Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T16:40:05.485Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  02 February 2023

Tian-Chyi Jim Yeh
Affiliation:
University of Arizona
Yanhui Dong
Affiliation:
Chinese Academy of Sciences, Beijing
Shujun Ye
Affiliation:
Nanjing University, China
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, E. E., & Gelhar, L. W. (1992). Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis. Water Resources Research, 28(12), 32933307. https://doi.org/10.1029/92WR01757CrossRefGoogle Scholar
Alexander, M., Berg, S. J., & Illman, W. A. (2011). Field study of hydrogeologic characterization methods in a heterogeneous aquifer. Groundwater, 49(3), 365382. https://doi.org/10.1111/j.1745-6584.2010.00729.xGoogle Scholar
Amirbahman, A., & Olson, T. M. (1993). Transport of humic matter-coated hematite in packed beds. Environmental Science & Technology, 27(13), 28072813. https://doi.org/10.1021/es00049a021CrossRefGoogle Scholar
Anderson, M. P. (1979). Using models to simulate the movement of contaminants through groundwater flow systems. Critical Reviews in Environmental Science and Technology, 9(2), 97156. https://doi.org/10.1080/10643387909381669Google Scholar
Anderson, M. P., & Bowser, C. J. (1986). The role of groundwater in delaying lake acidification. Water Resources Research, 22(7), 11011108. https://doi.org/10.1029/WR022i007p01101Google Scholar
Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(01), 5462. https://doi.org/10.2118/942054-GCrossRefGoogle Scholar
Aris, R. (1956). On the dispersion of a solute in a fluid flowing through a tube. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 235(1200), 6777. https://doi.org/10.1098/rspa.1956.0065Google Scholar
Aris, R. (1958). On the dispersion of linear kinematic waves. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 245(1241), 268277. https://doi.org/10.1098/rspa.1958.0082Google Scholar
Barlebo, H. C., Hill, M. C., & Rosbjerg, D. (2004). Investigating the Macrodispersion Experiment (MADE) site in Columbus, Mississippi, using a three-dimensional inverse flow and transport model. Water Resources Research, 40(4). https://doi.org/10.1029/2002WR001935Google Scholar
Bear, J. (1972). Dynamics of fluids in porous media, American Elsevier, New York, 764 pp.Google Scholar
Bear, J. (1979). Hydraulics of groundwater. McGraw-Hill Inc, 569 pp.Google Scholar
Benson, D. A., Schumer, R., Meerschaert, M. M., & Wheatcraft, S. W. (2001). Fractional dispersion, Lévy motion, and the MADE tracer tests. Transport in Porous Media, 42(1), 211240.Google Scholar
Berg, S. J., & Illman, W. A. (2011). Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system. Water Resources Research, 47(10). https://doi.org/10.1029/2011WR010616CrossRefGoogle Scholar
Berg, S. J., & Illman, W. A. (2013). Field study of subsurface heterogeneity with steady-state hydraulic tomography. Groundwater, 51(1), 2940. https://doi.org/10.1111/j.1745-6584.2012.00914.xCrossRefGoogle ScholarPubMed
Berg, S. J., & Illman, W. A. (2015). Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site. Groundwater, 53(1), 7189. https://doi.org/10.1111/gwat.12159CrossRefGoogle Scholar
Boggs, J. M., & Adams, E. E. (1992). Field study of dispersion in a heterogeneous aquifer: 4. Investigation of adsorption and sampling bias. Water Resources Research, 28(12), 33253336. https://doi.org/10.1029/92WR01759Google Scholar
Boggs, J. M., Beard, L. M., Long, S. E., McGee, M. P., MacIntyre, , W. G, Antworth, C. P., & Stauffer, T. B. (1993). Database for the second macrodispersion experiment (MADE-2). Technical Report TR-102072, Electric Power Research Institute, Palo Alto, CA.Google Scholar
Boggs, J. M., Schroeder, J. A., & Young, S. C. (1995). Data to support model development for natural attenuation study. Report No. WR28–2-520-197. TVA Engineering Laboratory, Tennessee Valley Authority, Norris, TN.Google Scholar
Boggs, J. M., Young, S. C., Beard, L. M., Gelhar, L. W., Rehfeldt, K. R., & Adams, E. E. (1992). Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description. Water Resources Research, 28(12), 32813291. https://doi.org/10.1029/92WR01756.CrossRefGoogle Scholar
Boggs, J. M., Young, S. C., Benton, D. J., & Chung, Y. C. (1990). Hydrogeologic characterization of the MADE Site. Interim Report EN-6915, Electric Power Research Institute, Palo Alto, CA.Google Scholar
Boulton, N. S. (1954). Unsteady radial flow to a pumped well allowing for delayed yield from storage. International Association of Scientific Hydrology Publication, 2, 472477.Google Scholar
Brauchler, R., Liedl, R., & Dietrich, P. (2003). A travel time based hydraulic tomographic approach. Water Resources Research, 39(12). https://doi.org/10.1029/2003WR002262Google Scholar
Brauner, J. S., & Widdowson, M. A. (2001). Numerical simulation of a natural attenuation experiment with a petroleum hydrocarbon NAPL source. Ground Water 39(6), 939952.Google Scholar
Bredehoeft, J. D., & Pinder, G. F. (1973). Mass transport in flowing groundwater. Water Resources Research, 9(1), 194210. https://doi:10.1029/wr009i001p00194Google Scholar
Brunke, M., & Gonser, T. O. M. (1997). The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology, 37(1), 133. https://doi.org/10.1046/j.1365-427.1997.00143.xGoogle Scholar
Cardenas, M. B., & Wilson, J. L. (2007). Dunes, turbulent eddies, and interfacial exchange with permeable sediments. Water Resources Research, 43(8). https://doi.org/10.1029/2006WR005787Google Scholar
Cardenas, M. B., Wilson, J. L., & Zlotnik, V. A. (2004). Impact of heterogeneity, bed forms, and stream curvature on subchannel hyporheic exchange. Water Resources Research, 40(8). https://doi.org/10.1029/2004WR003008Google Scholar
Carslaw, H. S., & Jaeger, J. C. (1959). Conduction of Heat in Solids. Oxford: Clarendon Press.Google Scholar
Carslaw, H. S., & Jaeger, J. C. (1988). Conduction of Heat in Solids. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press.Google Scholar
Chatwin, P. C. (1970). The approach to normality of the concentration distribution of a solute in a solvent flowing along a straight pipe. Journal of Fluid Mechanics, 43(2), 321352.Google Scholar
Cheng, R. T., Casulli, V., & Miford, S. N. (1984). Eulerian–Lagrangian solution of the convection-dispersion equation in natural coordinates. Water Resources Research, 20(7), 944952.Google Scholar
Coats, K. H., & Smith, B. D. (1964). Dead-end pore volume and dispersion in porous media. Society of Petroleum Engineers Journal, 4(01), 7384. https://doi.org/10.2118/647-PAGoogle Scholar
Cooper, H. H. Jr, & Jacob, C. E. (1946). A generalized graphical method for evaluating formation constants and summarizing well-field history. Eos, Transactions American Geophysical Union, 27(4), 526534. https://doi.org/10.1029/TR027i004p00526Google Scholar
Cooper, H. H. Jr, Bredehoeft, J. D., & Papadopulos, I. S. (1967). Response of a finite-diameter well to an instantaneous charge of water. Water Resources Research, 3(1), 263, 269. https://doi.org/10.1029/WR003i001p00263Google Scholar
Crank, J. (1956). The Mathematics of Diffusion. Oxford: Clarendon Press.Google Scholar
Csanady, G. T. (1973). Turbulent Diffusion in the Environment. D. Reidel Publishing Company, Dordrecht-Holland.CrossRefGoogle Scholar
Dagan, G. (1982). Stochastic modeling of groundwater flow by unconditional and conditional probabilities: 1. Conditional simulation and the direct problem. Water Resources Research, 18(4), 813833. https://doi.org/10.1029/WR018i004p00813.CrossRefGoogle Scholar
Dagan, G. (1982). Stochastic modeling of groundwater flow by unconditional and conditional probabilities: 2. The solute transport. Water Resources Research, 18(4), 835848. https://doi.org/10.1029/WR018i004p00835Google Scholar
Dagan, G. (1984). Solute transport in heterogeneous porous formations, Journal of Fluid Mechanics., 145, 151177.Google Scholar
Dagan, G. (1987). Theory of solute transport by groundwater. Annual Review of Fluid Mechanics, 19(1), 183213. https://doi.org/10.1146/annurev.fl.19.010187.001151Google Scholar
DeSmedt, F., & Wierenga, P. J. (1979). A generalized solution for solute flow in soils with mobile andimmobile water. Water Resources Research, 15(5), 11371141. https://doi.org/10.1029/WR015i005p01137.Google Scholar
Doetsch, J., Linde, N., Vogt, T., Binley, A., & Green, A. G. (2012). Imaging and quantifying salt-tracer transport in a riparian groundwater system by means of 3D ERT monitoring. Geophysics, 77(5), B207B218. https://doi.org/10.1190/geo2012-0046.1CrossRefGoogle Scholar
Drost, W., Klotz, D., Koch, A., Moser, H., Neumaier, F., & Rauert, W. (1968). Point dilution methods of investigating groundwater flow by means of radioisotopes. Water Resources Research, 4(1), 125146. https://doi.org/10.1029/WR004i001p00125CrossRefGoogle Scholar
Dunnivant, F. M., Jardine, P. M., Taylor, D. L., & McCarthy, J. F. (1992). Cotransport of cadmium and hexachlorobiphenyl by dissolved organic carbon through columns containing aquifer material. Environmental Science & Technology, 26(2), 360368. https://doi.org/10.1021/es00026a018Google Scholar
Einstein, Albert, E. (1905). “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen” [On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat]. Annalen der Physik, 322(8), 549560.CrossRefGoogle Scholar
Ellis, R. G., & Oldenburg, D. W. (1994). The pole–pole 3-D Dc-resistivity inverse problem: A conjugategradient approach. Geophysical Journal International, 119(1), 187194. https://doi.org/10.1111/j.1365-246X.1994.tb00921.xGoogle Scholar
Fahim, M. A., & Wakao, N. (1982). Parameter estimation from tracer response measurements. The Chemical Engineering Journal, 25(1), 18. https://doi.org/10.1016/0300-9467(82)85016-8Google Scholar
Faragher, R. (2012). Understanding the basis of the kalman filter via a simple and intuitive derivation [lecture notes]. IEEE Signal Processing Magazine, 29(5), 128132. https://doi.org/10.1109/MSP.2012.2203621Google Scholar
Feehley, C. E., Zheng, C., & Molz, F. J. (2000). A dual-domain mass transfer approach for modeling solute transport in heterogeneous aquifers: Application to the Macrodispersion Experiment (MADE) site. Water Resources Research, 36(9), 25012515. https://doi.org/10.1029/2000WR900148Google Scholar
Fick, Adolf, F. (1855). Ueber Diffusion. Annalen der Physik und Chemie, 170(1), 5986. https://doi.org/10.1002/andp.18551700105Google Scholar
Fischer, H. B., List, J. E., Koh, C. R., Imberger, J., & Brooks, N. H. (1979). Mixing in Inland and Coastal Waters. New York: Academic Press.Google Scholar
Fletcher, C. A. J. (1988). Computational Techniques for Fluid Dynamics 1: Fundamental and General Techniques. Berlin and New York: Springer-Verlag.Google Scholar
Freyberg, D. L. (1986). A natural gradient experiment on solute transport in a sand aquifer: 2. Spatial moments and the advection and dispersion of nonreactive tracers. Water Resources Research, 22(13), 20312046. https://doi.org/10.1029/WR022i013p02031Google Scholar
Garabedian, S. P., LeBlanc, D. R., Gelhar, L. W., & Celia, M. A. (1991). Large-scale natural gradientracer test in sand and gravel, Cape Cod, Massachusetts, 2, Analysis of spatial moments for a nonreactive tracer, Water Resources Research, 27(5), 911924, 1991.Google Scholar
Gelhar, L. W. (1993). Stochastic Subsurface Hydrology. Prentice-Hall, Inc. 390 pp.Google Scholar
Gelhar, L. W., & Axness, C. L. (1983). Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resources Research, 19(1), 161180. https://doi.org/10.1029/WR019i001p00161.Google Scholar
Gelhar, L. W., Gutjahr, A. L., & Naff, R. L. (1979). Stochastic analysis of macrodispersion in a stratified aquifer. Water Resources Research, 15(6), 13871397. https://doi.org/10.1029/WR015i006p01387CrossRefGoogle Scholar
Gelhar, L. W., & Wilson, J. L. (1974). Ground-water quality modeling, Ground Water, 12(6), 339408.CrossRefGoogle Scholar
Goode, D. J. (1990). Particle velocity interpolation in block-centered finite difference groundwater flow models. Water Resources Research, 26(5), 925940. https://doi.org/10.1029/WR026i005p00925Google Scholar
Guan, J., Molz, F. J., Zhou, Q., Liu, H. H., & Zheng, C. (2008). Behavior of the mass transfer coefficient during the MADE-2 experiment: New insights. Water Resources Research, 44(2). https://doi.org/10.1029/2007WR006120Google Scholar
Harvey, C., & Gorelick, S. M. (2000). Rate-limited mass transfer or macrodispersion: Which dominates plume evolution at the Macrodispersion Experiment (MADE) site? Water Resources Research, 36, 637650. https://doi.org/10.1029/1999Wr900247Google Scholar
Herr, M., Schäifer, G., & Spitz, K. (1989). Experimental studies of mass transport in porous media with local heterogeneities. Journal of Contaminant Hydrology, 4, 127137.Google Scholar
Hill, M. C., Barlebo, H. C., & Rosbjerg, D. (2006). Reply to comment by F. Molz et al. on “Investigating the Macrodispersion Experiment (MADE) site in Columbus, Mississippi, using a three-dimensional inverse flow and transport model”. Water Resources Research, 42(6), 14. https://doi:10.1029/2005WR004624Google Scholar
Huyakorn, P. S., Jones, B. G., & Andersen, P. F. (1986). Finite element algorithms for simulating three-dimensional groundwater flow and solute transport in multilayer systems. Water Resources Research, 22(3), 361374. https://doi.org/10.1029/WR022i003p00361CrossRefGoogle Scholar
Huyakorn, P. S., Andersen, P. F., Giiven, O., & Molz, F. J.. (1986). A curvilinear finite element model for simulating two-well tracer tests and transport in stratified aquifers. Water Resources Research 22(5), 663678.Google Scholar
Hvorslev, M. J. (1951). Time Lag and Soil Permeability in Ground-Water Observations. Waterways Experiment Station, Corps of Engineers, US Army.Google Scholar
Illman, W. A., Liu, X., Takeuchi, S., Yeh, T. C. J., Ando, K., & Saegusa, H. (2009). Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan. Water Resources Research, 45(1). https://doi.org/10.1029/2007WR006715CrossRefGoogle Scholar
Istok, J. (1989). Groundwater Modeling by the Finite Element Method. Washington: American Geophysical Union.Google Scholar
Julian, H. E., Boggs, J. M., Zheng, C., & Feehley, C. E. (2001). Numerical simulation of a natural gradient tracer experiment for the Natural Attenuation Study: Flow and physical transport. Ground Water 39(4), 534545.Google Scholar
Keller, G. V., & Frischknecht, F. C. (1966). Electrical Methods in Geophysical Prospecting. Oxford: Pergamon Press.Google Scholar
Killey, R. W. D., & Moltyaner, G. L. (1988). Twin Lake tracer tests: Setting, methodology, and hydraulic conductivity distribution, Water Resources Research, 24(10), 15851612, 1988.Google Scholar
Kitanidis, P. K. (1995). Quasi-linear geostatistical theory for inversing. Water Resources Research, 31(10), 24112419. https://doi.org/10.1029/95WR01945CrossRefGoogle Scholar
Koefoed, O., & Principles, G. (1979). Geosounding Principles, I: Resistivity Sounding Measurements. New York: Elsevier Scientific Publishing Company.Google Scholar
Kreft, A., & Zuber, A. (1978). On the physical meaning of the dispersion equation and its solutions for different initial and boundary conditions. Chemical Engineering Science, 33(11), 14711480. https://doi.org/10.1016/0009-2509(78)85196-3Google Scholar
Kurotori, T., Zahasky, C., Hejazi, S. A. H., Shah, S. M., Benson, S. M., & Pini, R. (2019). Measuring, imaging and modelling solute transport in a microporous limestone, Chemical Engineering Science, 196, 366383. https://doi.org/10.1016/j.ces.2018.11.001Google Scholar
LeBlanc, D. R., Garabedian, S. P., Hess, K. M., Gelhar, L. W., Quadri, R. D., Stollenwerk, K. G., & Wood, W. W. (1991). Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. Experimental design and observed tracer movement. Water Resources Research, 27(5), 895910. https://doi.org/10.1029/91WR00241Google Scholar
Li, Y., & Oldenburg, D. W. (1994). Inversion of 3-D DC resistivity data using an approximate inverse mapping. Geophysical Journal International, 116(3), 527537. https://doi.org/10.1111/j.1365-246X.1994.tb03277.xGoogle Scholar
Libelo, E. L., Stauffer, T. B., Geer, M. A., MacIntyre, W. G., & Boggs, J. M. (1997). A field study to elucidate processes involved in natural attenuation, In 4th International In Situ and On-Site Bioremediation Symposium. New Orleans, Louisiana.Google Scholar
Llopis-Albert, C., & Capilla, J. E.. (2009). Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 3. Application to the Macrodispersion Experiment (MADE-2) site, on Columbus Air Force Base in Mississippi (USA). Journal of Hydrology 371(1–4), 7584. https://doi.org/10.1016/j.jhydrol.2009.03.016.Google Scholar
MacIntyre, W. G., Boggs, J. M., Antworth, C. P., & Stauffer, T. B. (1993). Degradation kinetics of aromatic organic solutes introduced into a heterogeneous aquifer. Water Resources Research 29(12), 40454051.Google Scholar
Mackay, D. M., Freyberg, D. L., Roberts, P. V., & Cherry, J. A. (1986). A natural gradient experiment on solute transport in a sand aquifer: 1. Approach and overview of plume movement. Water Resources Research, 22(13), 20172029. https://doi.org/10.1029/WR022i013p02017Google Scholar
Magee, B. R., Lion, L. W., & Lemley, A. T. (1991). Transport of dissolved organic macromolecules and their effect on the transport of phenanthrene in porous media. Environmental Science & Technology, 25(2), 323331. https://doi.org/10.1021/es00014a017CrossRefGoogle Scholar
Mao, D., Wan, L., Yeh, T. C. J., Lee, C. H., Hsu, K. C., Wen, J. C., & Lu, W. (2011). A revisit of drawdown behavior during pumping in unconfined aquifers. Water Resources Research, 47(5). https://doi.org/10.1029/2010WR009326Google Scholar
Marinov, I., & Marinov, A. M. (2014). The influence of a municipal solid waste landfill on groundwater quality: A modeling case study for raureni–ramnicu valcea (romania). International Journal of Computational Methods and Experimental Measurements, 2(2), 184201. https://doi.org/10.2495/CMEM-V2-N2-184-201Google Scholar
Mas-Pla, J. (1993). Modeling the transport of natural organic matter in heterogeneous porous media: Analysis of a field-scale experiment at the Georgetown site, South Carolina (Doctoral dissertation, The University of Arizona).Google Scholar
Mas-Pla, J., Yeh, T. C. J., McCarthy, J. F., & Williams, T. M. (1992). A forced gradient tracer experiment in a Coastal Sandy Aquifer, Georgetown Site, South Carolina. Ground Water. 30(6), 958964.Google Scholar
Matheron, G., & De Marsily, G. (1980). Is transport in porous media always diffusive? A counterexample. Water Resources Research, 16(5), 901917. https://doi.org/10.1029/WR016i005p00901Google Scholar
McCarthy, J. F., Gu, B., Liang, L., Mas-Pla, J., Williams, T. M., & Yeh, T. C. (1996). Field tracer tests on the mobility of natural organic matter in a sandy aquifer. Water Resources Research, 32(5), 12231238. https://doi.org/10.1029/96WR00285Google Scholar
McCarthy, J. F., Marsh, J. D., & Tipping, E. (1995). Mobilization of actinides from disposal trenches by natural organic matter. In 209th ACS National Meeting.Google Scholar
McCarthy, J. F., Williams, T. M., Liang, L., Jardine, P. M., Jolley, L. W., Taylor, D. L., Palumbo, A. V., & Cooper, L. W. (1993). Mobility of natural organic matter in a study aquifer. Environmental Science & Technology, 27(4), 667676. https://doi.org/10.1021/es00041a010CrossRefGoogle Scholar
McLaughlin, D., & Townley, L. R. (1996). A reassessment of the groundwater inverse problem. Water Resources Research, 32(5), 11311161. https://doi.org/10.1029/96wr00160Google Scholar
Molz, F. J., Zheng, C., Gorelick, S. M., & Harvey, C. F. (2006). Comment on “Investigating the Macrodispersion Experiment (MADE) site in Columbus, Mississippi, using a three-dimensional inverse flow and transport model” by Heidi Christiansen Barlebo, Mary C. Hill, and Dan Rosbjerg. Water Resources Research, 42(6). https://doi:10.1029/2005WR004265.Google Scholar
Murphy, E. M., Zachara, J. M., Smith, S. C., Phillips, J. L., & Wietsma, T. W. (1994). Interaction of hydrophobic organic compounds with mineral-bound humic substances. Environmental Science & Technology, 28(7), 12911299. https://doi.org/10.1021/es00056a017Google Scholar
Naff, R. L., Yeh, T. C. J., & Kemblowski, M. W. (1988). A note on the recent natural gradient tracer test at the Borden site. Water Resources Research, 24(12), 20992103. https://doi.org/10.1029/WR024i012p02099Google Scholar
Neuman, S. P. (1972). Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resources Research, 8(4), 10311045, https://doi:10.1029/WR008i004p01031Google Scholar
Ni, C. F., Yeh, T. C. J., & Chen, J. S. (2009). Cost-effective hydraulic tomography surveys for predicting flow and transport in heterogeneous aquifers. Environmental Science & Technology, 43(10), 37203727. https://doi.org/10.1021/es8024098Google Scholar
O’Connor, D. J., & Mueller, J. A. (1970). A water quality model of chlorides in Great Lakes. Journal of the Sanitary Engineering Division, 96(4), 955975. https://doi.org/10.1061/JSEDAI.0001160Google Scholar
Ogata, A., & Banks, R. B. (1961). A solution of the differential equation of longitudinal dispersion in porous media, Geological Survey Professional Paper 411-A. https://doi.org/10.3133/pp411AGoogle Scholar
Packman, A. I., & Salehin, M. (2003). Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange. Hydrobiologia, 494(1), 291297. https://doi.org/10.1023/A:1025403424063Google Scholar
Padilla, I. Y., Yeh, T. C. J., & Conklin, M. H. (1999). The effect of water content on solute transport in unsaturated porous media. Water Resources Research, 35, 33033313. https://doi.org/10.1029/1999Wr900171Google Scholar
Pang, L., Goltz, M., & Close, M. (2003). Application of the method of temporal moments to interpret solute transport with sorption and degradation. Journal of Contaminant Hydrology, 60(1–2), 123134. https://doi.org/10.1016/S0169-7722(02)00061-XGoogle Scholar
Parker, J. C., & Van Genuchten, M. T. (1984). Flux-averaged and volume-averaged concentrations in continuum approaches to solute transport. Water Resources Research, 20(7), 866872. https://doi.org/10.1029/WR020i007p00866Google Scholar
Pickens, J. F., & Grisak, G. E. (1981). Scale-dependent dispersion in a stratified granular aquifer. Water Resources Research, 17(4), 11911211. https://doi.org/10.1029/WR017i004p01191Google Scholar
Pinder, G. F., & Gray, W. G. (1977). Finite Element Simulation in Surface and Subsurface Hydrology. New York: Academic Press.Google Scholar
Priestley, M. B. (1981). Spectral Analysis and Time Series, Academic Press, 890 pp.Google Scholar
Rehfeldt, K. R., Boggs, J. M., & Gelhar, L. W. (1992). Field study of dispersion in a heterogeneous aquifer: 3. Geostatistical analysis of hydraulic conductivity. Water Resources Research, 28(12), 33093324. https://doi.org/10.1029/92WR01758Google Scholar
Ritzi, R. W., & Yeh, T.-C. J. (1988). Comment on “The role of groundwater in delaying lake acidification” by M. P. Anderson and C. J. Bowser. Water Resources Research, 24(5), 787790. https://doi.org/10.1029/WR024i005p00787Google Scholar
Roache, P. J. (1976), Computational Fluid Dynamics. New Mexico: Hermosa Publishers.Google Scholar
Roberts, P. V., Goltz, M. N., & Mackay, D. M. (1986). A natural gradient experiment on solute transport in a sand aquifer: 3. Retardation estimates and mass balances for organic solutes. Water Resources Research, 22(13), 20472058. https://doi.org/10.1029/WR022i013p02047Google Scholar
Ryan, J. N., & Gschwend, P. M. (1990). Colloid mobilization in two Atlantic Coastal Plain aquifers: Field studies. Water Resources Research, 26(2), 307322. https://doi.org/10.1029/WR026i002p00307Google Scholar
Ryan, P. J., Harleman, D. R. F., & Stolzenbach, K. D. (1974). Surface heat loss from cooling ponds. Water Resources Research, 10(5), 930938. https://doi:10.1029/wr010i005p00930Google Scholar
Saffman, P. G. (1959). A theory of dispersion in a porous medium. Journal of Fluid Mechanics, 6(3), 321349. https://doi.org/10.1017/S0022112059000672Google Scholar
Sawyer, A. H., & Cardenas, M. B. (2009). Hyporheic flow and residence time distributions in heterogeneous cross-bedded sediment. Water Resources Research, 45(8). https://doi.org/10.1029/2008WR007632Google Scholar
Sawyer, A. H., Zhu, J., Currens, J. C., Atcher, C., & Binley, A. (2015). Time-lapse electrical resistivity imaging of solute transport in a karst conduit. Hydrological Processes, 29(23), 49684976. https://doi.org/10.1002/hyp.10622Google Scholar
Slater, L., & Binley, A. (2021). Advancing hydrological process understanding from long-term resistivity monitoring systems. Wiley Interdisciplinary Reviews: Water, 8(3), e1513. https://doi.org/10.1002/wat2.1513Google Scholar
Srivastava, R., & Yeh, T. C. J. (1992). A three-dimensional numerical model for water flow and transport of chemically reactive solute through porous media under variably saturated conditions. Advances in Water Resources, 15(5), 275287. https://doi.org/10.1016/0309-1708(92)90014-SGoogle Scholar
Stapleton, R. D., Sayler, G. S., & Boggs, J. M. (2000). Changes in subsurface catabolic gene frequencies during natural attenuation of petroleum hydrocarbons. Environmental Science and Technology 34(10), 19911999.Google Scholar
Su, X., Shu, L., & Lu, C. (2018). Impact of a low-permeability lens on dune-induced hyporheic exchange. Hydrological Sciences Journal, 63(5), 818835. https://doi.org/10.1080/02626667.2018.1453611Google Scholar
Su, X., Shu, L., Chen, X., Lu, C., & Wen, Z. (2016). Interpreting the cross-sectional flow field in a river bank based on a genetic-algorithm two-dimensional heat-transport method (GA-VS2DH). Hydrogeology Journal, 24(8), 20352047. https://doi.org/10.1007/s10040-016-1459-yGoogle Scholar
Su, X., Yeh, T. C. J., Shu, L., Li, K., Brusseau, M. L., Wang, W., … & Lu, C. (2020). Scale issues and the effects of heterogeneity on the dune-induced hyporheic mixing. Journal of Hydrology, 590, 125429. https://doi.org/10.1016/j.jhydrol.2020.125429Google Scholar
Sudicky, E. A. (1986). A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resources Research, 22(13), 20692082. https://doi.org/10.1029/WR022i013p02069Google Scholar
Sun, N.-Z. (1994). Inverse Problems in Groundwater Modeling, Kluwer Acad., Norwell, Mass.Google Scholar
Sun, R., Yeh, T.-C. J., Mao, D., Jin, M., Lu, W., & Hao, Y. (2013). A temporal sampling strategy for hydraulic tomography analysis, Water Resources Research, 49. https://doi.org/10.1002/wrcr.20337Google Scholar
Suzuki, M., & Smith, J. M. (1971). Kinetic studies by chromatography. Chemical Engineering Science, 26(2), 221235. https://doi.org/10.1016/0009-2509(71)80006-4Google Scholar
Taylor, G. I. (1921). Diffusion by continuous movements. Proceedings of the London Mathematical Society, 2(1), 196212. https://doi.org/10.1112/plms/s2-20.1.196Google Scholar
Taylor, G. I. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 219(1137), 186203. https://doi.org/10.1098/rspa.1953.0139Google Scholar
Tiedeman, C. R., & Barrash, W. (2020). Hydraulic tomography: 3D hydraulic conductivity, fracture network, and connectivity in mudstone. Groundwater, 58(2), 238257. https://doi.org/10.1111/gwat.12915Google Scholar
Turner, G. A. (1972). Heat and Concentration Waves, Academic, New York: Elsevier. University Pres, 343 pp.Google Scholar
Updegraff, C. D. (1977). Parameter Estimation for a Lumped-parameter Gound-water Model of the Mesilla Valley. New Mexico: New Mexico Water Resources Research Institute.Google Scholar
Valocchi, A. J. (1985). Validity of the local equilibrium assumption for modeling sorbing solute transport through homogeneous soils. Water Resources Research, 21(6), 808820. https://doi.org/10.1029/WR021i006p00808Google Scholar
Vasco, D. W., & Datta-Gupta, A. (1999). Asymptotic solutions for solute transport: A formalism for tracer tomography. Water Resources Research, 35(1), 116. https://doi.org/10.1029/98WR02742Google Scholar
Vasco, D. W., Keers, H., & Karasaki, K. (2000). Estimation of reservoir properties using transient pressure data: An asymptotic approach. Water Resources Research, 36(12), 34473465. https://doi.org/10.1029/2000WR900179CrossRefGoogle Scholar
Vasco, D. W., Seongsik, Y., & Datta-Gupta, A. (1999). Integrating dynamic data into high-resolution reservoir models using streamline-based analytic sensitivity coefficients. Spe Journal, 4(04), 389399. https://doi.org/10.2118/59253-PAGoogle Scholar
Wang, Y.‐L., Yeh, T.‐C. J., Wen, J.‐C., Gao, X., Zhang, Z., & Huang, S.‐Y. (2019). Resolution and ergodicity issues of river stage tomography with different excitations. Water Resources Research, 55. https://doi.org/10.1029/2018WR023204Google Scholar
Wang, Y.‐L., Yeh, T.‐C. J., Wen, J.‐C., Huang, S.‐Y., Zha, Y., Tsai, J.‐P., et al. (2017). Characterizing subsurface hydraulic heterogeneity of alluvial fan using riverstage fluctuations. Journal of Hydrology, 547, 650–663. https://doi.org/10.1016/j.jhydrol.2017.02.032Google Scholar
Williams, T. M., & McCarthy, J. F. (1991). Field scale tests of colloid-facilitated transport. In National Research and Development Conference on Control of Hazardous Materials. Hazardous Mat. Control Inst Greenbelt, MD, 179184.Google Scholar
Winter, T., Harvey, J., Franke, O., & Alley, W. (1998). Ground Water and Surface Water: A Single Resource. US Geological Survey.Google Scholar
Woodbury, A. D., & Sudicky, E. A. (1991). The geostatistical characteristics of the Borden aquifer. Water Resources Research, 27(4), 533546. https://doi.org/10.1029/90WR02545Google Scholar
Xiang, J., Yeh, T. C. J., Lee, C. H., Hsu, K. C., & Wen, J. C. (2009). A simultaneous successive linear estimator and a guide for hydraulic tomography analysis. Water Resources Research, 45(2). https://doi.org/10.1029/2008WR007180Google Scholar
Ye, M., Khaleel, R., & Yeh, T. C. J. (2005). Stochastic analysis of moisture plume dynamics of a field injection experiment. Water Resources Research, 41(3). https://doi.org/10.1029/2004WR003735Google Scholar
Yeh, T. C. J., & Liu, S. (2000). Hydraulic tomography: Development of a new aquifer test method. Water Resources Research, 36(8), 20952105. https://doi.org/10.1029/2000WR900114Google Scholar
Yeh, T. C. J., Gutjahr, A. L., & Jin, M. (1995). An iterative cokriging-like technique for ground-water flow modeling. Groundwater, 33(1), 3341. https://doi.org/10.1111/j.1745-6584.1995.tb00260.xCrossRefGoogle Scholar
Yeh, T. C. J., Khaleel, R., & Carroll, K. C. (2015). Flow Through Heterogeneous Geologic Media. Cambridge University Press, 343 pp.Google Scholar
Yeh, T. C. J., Lee, C. H., Hsu, K. C., Illman, W. A., Barrash, W., Cai, X., … & Winter, C. L. (2008). A view toward the future of subsurface characterization: CAT scanning groundwater basins. Water Resources Research, 44(3). https://doi.org/10.1029/2007WR006375Google Scholar
Yeh, T. C. J., Liu, S., Glass, R. J., Baker, K., Brainard, J. R., Alumbaugh, D., & LaBrecque, D. (2002). A geostatistically based inverse model for electrical resistivity surveys and its applications to vadose zone hydrology. Water Resources Research, 38(12), https://doi.org/10.1029/2001WR001204.Google Scholar
Yeh, T. C. J., Mas-Pla, J., Williams, T. M., & McCarthy, J. F. (1995). Observation and three-dimensional simulation of chloride plumes in a sandy aquifer under forced-gradient conditions. Water Resources Research, 31(9), 21412157. https://doi.org/10.1029/95WR01947Google Scholar
Yeh, T. C. J., Srivastava, R., Guzman, A., & Harter, T. (1993). A numerical model for water flow and chemical transport in variably saturated porous media. Groundwater, 31(4), 634644. https://doi.org/10.1111/j.1745-6584.1993.tb00597.xGoogle Scholar
Yeh, T.-C. J., Khaleel, R., & Carroll, K. C. (2015). Flow Through Heterogeneous Geologic Media. Cambridge University Press. New York, USA.Google Scholar
Yeh, T.-C. J., Jin, M., & Hanna, S., (1996). An iterative stochastic inverse method: Conditional effective transmissivity and hydraulic head fields. Water Resources Research, 32(1), 85e92. http://dx.doi.org/10.1029/95WR0286Google Scholar
Yeh, T. C. J., Zhu, J., Englert, A., Guzman, A., & Flaherty, S. (2006). A successive linear estimator for electrical resistivity tomography. Applied hydrogeophysics. (p45-p74). Springer, Dordrecht, the Netherland.Google Scholar
Zha, Y., Yeh, T. C. J., Illman, W. A., Tanaka, T., Bruines, P., Onoe, H., … & Wen, J. C. (2016). An application of hydraulic tomography to a large-scale fractured granite site, Mizunami, Japan. Groundwater, 54(6), 793804. https://doi.org/10.1111/gwat.12421Google Scholar
Zhang, J., Mackie, R. L., & Madden, T. R. (1995). 3-D resistivity forward modeling and inversion using conjugate gradients. Geophysics, 60(5), 13131325. https://doi.org/10.1190/1.1443868Google Scholar
Zhang, M., & Zhang, Y. (2015). Multiscale solute transport upscaling for a three-dimensional hierarchical porous medium. Water Resources Research, 51(3), 16881709. https://doi:10.1002/2014WR016202Google Scholar
Zhang, Y., & Gable, C. W. (2008). Two-scale modeling of solute transport in an experimental stratigraphy. Journal of Hydrology, 348(3–4), 395411. https://doi.org/10.1016/j.jhydrol.2007.10.017Google Scholar
Zhao, Z., & Illman, W. A. (2018). Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site. Journal of Hydrology, 559, 392410. https://doi.org/10.1016/j.jhydrol.2018.02.024Google Scholar
Zheng, C., Bianchi, M., & Gorelick, S. M. (2011). Lessons learned from 25 years of research at the MADE site. Groundwater, 49(5), 649662. https://doi.org/10.1111/j.1745-6584.2010.00753.xGoogle Scholar
Zhu, J., & Yeh, T. C. J. (2005). Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resources Research, 41(7). https://doi.org/10.1029/2004WR003790Google Scholar
Zsolnay, A. (1992). Effect of an organic fertilizer on the transport of the herbicide atrazine in soil. Chemosphere, 24(5), 663669. https://doi.org/10.1016/0045-6535(92)90220-LGoogle Scholar
Zsolnay, A. (1993). The relationship between dissolved organic carbon and basal metabolism in soil. Mitt. d. Österr. Bodenk. Ges, 47, 8395.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Tian-Chyi Jim Yeh, University of Arizona, Yanhui Dong, Chinese Academy of Sciences, Beijing, Shujun Ye, Nanjing University, China
  • Book: An Introduction to Solute Transport in Heterogeneous Geologic Media
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781009049511.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Tian-Chyi Jim Yeh, University of Arizona, Yanhui Dong, Chinese Academy of Sciences, Beijing, Shujun Ye, Nanjing University, China
  • Book: An Introduction to Solute Transport in Heterogeneous Geologic Media
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781009049511.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Tian-Chyi Jim Yeh, University of Arizona, Yanhui Dong, Chinese Academy of Sciences, Beijing, Shujun Ye, Nanjing University, China
  • Book: An Introduction to Solute Transport in Heterogeneous Geologic Media
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781009049511.014
Available formats
×