Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-19T10:10:29.469Z Has data issue: false hasContentIssue false

3 - Gravitational wave detectors

from Part 1 - An introduction to gravitational wave astronomy and detectors

Published online by Cambridge University Press:  05 March 2012

D. G. Blair
Affiliation:
University of Western Australia
L. Ju
Affiliation:
University of Western Australia
C. Zhao
Affiliation:
University of Western Australia
H. Miao
Affiliation:
California Institute of Technology
E. J. Howell
Affiliation:
University of Western Australia
P. Barriga
Affiliation:
University of Western Australia
D. G. Blair
Affiliation:
University of Western Australia, Perth
E. J. Howell
Affiliation:
University of Western Australia, Perth
L. Ju
Affiliation:
University of Western Australia, Perth
C. Zhao
Affiliation:
University of Western Australia, Perth
Get access

Summary

This chapter first introduces gravitational wave detection from a very general point of view, before looking at the particular methods of detection across the spectrum from nanohertz to kilohertz. It finishes by focusing specifically on terrestrial laser interferometers.

Introduction

The discovery of radio waves by Heinrich Hertz in 1886 unleashed the communications revolution which has transformed our lives. Optimisation of radio receivers required understanding and integration of two concepts. The first was the concept of the antenna, which taps energy from a wave freely propagating in space and converts it into a signal which can be amplified and detected. The second was the receiver, which processes this energy by detection (converting it to a slowly time-varying voltage), amplification (increasing its amplitude without changing its frequency) or modulation (changing its frequency).

Designing gravitational wave receivers is analogous to designing radio receivers, except that electric charges moving freely in conductors are replaced by test masses floating freely in space. This concept was illustrated in Figure 1.2 in Chapter 1, showing how a ring of test particles is deformed by a passing gravitational wave. The first gravitational wave receivers were constructed by Joseph Weber in the 1960s. They took the form of large test masses in which gravitational waves could induce quadrupole vibrations. Weber went on to develop the Weber bar, in which one searched for excitations in the fundamental longitudinal vibrational mode of a cylinder. In this case, the receiver can be idealised as a pair of point masses joined by a mechanical spring.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Gravitational wave detectors
  • Edited by D. G. Blair, University of Western Australia, Perth, E. J. Howell, University of Western Australia, Perth, L. Ju, University of Western Australia, Perth, C. Zhao, University of Western Australia, Perth
  • Book: Advanced Gravitational Wave Detectors
  • Online publication: 05 March 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139046916.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Gravitational wave detectors
  • Edited by D. G. Blair, University of Western Australia, Perth, E. J. Howell, University of Western Australia, Perth, L. Ju, University of Western Australia, Perth, C. Zhao, University of Western Australia, Perth
  • Book: Advanced Gravitational Wave Detectors
  • Online publication: 05 March 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139046916.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Gravitational wave detectors
  • Edited by D. G. Blair, University of Western Australia, Perth, E. J. Howell, University of Western Australia, Perth, L. Ju, University of Western Australia, Perth, C. Zhao, University of Western Australia, Perth
  • Book: Advanced Gravitational Wave Detectors
  • Online publication: 05 March 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139046916.006
Available formats
×