Skip to main content Accessibility help
×
Home
  • Print publication year: 2005
  • Online publication date: June 2012

Chapter 16 - The root

Summary

Perspective: evolution of the root

The anatomy of the root reflects its origin, its subterranean environment, and its function. The first vascular plants (Rhyniophyta) lacked roots, and absorption of water and nutrients was facilitated by rhizoids. Roots evolved in the seed plant clade (rhyniophytes, trimerophytes, progymnosperms, seed plants) as well as in lycophytes, sphenophytes, and ferns in response to the pressures of a land environment, enhanced by increasing plant size. During their evolution important functions such as anchorage, absorption and transport of minerals and water, and storage of photosynthate were established. In some ways, however, roots changed relatively little through time. This is the result of the subterranean environment in which they evolved, and the fact that roots were, thus, not exposed to the same intense selection pressures as stems.

The seed plant root (Fig. 16.1a, b) is considered by most researchers to be an evolutionarily modified stem although it has also been suggested that it might be an entirely new organ that evolved independently of the stem. The predominant view is supported by the fact that the structure of the root of extant plants is remarkably similar to the anatomy of the stem of their ancestors. Even in many plants with stems that feature specialized siphonostelic or eustelic structure, the roots are protostelic (Fig. 16.1b), also a feature of the stems of very primitive plants. Roots with central piths have an alternate arrangement of xylem and phloem that may reflect a protostelic origin.

References
Abeysekera, R. M. and McCully, M. E.. 1993a. The epidermal surface of the maize root tip. I. Development in normal roots. New Phytol. 125: 413–429
Abeysekera, R. M. and McCully, M. E. 1993b. The epidermal surface of the maize root tip. II. Abnormalities in a mutant which grows crookedly through soil. New Phytol. 125: 801–811
Abeysekera, R. M. and McCully, M. E. 1994. The epidermal surface of the maize root tip. III. Isolation of the surface and characterization of some of its structural and mechanical properties. New Phytol. 127: 321–333
Armstrong, L. and Peterson, R. L.. 2002. The interface between the arbuscular mycorrhizal fungus Glomus intraradices and root cells of Panax quinquefolius: a Paris-type mycorrhizal association. Mycologia 94: 587–595
Baluska, F., Kubica, S., and Hauskrecht, M.. 1990. Postmitotic “isodiametric” cell growth in the maize root apex. Planta 181: 269–274
Baluska, F., Parker, J. S., and Barlow, P. W.. 1993. A role for gibberellic acid in orienting microtubules and regulating cell growth polarity in the maize root cortex. Planta 191: 149–157
Baluska, F., Salaj, J., Mathur, J.et al. 2000. Root hair formation: F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges. Devel. Biol. 227: 618–632
Barlow, P. W. 1975. The root cap. In Torrey, J. G. and Clarkson, D. T., eds., The Development and Function of Roots. London: Academic Press, pp. 21–54
Barlow, P. W. 1992. The meristem and quiescent centre in cultured root apices of the gib-l mutant of tomato (Lycopersicon esculentum Mill.). Ann. Bot. 69: 533–543
Barlow, P. W. 2002. The root cap: cell dynamics, cell differentiation and cap function. J. Plant Growth Regul. 212: 261–286
Bell, J. K. and McCully, M.. 1970. A histological study of lateral root initiation and development in Zea mays. Protoplasma 70: 179–205
Benkova, E., Michniewicz, M., Sauer, M.et al. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115: 591–602
Berger, T., Haseloff, J., Schiefelbein, J., and Dolan, L.. 1998. Positional information in root epidermis is defined during embryogenesis and acts in domains with strict boundaries. Curr. Biol. 8: 421–430
Blancaflor, E. R., Zhao, L., and Harrison, M. J.. 2001. Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Protoplasma 217: 154–165
Bonfante, P. and Perotto, S.. 1995. Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol. 130: 3–21
Bowman, J. 1994. Arabidopsis: An Atlas of Morphology and Development. Heidelberg: Springer-Verlag
Brundrett, M. and Kendrick, B.. 1990. The roots and mycorrhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol. 114: 469–479
Busse, J. S. and Evert, R. F.. 1999. Vascular differentiation and transition in the seedling of Arabidopsis thaliana (Brassicaceae). Int. J. Plant Sci. 160: 241–251
Casero, P. J., Casimiro, I., and Lloret, P. G.. 1996. Pericycle proliferation pattern during the lateral root initiation in adventitious roots of Allium cepa. Protoplasma 191: 136–147
Cho, H. T. and Cosgrove, D. J.. 2002. Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14: 3237–3253
Clarkson, D. T. 1991. Root structure and sites of ion uptake. In Waisel, Y. and Eshel, A., eds., Plant Roots. New York: Marcel Dekker, pp. 417–455
Clarkson, D. T. and A. W. Robards. 1975. The endodermis, its structural development and physiological role. In Torrey, J. G. and Clarkson, D. T., eds., Development and Function of Roots. London: Academic Press, pp. 415–437
Clowes, F. A. L. 1959. Apical meristems of roots. Biol. Rev. Cambridge Phil. Soc. 34: 501–529
Clowes, F. A. L. 196l. Apical Meristems. Oxford, UK: Blackwell
Clowes, F. A. L. 1976. The root apex. In Yeoman, M. M.Cell Division in Higher Plants. London: Academic Press, pp. 253–284
Clowes, F. A. L. 1994. Origin of the epidermis in root meristems. New Phytol. 127: 335–347
Cosgrove, D. J. 1993. Water uptake by growing cells: an assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance. Int. J. Plant Sci. 154: 10–21
Coutts, M. P. and Nicoll, B. C.. 1991. Orientation of the lateral roots of trees. I. Upward growth of surface roots and deflection near the soil surface. New Phytol. 119: 227–234
Damus, M., Peterson, R. L., Enstone, D. E., and Peterson, C. A.. 1997. Modifications of cortical cell walls in roots of seedless vascular plants. Bot. Acta 110: 190–195
Dolan, L., Duckett, C., Grierson, C.et al. 1994. Clonal relations and patterning in the root epidermis of Arabidopsis. Development 120: 2465–2474
Eames, A. J. and , L. H. MacDaniels. 1925 An Introduction to Plant Anatomy. New York: McGraw-Hill
Eleftheriou, E. P. 1990. Monocotyledons. In , H. D. Behnke and , R. D. SjölundSieve Elements: Comparative Structure, Induction and Development.Berlin: Springer-Verlag, pp. 139–159
Enstone, D. E. and Peterson, C. A.. 1997. Suberin deposition and band plasmolysis in the corn (Zea mays L.) root exodermis. Can. J. Bot. 75: 1188–1199
Esau, K.. Plant Anatomy, 2nd edn. New York: John Wiley and Sons
Evans, M. L. 1991. Gravitropism: interaction of sensitivity modulation and effector distribution. Plant Physiol. 95: 1–5
Evans, M. L. and , H. Ishikawa. 1997. Cellular specificity of the gravitropic motor response in plants. Planta 203: S115–S122
Evert, R. F. 1990. Seedless vascular plants. In , H. D. Behnke and , R. D. Sjölund, Sieve Elements: Comparative Structure, Induction and Development. Berlin: Springer-Verlag, pp. 35–64
Friml, J. and Palme, K.. 2002. Polar auxin transport: old questions and new concepts?Plant Mol. Biol. 49: 273–284
Friml, J., Benková, E., Blilou, I.et al. 2002. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108: 661–673
Galway, M. E., Masucci, J. D., Lloyd, A. M.et al. 1994. The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Devel. Biol. 166: 740–754
Halevy, A. H. 1986. The induction of contractile roots in Gladiolus grandiflorus. Planta 167: 94–100
Hirsch, A. M. 1992. Developmental biology of legume nodulation. New Phytol. 122: 211–237
Hose, E., Clarkson, D. T., Steudle, E., Schreiber, L., and Hartung, W.. 2001. The exodermis: a variable apoplastic barrier. J. Exp. Bot. 52: 2245–2264
Javot, H. and Maurel, C.. 2002. The role of aquaporins in root water uptake. Ann. Bot. 90: 301–313
Jensen, W. A. and Kalvaljian, L. G.. 1958. An analysis of cell morphology and the periodicity of division in the root tip of Allium cepa. Am. J. Bot. 45: 365–372
Jernstedt, J. A. 1984a. Seedling growth and root contraction in the soap plant, Chlorogalum pomeridianum (Liliaceae). Am. J. Bot. 71: 69–75
Jernstedt, J. A. 1984b. Root contraction in hyacinth. I. Effects of IAA on differential cell expansion. Am. J. Bot. 71: 1080–1089
Kerk, N. and Feldman, L.. 1994. The quiescent center in roots of maize: initiation, maintenance and role in organization of the root apical meristem. Protoplasma 183: 100–106
Knoll, A. H. and Niklas, K. J.. 1987. Adaptation, plant evolution, and the fossil record. Rev. Palaeobot. Palynol. 50: 127–149
Konings, H. 1995. Gravitropism of roots: an evaluation of progress during the last three decades. Acta Bot. Neerl. 44: 195–223
Lersten, N. R. 1997. Occurrence of endodermis with a Casparian strip in stem and leaf. Bot. Rev. 63: 265–272
Luxova, M. 1990. Effect of lateral root formation on the vascular pattern of barley roots. Bot. Acta 103: 305–310
Ma, F. S. and Peterson, C. A.. 2001a. Development of cell wall modifications in the endodermis and exodermis of Allium cepa roots. Can. J. Bot. 79: 621–634
Ma, F. S. and Peterson, C. A. 2001b. Frequencies of plasmodesmata in Allium cepa L. roots: implications for solute transport pathways. J. Exp. Bot. 52: 1051–1061
Massicotte, H. B., Melville, L. H., Peterson, R. L., and , T. Unestam. 1999. Comparative studies of ectomycorrhiza formation in Alnus glutinosa and Pinus resinosa withPaxillus involutus. Mycorrhiza 8: 229–240
Masucci, J. D. and Schiefelbein, J. W.. 1996. Hormones act downstrean of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8: 1505–1517
McCully, M. E. and Mallett, J. E.. 1993. The branch roots of Zea. III. Vascular connections and bridges for nutrient recycling. Ann. Bot. 71: 327–341
Mosiniak, M., Rouic, I., and Roland, J.-C.. 1995. Croissance pluridirectionnelle des parois hélicoïdales: le raccourcissement cellulaire des raciness tractrices. Acta Bot. Gallica 142: 191–207
Ottenschläger, I., Wolff, P., Wolverton, C.et al. 2003. Gravity-regulated differential auxin transport from columella to lateral root cap cells. Proc. Natl Acad. Sci. USA 100: 2987–2991
Pate, J. S., Gunning, B. E. S., and Briarty, L. G.. 1969. Ultrastructure and functioning of the transport system of the leguminous root nodule. Planta 85: 11–34
Peterson, C. A. 1988. Exodermal Casparian bands: their significance for ion uptake by roots. Physio. Plant. 72: 204–208
Peterson, C. A. and Enstone, D. E.. 1996. Functions of passage cells in the endodermis and exodermis of roots. Physiol. Plant. 97: 592–598
Peterson, C. A., Murrmann, M., and Steudle, E.. 1993. Location of the major barriers to water and ion movement in young roots of Zea mays L. Planta 190: 127–136
Peterson, R. L. 1992. Adaptations of root structure in relation to biotic and abiotic factors. Can. J. Bot. 70: 661–675
Ponce, G., Lujan, R., Campos, M. E.et al. 2000. Three maize root-specific genes are not correctly expressed in regenerated caps in the absence of the quiescent center. Planta 211: 23–33
Pritchard, J. 1994. The control of cell expansion in roots. New Phytol. 127: 3–26
Pütz, N. 1991. Measurement of the pulling force of a single contractile root. Can. J. Bot. 70: 1433–1439
Ridge, R. W. and Sack, F. D.. 1992. Cortical and cap sedimentation in gravitropic Equisetum roots. Am. J. Bot. 79: 328–334
Sabatini, S., Beis, D., Wolkenfelt, H.et al. 1999. An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99: 463–472
Scales, P. F. and Peterson, R. L.. 199l. Structure and development of Pinus banksiana–Wilcoxina ectendomycorrhizae. Can. J. Bot. 69: 2135–2148
Scheres, B., McKhann, H., Berg, C.et al. 1996. Experimental and genetic analysis of root development in Arabidopsis thaliana. Plant Soil 187: 97–105
Schiefelbein, J. W. 2000. Constructing a plant cell: the genetic control of root hair development. Plant Physiol. 124: 1525–1531
Schiefelbein, J. W. and Somerville, C.. 1990. Genetic control of root hair development in Arabidopsis thaliana. Plant Cell 2: 235–243
Schiefelbein, J. W., Masucci, J. D., and , H. Wang. 1997. Building a root: the control of patterning and morphogenesis during root development. Plant cell 9: 1089–1098
Schnepf, E. 1993. Golgi apparatus and slime secretion in plants: the early implications and recent models of membrane traffic. Protoplasma 172: 3–11
Schreiber, L. 1996. Chemical composition of Casparian strips isolated from Clivia miniata Reg. roots: evidence for lignin. Planta 199: 596–601
Schreiber, L., Hartmann, K., Skrabs, M., and Zeier, J.. 1999. Apoplastic barriers in roots: chemical composition of endodermal and hypodermal cell walls. J. Exp. Bot. 50: 1267–1280
Seago, J. L., Peterson, C. A., Instone, D. E., and Scholey, C. A.. 1999. Development of the endodermis and hypodermis of Typha glauca Godr. and Typha angustifolia L. roots. Can. J. Bot. 77: 122–134
Seago, J. S., Peterson, C. A., and Enstone, D. E.. 2000a. Cortical development in roots of the aquatic plant Pontederia cordata (Pontederiaceae). Am. J. Bot. 87: 1116–1127
Seago, J. L., Peterson, C. A., Kinsley, L. J., and Broderick, J.. 2000b. Development and structure of the root cortex in Caltha palustris L. and Nymphaea oderato Ait. Ann. Bot. 86: 631–640
Shane, M. W., McCully, M. E., and Canny, M. J.. 2000. Architecture of branch–root junctions in maize: structure of the connecting xylem and the porosity of pit membranes. Ann. Bot. 85: 613–624
Skene, K. R. 1998. Cluster roots: some ecological considerations. J. Ecol. 86: 1062–1066
Skene, K. R. 2000. Pattern formation in cluster roots: some developmental and evolutionary considerations. Ann. Bot. 85: 901–908
Smith, F. A. and Smith, S. E.. 1997. Structural diversity in (vesicular)– arbuscular mycorrhizal symbioses. New Phytol. 137: 373–388
Steudle, E. and Peterson, C. A.. 1998. How does water get through roots?J. Exp. Bot. 49: 775–788
Stewart, W. N. and Rothwell, G. W.. 1993. Palaeobotany and the Evolution of Plants, 2nd edn. Cambridge, UK: Cambridge University Press
Subba-Rao, N. S., Mateos, P. F., Baker, D . et al., 1995. The unique root-nodule symbiosis betweeen Rhizobium and the aquatic legume, Neptunia natans (L. f.) Druce. Planta 196: 311–320
Taleisnik, E., Peyrano, G., Cordoba, A., and Arias, C.. 1999. Water retention capacity in root segments differing in the degree of exodermis development. Ann. Bot. 83: 19–27
Torrey, J. G. 1953. The effect of certain metabolic inhibitors on vascular tissue differentiation in isolated pea roots. Am. J. Bot. 40: 525–533
Troughton, J. and , L. A. Donaldson. 1972. Probing Plant Structure. Wellington, NZ: New Zealand Ministry of Research, Science and Technology
Berg, C., Willimsen, V., Hendricks, G., Weisbeck, P. and , B. Scheres. 1997. Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287–289
Verdaguer, D. and Molinas, M.. 1997. Development and ultrastructure of the endodermis in the primary root of cork oak (Quercus suber). Can. J. Bot. 75: 769–780
Wang, X.-L., Canny, M. J., and McCully, M. E.. 1991. The water status of the roots of soil-grown maize in relation to the maturity of their xylem. Physiol. Plant. 82: 157–162
Wang, X.-L., McCully, M. E. and Canny, M. J.. 1995. Branch roots of Zea. V. Structural features related to water and nutrient transport. Bot. Acta 108: 209–219
Watt, M. and Evans, J. R.. 1999. Proteoid roots: physiology and development. Plant Physiol. 121: 317–323
Wilder, G. J. and Johansen, J. R.. 1992. Comparative anatomy of absorbing roots and anchoring roots in three species of Cyclanthaceae (Monocotyledoneae). Can. J. Bot. 70: 2384–2404
Willemsen, V., Wolkenfelt, H., Vrieze, G., Weisbeek, P. and Scheres, B.. 1998. The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125: 521–531
Wilson, K. and , J. N. Honey. 1966. Root contraction in Hyacinthus orientalis. Ann. Bot. 30: 47–61
Yawney, W. J. and Schultz, R. C.. 1990. Anatomy of a vesicular–arbuscular endomycorrhizal symbiosis between sugar maple (Acer saccharum Marsh) and Glomus etunicatum Becker & Gerdemann. New Phytol. 114: 47–57
Yu, T. E. J. C., Egger, K. N. and , R. L. Peterson. 2001. Ectendomycorrhizal associations: characteristics and functions. Mycorrhiza 11: 167–177
Zhu, T., Lucas, W. J., and Rost, T. L.. 1998. Directional cell-to-cell communication in the Arabidopsis root apical meristem. I. An ultrastructural and functional analysis. Protoplasma 203: 35–47
Further reading
Barlow, P. W. 1974. Regeneration of the cap of primary roots of Zea mays. New Phytol. 73: 937–954
Barlow, P. W. 1976. Towards an understanding of the behaviour of root meristems. J. Theor. Biol. 57: 433–451
Barlow, P. W. and Baluska, F.. 2000. Cytoskeletal perspectives on root growth and morphogenesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 51: 289–322
Barlow, P. W. and Parker, J. S.. 1996. Microtubular cytoskeleton and root morphogenesis. Plant Soil 187: 23–36
Barlow, P. W., Luck, H. B. and Luck, J.. 2001. Autoreproductive cells and plant meristem construction: the case of the tomato cap meristem. Protoplasma 215: 50–63
Baum, S. F. and Rost, T. L.. 1996. Root apical organization in Arabidopsis thaliana. I. Root cap and protoderm. Protoplasma 192: 178–188
Bergersen, F. J., Kennedy, G. S., and Wittmann, W.. 1965. Nitrogen fixation in the coralloid roots of Macrozamia communis L. Johnson.. Austral J. Biol. Sci. 18: 1135–1142
Bonnett, H. T. Jr. 1968. The root endodermis: fine structure and function. J. Cell Biol. 37: 109–205
Bonnett, H. T. Jr. and Torrey, J. G.. 1966. Comparative anatomy of endogenous bud and lateral root formation in Convolvulus arvensis roots cultured in vitro. Am. J. Bot. 53: 496–507
Byrne, J. M. 1973. The root apex of Malva sylvestris. III. Lateral root development and the quiescent center. Am. J. Bot. 60: 657–662
Carlson, M. C. 1950. Nodal adventitious roots in willow stems of different ages. Am. J. Bot. 37: 555–561
Chapman, K., Groot, E. P., Nichol, S. A., and Rost, T. L.. 2002. Primary root growth and the pattern of root apical meristem organization are coupled. J. Plant Growth Regul. 21: 287–295
Clowes, F. A. L. 1975. The quiescent centre. In Torrey, J. G. and Clarkson, D. T., eds., The Development and Function of Roots. London: Academic Press, pp. 3–19
Clowes, F. A. L. 1981. The difference between open and closed meristems. Ann. Bot. 48: 761–767
Clowes, F. A. L. 1984. Size and activity of quiescent centres of roots. New Phytol. 96: 13–21
Erickson, R. O. and Sax, K. B.. 1956. Rates of cell division and cell elongation in the growth of the primary root of Zea mays. Proc. Am. Phil. Soc. 100: 499–514
Esau, K. 1940. Developmental anatomy of the fleshy storage organ of Daucus carota. Hilgardia 13: 175–226
Esau, K. 1943. Vascular differentiation in the pear root. Hilgardia 15: 299–311
Esau, K. 1965 Vascular Differentiation in Plants. New York: Holt, Rinehart and Winston
Fayle, D. C. F. 1975. Distribution of radial growth during the development of red pine root systems. Can. J. For. Res. 5: 608–625
Feldman, L. J. 1984. The development and dynamics of the root apical meristem. Am. J. Bot. 71: 1308–1314
Fogel, R. 1983. Root turnover and productivity of coniferous forests. Plant Soil 71: 75–85
Fontana, A. 1985. Vesicular–arbuscular mycorrhizas of Ginkgo biloba L. in natural and controlled conditions. New Phytol. 99: 441–447
Foster, R. C. and Marks, G. C.. 1966. The fine structure of the mycorrhizas of Pinus radiata D. Don. Austral. J. Biol. Sci. 19: 1027–1038
Groot, E. P., Doyle, J. A., Nichol, S. A., and Rost, T. L.. 2004. Phylogenetic distribution and evolution of root apical meristem organization in dicotyledonous angiosperms. Int. J. Plant Sci. 165: 97–105
Haas, D. L. and Carothers, Z. B.. 1975. Some ultrastructural observations on endodermal cell development in Zea mays roots. Am. J. Bot. 62: 336–348
Haissig, B. E. 1974. Origins of adventitious roots. N. Z. J. For. Sci. 4: 299–310
Harley, J. L. and Smith, S. E.. 1983. Mycorrhizal Symbiosis. London: Academic Press
Hawes, M. C., Bengough, G., Cassab, G., and Ponce, G.. 2002. Root caps and rhizosphere. J. Plant Growth Regul. 21: 352–367
Hayward, H. E. 1938. The Structure of Economic Plants. New York: Macmillan
Head, G. C. 1973. Shedding of roots. In Kozlowski, T. T., ed., Shedding of Plant Parts. New York: Academic Press, pp. 237–293
Heimsch, C. 1960. A new aspect of cortical development in roots. Am. J. Bot. 47: 195–201
Iversen, T.-H. and Larsen, P.. 1973. Movement of amyloplasts in the statocytes of geotropically stimulated roots: the pre-inversion effect. Physiol. Plant. 28: 172–181
Ma, F. S. and Peterson, C. A.. 2003. Current insights into the development, structure, and chemistry of the endodermis and exodermis of roots. Can. J. Bot. 81: 405–421
McCully, M. E. 1975. The development of lateral roots. In Torrey, J. G. and Clarkson, D. T., eds., The Development and Function of Roots. London: Academic Press, pp. 105–124
Peterson, R. L. 1967. Differentiation and maturation of primary tissues in white mustard root tips. Can. J. Bot. 45: 319–331
Peterson, R. L. and Massicotte, H. B.. 2004. Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can. J. Bot. 82: 1074–1088
Postgate, J. 1987. Nitrogen Fixation, 2nd edn. London: Arnold
Romberger, J. A., Hejnowicz, Z., and Hill, J. F.. 1993. Plant Structure: Function and Development. Berlin: Springer-Verlag
Rost, T. L., Baum, S. F., and Nichol, S.. 1996. Root apical organization in Arabidopsis thaliana ecotype ‘WS’ and a comment on root cap structure. Plant Soil 187: 91–95
Row, H. C. and Reeder, J. R.. 1957. Root hair development as evidence of relationships among genera of Gramineae. Am. J. Bot. 44: 596–601
Samaj, J., Baluska, F., and Menzel, D.. 2004. New signaling molecules regulating root hair tip growth. Trends Plant Sci. 9: 217–220
Shen-Miller, J. and Hinchman, R. R.. 1974. Gravity sensing in plants: a critique of the statolith theory. BioScience 24: 643–651
Timonen, S. and Peterson, R. L.. 2002. Cytoskeleton in mycorrhizal symbiosis. Plant Soil 244: 199–210
Tjepkema, J. D. 1983. Hemoglobins in the nitrogen-fixing root nodules of actinorhizal plants. Can. J. Bot. 61: 2924–2929
Tjepkema, J. D. and Yocum, C. S.. 1974. Measurement of oxygen partial pressure within soybean nodules by oxygen microelectodes. Planta 119: 351–360
Tomlinson, P. B. 1961. Anatomy of the Monocotyledons, vol. 2, Palmae. Oxford, UK: Clarendon Press
Torrey, J. G. 1978. Nitrogen fixation by actinomycete-nodulated angiosperms. BioScience 28: 586–592
Torrey, J. G. and Clarkson, D. T. (eds.) 1975. The Development and Function of Roots. London: Academic Press
Wenzel, C. L. and Rost, T. L.. 2001. Cell division patterns of the protoderm and root cap in the “closed” root apical meristem of Arabidopsis thaliana. Protoplasma 218: 203–213
Wilcox, H. 1962. Growth studies of the root of incense cedar, Libodedrus decurrens. I. The origin and development of primary tissues. Am. J. Bot. 49: 221–236
Wilcox, H. 1968. Morphological studies of the roots of red pine, Pinus resinosa. II. Fungal colonization of roots and the development of mycorrhizae. Am. J. Bot. 55: 688–700
Wilson, B. F. 1975. Distribution of secondary thickening in tree root systems. In Torrey, J. G. and Clarkson, D. T., eds., The Development and Function of Roots. London: Academic Press, pp. 197–219
Ziegler, H. 1964. Storage, mobilization and distribution of reserve material in trees. In Zimmermann, M. H., ed., The Formation of Wood in Forest Trees. New York: Academic Press, pp. 303–320