast RNA triphosphatase: An essential component of the mRNA capping apparatus. Cell 99: 533–43CrossRefGoogle ScholarPubMed
Liu, D., Ishima, R., Tong, K. I., Bagby, S., Kokubo, T., Muhandiram, D. R., Kay, L. E., Nakatani, Y., and Ikura, M. (1998). Solution structure of a TBP-TAFII230 complex: Protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94: 573–83CrossRefGoogle ScholarPubMed
Love, J. J., Li, X., Case, D. A., Giese, K., Grosschedl, R., and Wright, P. E. (1995). Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376: 791–5CrossRefGoogle ScholarPubMed
Luisi, B. F., Xu, W. X., Otwinowski, Z., Freedman, L. P., Yamamoto, K. R., and Siegler, P. B. (1991). Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352: 497–505CrossRefGoogle ScholarPubMed
Ma, J., Sigler, P. B., Xu, Z., and Karplus, M. (2000). A dynamic model for the allosteric mechanism of GroEL. J. Mol. Biol. 302(2): 303–13CrossRefGoogle ScholarPubMed
Manna, A. C., Pai, K. S., Bussiere, D. E., Davies, C., White, S. W., and Bastia, D. (1996). Helicase-contrahelicase interaction and the mechanism of termination of DNA replication. Cell 87: 881–91CrossRefGoogle ScholarPubMed
Marcotrigiano, J., Gingras, A. C., Sonenberg, N., and Burley, S. K. (1997). Cocrystal structure of the messenger RNA 5′ cap/binding protein (eIF4E) bound to 7/methyl/GDP. Cell 89: 951–61CrossRefGoogle Scholar
Marcotrigiano, J., Lomakin, I. B., Sonenberg, N., Pestova, T. V., Hellen, C. U. T., and Burley, S. K. (2001). A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol. Cell 7: 193–203CrossRefGoogle ScholarPubMed
Marmorstein, R., and Harrison, S. C. (1994). Crystal structure of a PRP1/DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev. 8: 2504–12CrossRefGoogle Scholar
Marmorstein, R., Carey, M., Ptashne, M., and Harrison, S. C. (1992). DNA recognition by GAL4: Structure of a protein-DNA complex. Nature 356: 408–14CrossRefGoogle ScholarPubMed
Martinez/Yamout, M., Legge, G. B., Zhang, O., Wright, P. E., and Dyson, H. J. (2000). Solution structure of the cysteine/rich domain of the Escherichia coli chaperone protein DnaJ. J. Mol. Biol. 300(4): 805–18CrossRefGoogle Scholar
McCutcheon, J. P., Agrawal, R. K., Phillips, S. M., Grassucci, R. A., Gerchman, S. E., Clemons, W. M., Ramakrishnan, V., and Frank, J. (1999). Location of translation initiation factor IF3 on the small ribosomal subunit. Proc. Natl. Acad. Sci. USA 96: 4301–6CrossRefGoogle ScholarPubMed
McKnight, S. L. (1991). Molecular zippers in gene regulation. Scientific American April: 54–64CrossRef
Milkereit, P., Gadal, O., Podtelejnikov, A., Trumlet, S., Gas, N., Petfalski, E., Tollervey, D., Mann, M., Hurt, E., and Tschochner, H. (2001). Maturation and internuclear transport of pre/ribosomes requires Noc proteins. Cell 105: 499–509CrossRefGoogle Scholar
Mooney, R. A., and Landick, R. (1999). RNA polymerase unveiled. Cell 96: 687–90CrossRefGoogle Scholar
Morals Cabral, J. H., Jackson, A. P., Smith, C. V., Shikotra, N., Maxwell, A., and Liddington, R. C. (1997). Crystal structure of the breakage/reunion domain of DNA gyrase. Nature 388: 903–6CrossRefGoogle Scholar
Morshauser, R. C., Hu, W., Wang, H., Pang, Y., Flynn, G. C., and Zuiderweg, E. R. P. (1999). High/resolution solution structure of the 18 kDa substrate/binding domain of the mammalian chaperone protein Hsc70. J. Mol. Biol. 289: 1387–403CrossRefGoogle Scholar
Mueller, F., Sommer, I., Baranov, P., Matadeen, R., Stoldt, M., Wohnert, J., Gorlach, M., Heel, M., and Brimacombe, R. (2000). The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo/electron microscopic reconstruction at 7.5 Å resolution. J. Mol. Biol. 248: 35–59CrossRefGoogle Scholar
Muller, C. W., and Hermann, B. G. (1997). Crystallographic structure of the T-domain-DNA complex of the Brachyury transcription factor. Nature 389: 884–8CrossRefGoogle ScholarPubMed
Murante, R. S., Henricksen, L. A., and Bambara, R. A. (1998). Junction ribonuclease: An activity in Okazaki fragment processing. Proc. Natl. Acad. Sci. USA 95: 2244–9CrossRefGoogle ScholarPubMed
Murray, J. B., Terwey, D. P., Maloney, L., Karpiesky, A., Usman, N., Beigelman, L., and Scott, W. G. (1998). The structural basis of hammerhead ribozyme self/cleavage. Cell 92: 665–73CrossRefGoogle ScholarPubMed
Newton, C. S. (1997). Putting it all together: Building a prereplicative complex. Cell 91: 717–20Google Scholar
Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–30CrossRefGoogle ScholarPubMed
Nolte, R. T., Collins, R. M., Harrison, S. C., and Brown, R. S. (1998). Differing roles for zinc fingers in DNA recognition: Structure of a six finger transcription factor IIIA complex. Proc. Natl. Acad. Sci. USA 95: 2938–43CrossRefGoogle ScholarPubMed
Nudler, E., Kashlev, M., Nikiforov, V., and Goldfarb, A. (1995). Coupling between transcription termination and RNA polymerase inchworming. Cell 81: 351–7CrossRefGoogle ScholarPubMed
Otwinowski, Z., Schevitz, R. W., Zhang, R/G., Lawson, C. L., Joachimiak, A. J., Marmorstein, R., Luisi, B. F., and Sigler, P. B. (1988). Crystal structure of Trp repressor operator complex at atomic resolution. Nature 335: 321–9CrossRefGoogle ScholarPubMed
Pabo, C. O., Aggarwal, A. K., Jordan, S. R., Beamer, L. J., Obeysekare, U. R., and Harrison, S. C. (1990). Conserved residues make similar contacts in two repressor-operator complexes. Science 247: 1210–13CrossRefGoogle ScholarPubMed
Pavletich, N. P., and Pabo, C. O. (1993). Crystal structure of a five-finger GLI-DNA complex: New perspectives on zinc fingers. Science 261: 1701–7CrossRefGoogle ScholarPubMed
Pazin, M. J., and Kadonaga, J. T. (1997). What's up and down with histone deacetylation and transcription? Cell 89: 325–8CrossRefGoogle Scholar
Pennisi, E. (1997). Opening the way to gene activity. Science 275: 155–7CrossRefGoogle ScholarPubMed
Pestova, T. V., Borukhov, S. I., and Hellen, C. U. T. (1998). Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394: 854–9CrossRefGoogle ScholarPubMed
Peter, B. J., Ullsperger, C., Hiasa, H., Marians, K. J., and Cozzarelli, N. R. (1998). The structure of supercoiled intermediates in DNA replication. Cell 94: 819–27CrossRefGoogle ScholarPubMed
Piper, D. E., Batchelor, A. H., Chang, C. P., Clearly, M. L., and Wolberger, C. (1999). Structure of a HoxB1-Pbx1 heterodimer bound to DNA: Role of the hexapeptide and a fourth homeodomain helix in complex formation. Cell 96: 587–97CrossRefGoogle Scholar
Podobnik, M., McInerney, P., O'Donnell, M., and Kuriyan, J. (2000). A TOPRIM domain in the crystal structure of the catalytic core of Escherichia coli primase confirms a structural link to DNA topoisomerases. J. Mol. Biol. 300(2): 353–62CrossRefGoogle ScholarPubMed
Poglitsch, C. L., Meredith, G. D., Gnatt, A. L., Jensen, G. J., Chang, W., Fu, J., and Kornberg, R. D. (1999). Electron crystal structure of an RNA polymerase transcription elongation complex. Cell 98: 791–8CrossRefGoogle ScholarPubMed
Polacek, N., Gaynor, M., Yassin, A., and Mankin, A. S. (2001). Ribosomal peptidyl treansferase can withstand mutations at the putative catalytic nucleotide. Nature 411: 498–501CrossRefGoogle Scholar
Polyakov, A., Severinova, E., and Darst, S. A. (1995). Three-dimensional structure of E. coli core RNA polymerase: Promoter binding and elongation conformations of the enzyme. Cell 83: 365–73CrossRefGoogle ScholarPubMed
Porse, B. T., and Garret, R. A. (1999). Ribosomal mechanics, antibiotics, and GTP hydrolysis. Cell 97: 423–6CrossRefGoogle ScholarPubMed
Powell, L. M., Wallis, S. C., Pease, R. J., Edwards, Y. H., Knott, T. J., and Scott, J. (1987). A novel form of tissue/specific RNA processing produce apolipoprotein/B48 in intestine. Cell 50: 831–40CrossRefGoogle Scholar
Proudfoot, N. (1996). Ending the message is not so simple. Cell 87: 779–81CrossRefGoogle ScholarPubMed
Raghunathan, S., Kozlov, A. G., Lohman, T. M., and Waksman, G. (2000). Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nature Struct. Biol. 7(8): 648–52CrossRefGoogle ScholarPubMed
Ramakrishnan, V., and Moore, P. B. (2001). Atomic structures at last: the ribosome in 2000. Curr. Opin. Struct. Biol. 144–154CrossRef
Redinbo, M. R., Stewart, L., Kuhn, P., Champoux, J. J., and Hol, W. G. J.(1998). Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 279: 1504–13CrossRefGoogle ScholarPubMed
Rice, P. A., Yang, S/W., Mizuuchi, K., and Nash, H. A. (1996). Crystal structure of an IHF-DNA complex: A protein-induced DNA U-turn. Cell 87: 1295–306CrossRefGoogle ScholarPubMed
Robinson, H., Gao, Y., McCrary, B. S., Edmondson, S. P., Shriver, J. W., and Wang, A. H. J. (1998). The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 392: 202–5CrossRefGoogle ScholarPubMed
Rodgers, D. W., and Harrison, S. C. (1993). The complex between phage 434 repressor DNA-binding domain and operator site O3: Structural differences between consensus and non-consensus half-sites. Structure 1(4): 227–40CrossRefGoogle Scholar
Roll/Mecak, A., Cao, C., Dever, T. E., and Burley, S. K. (2000). X-ray structures of the universal translation initiation factor IF2/eIF5B: Conformational changes on GDP and GDP binding. Cell 103: 781–92CrossRefGoogle Scholar
Rould, M. A., Perona, J. J., Soll, D., and Steitz, T. A. (1989). Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA and ATP at 2.8 Å resolution. Science 246: 1135–42CrossRefGoogle ScholarPubMed
Sachs, A. B. (2000). Cell cycle-dependent translation intitiation: IRES elements prevail. Cell 101: 243–5CrossRefGoogle Scholar
Sawaya, M. R., Guo, S., Tabor, S., Richardson, C. C., and Ellenberger, T. (1999). Crystal structure of the helicase domain from the replicative helicase-primase of bacteriophage T7. Cell 99: 167–77CrossRefGoogle ScholarPubMed
Sawaya, M. R., Prasad, R., Wilson, S. H., Kraut, J., and Pelletier, H. (1997). Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: Evidence for an induced fit mechanism. Biochemistry 36: 11205–15CrossRefGoogle ScholarPubMed
Schimmel, P., and Ribas de Pouplana, L. (1999). Genetic code origins: Experiments confirm phylogenic predictions and may explain a puzzle. Proc. Natl. Acad. Sci. USA 96: 327–8CrossRefGoogle Scholar
Schultz, S. C., Shields, G. C., and Steitz, T. A. (1991). Crystal structure of a CAP-DNA complex: The DNA is bent by 90 degrees. Science 253: 1001–7CrossRefGoogle ScholarPubMed
Schumacher, M. A., Choi, K. Y., Zaklin, H., and Brennan, R. G. (1994). Crystal structure of the LacI family member, PurR, bound to DNA: Minor groove binding by alpha helices. Science 266: 763–70CrossRefGoogle Scholar
Schwabe, J. W. R., and Rhodes, D. (1991). Beyond zinc fingers: Steroid hormone receptors have a novel structural motif for DNA recognition. Trends Biochem. Sci. 16: 291–6CrossRefGoogle ScholarPubMed
Schwabe, J. W. R., Neuhaus, D., and Rhodes, D. (1990). Solution structure of the DNA/binding domain of the oestrogen receptor. Nature 348: 458–61CrossRefGoogle Scholar
Selmer, M., Al/Karadaghi, S., Hirokawa, G., Kaji, A., and Liljas, A. (1999). Crystal structure of Thermotoga maritima ribosome recycling factor: A tRNA mimic. Science 286: 2349–52CrossRefGoogle ScholarPubMed
Shamoo, Y., and Steitz, T. A. (1999). Building a replisome from interacting pieces: Sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99: 155–65CrossRefGoogle Scholar
Sharkey, M., Graba, Y., and Scott, M. P. (1997). Hox genes in evolution: Protein surfaces and paralog groups. Trends Genet. 13: 145–51CrossRefGoogle ScholarPubMed
Sharp, P. A., and Burge, C. B. (1997). Classification of introns: U2-type or U12-type. Cell 91: 875–9CrossRefGoogle ScholarPubMed
Shimon, L. J. W., and Harrison, S. C. (1993). The phage 434 OR2/R1-69 complex at 2.5 angstroms resolution. J. Mol. Biol. 232: 826–38CrossRefGoogle Scholar
Shimotakahara, S., Gorin, A., Kolbanovskiy, A., Kettani, A., Hingerty, B. E., Amin, S., Broyde, S., Geacintov, N., and Patel, D. J. (2000). Accomodation of S-cis-tamoxifen-N-guanine adduct within a bent and widened DNA minor groove. J. Mol. Biol. 302: 377–93CrossRefGoogle ScholarPubMed
Shippen/Lentz, D., and Blackburn, E. H. (1990). Functional evidence for an RNA template in telomerase. Science 247: 546–52CrossRefGoogle Scholar
Shyu, A., and Wilkinson, M. F. (2000). The double lives of shuttling mRNA binding proteins. Cell 102: 135–8CrossRefGoogle ScholarPubMed
Siegert, R., Leroux, M. R., Scheufler, C., Harti, F. U., and Moarefi, I. (2000). Structure of the molecular chaperone prefoldin: Unique interaction of multiple coiled coil tentacles with unfolded proteins. Cell 103: 621–32CrossRefGoogle ScholarPubMed
Singer, R. H., and Green, M. R. (1997). Compartmentalization of eukaryotic gene expression: Causes and effects. Cell 91: 291–4CrossRefGoogle ScholarPubMed
Smale, S. T., and Baltimore, D. (1989). The “initiator” as a transcription control element. Cell 57: 103–13CrossRefGoogle Scholar
Sollner/Webb, B. (1991). RNA editing. Curr. Opin. Cell Biol. 3: 1056–61CrossRefGoogle Scholar
Song, H., Mugnier, P., Das, A. K., Webb, H. M., Evans, D. R., Tuite, M. F., Hemmings, B. A., and Barford, D. (2000). The crystal structure of human eukaryotic release factor eRF1/mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100: 311–21CrossRefGoogle ScholarPubMed
Spronk, C. A. E. M., Bonvin, A. M. J. J., Radha, P. K., Melacini, G., Boelens, R., and Kaptein, R. (1999). The solution structure of lac repressor headpiece 62 complexed to symmetrical lac operator. Structure 7: 1483–92CrossRefGoogle ScholarPubMed
Staley, J. P., and Guthrie, C. (1998). Mechanical devices of the spliceosome: Motors, clocks, springs, and things. Cell 92: 315–26CrossRefGoogle ScholarPubMed
Stark, H., Orlova, E. V., Rinke/Appel, J., Junke, N., Mueller, F., Rodnina, M., Wintermeyer, W., Brimacombe, R. and Heel, M. (1997). Arrangement of tRNAs in pre/ and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell 88: 19–28CrossRefGoogle Scholar
Stark, H., Rodnina, M. V., Wieden, H. J., Heel, M., and Wintermeyer, W. (2000). Large/scale movement of elongation factor G and extensive conformational change of the ribosome during translocation. Cell 100: 301–9CrossRefGoogle ScholarPubMed
Steitz, T. A. (1992). A general structural mechanism of coupling NTP hydrolysis to other processes. Proceedings of the Robert A. Welch Foundation, Houston, TX, pp. 173–86
Stewart, L., Redinbo, M. R., Qiu, X., Hol, W. G. J., and Champoux, J. J. (1998). A model for the mechanism of human topoisomerase I. Science 279: 1534–41CrossRefGoogle ScholarPubMed
Strobel, S. A., and Cech, T. R. (1995). Minor groove recognition of the conserved G-U pair at the Tetrahymena ribozyme reaction site. Science 267: 675–9CrossRefGoogle ScholarPubMed
Su, S., Gao, Y/G., Robinson, H., Liaw, Y/C., Edmondson, S. P., Shriver, J. W., and Wang, A. H/J. (2000). Crystal structure of the chromosomal proteins Sso7d/Sac7d bound to DNA containing T-G mismatched base pairs. J. Mol. Biol. 303: 395–403CrossRefGoogle ScholarPubMed
Subramanya, H. S., Doherty, A. J., Ashford, S. R., and Wigley, D. B. (1996). Crystal structure of an ATP-dependent DNA ligase from bacteriophage T7. Cell 85: 607–15CrossRefGoogle ScholarPubMed
Tan, S., and Richmond, T. J. (1998). Crystal structure of the yeast MATα2/MCM1/DNA ternary complex. Nature 391: 660–6CrossRefGoogle ScholarPubMed
Tan, S., Hunziker, Y., Sargent, D. F., and Richmond, T. J. (1996). Crystal structure of a yeast TFIIA/TBP/DNA complex. Nature 381: 127–34CrossRefGoogle ScholarPubMed
Tsai, F. T. F., and Singer, P. B. (2000). Structural basis of preinitiation complex assembly of human Pol II promoters. EMBO J. 19(1): 25–36CrossRefGoogle ScholarPubMed
Tuschi, T., Gohlke, C., Jovin, T. M., Westhof, E., and Eckstein, F. (1994). A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266: 785–9CrossRefGoogle Scholar
Velankar, S. S., Soultanas, P., Dillingham, M. S., Subramanya, H. S., and Wigley, D. B. (1999). Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97: 75–84CrossRefGoogle ScholarPubMed
Wang, D., Meier, T. I., Chan, C. L., Feng, G., Lee, D. N., and Landick, R. (1995). Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex. Cell 81: 341–50CrossRefGoogle ScholarPubMed
Wang, J., Sattar, A. K. M. A., Wang, C. C., Karam, J. D., Konigsberg, W. H., and Steitz, T. A. (1997). Crystal structure of a pol α family replication DNA polymerase from bacteriophage RB69. Cell 89: 1087–99CrossRefGoogle ScholarPubMed
Wang, Y., and Patel, D. J. (1993). Solution structure of the human telomeric repeat d[AG (T AG)] G/tetraplex. Structure 1(4): 263–82CrossRefGoogle Scholar
Wei, X., Samarabandu, J., Devdhar, R. S., Siegel, A. J., Acharya, R., and Berezney, R. (1998). Segregation of transcription and replication sites into higher order domains. Science 281: 1502–4CrossRefGoogle ScholarPubMed
Weichenrieder, O., Wild, K., Strub, K., and Cusak, S. (2000). Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 408: 167–73CrossRefGoogle ScholarPubMed
Wells, S. E., Hillner, P. E., Vale, R. D., and Sachs, A. B. (1998). Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2: 135–40CrossRefGoogle ScholarPubMed
Wickner, S., Maurizi, M. R., and Gottesman, S. (1999). Posttranslational quality control: Folding, refolding, and degrading proteins. Science 286: 1888–93CrossRefGoogle ScholarPubMed
Wilson, K. S., and Noller, H. F. (1998). Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell 92: 131–9CrossRefGoogle ScholarPubMed
Wilson, K. S.. (1998). Molecular movement inside the translational engine. Cell 92: 337–49CrossRefGoogle ScholarPubMed
Wimberly, B. T., Brodersen, D. E., Clemmons, W. M., Morgan/Warren, R. J., Carter, A. P., Vonrhein, C., Hartsch, T., and Ramakrishnan, V. (2000). Structure of the 30S ribosomal subunit. Nature 407: 327–39Google ScholarPubMed
Wimberly, B. T., Guymon, R., McCutcheon, J. P., White, S. W., and Ramakrishnan, V. (1999). A detailed view of a ribosomal active site: The structure of the L11/RNA complex. Cell 97: 491–502CrossRefGoogle ScholarPubMed
Wintjens, R., Lievin, J., Rooman, M., and Buisine, E. (2000). Contribution of cation-π interactions to the stability of protein-DNA complexes. J. Mol. Biol. 302: 395–410CrossRefGoogle ScholarPubMed
Xing, Y., Johnson, C. V., Moen, P. T. Jr., McNeil, J. A., and Lawrence, J. (1995). Nonrandom gene organization: Structural arrangements of specific pre/mRNA transcription and splicing with SC-35 domains. J. Cell Biol. 131: 1635–47CrossRefGoogle ScholarPubMed
Xu, H. E., Rould, M. A., Xu, W., Epstein, J. A., Maas, R. L., and Pabo, C. O. (1999). Crystal structure of the human pax-6 paired domain-DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. Genes Develop. 13: 1263–75CrossRefGoogle Scholar
Yudkovsky, N., Ranish, J. A., and Hahn, S. (2000). A transcription reinitiation intermediate that is stabilized by activator. Nature 408: 225–9CrossRefGoogle ScholarPubMed
Zhu, X., Zhao, X., Burkholder, W. F., Gragerov, A., Ogata, C. M., Gottesman, M. E., and Hendrickson, W. A. (1996). Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272: 1606–14CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×