Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 5
  • Print publication year: 2014
  • Online publication date: February 2014

12 - Imaging of the cerebrospinal fluid circulation

from Section 3 - Diagnosis

Summary

Several theories have been proposed to explain the pathophysiology of gait dysfunction in normal pressure hydrocephalus (NPH). The variety of potential targets includes midbrain compression or atrophy, cortical dysfunction, cortical-subcortical or intracortical circuit abnormalities, postural disturbance, dopamine signaling abnormalities, and regional cerebral blood flow (rCBF) depression. This chapter presents objective measures of gait dysfunction that have been used clinically, and highlights some of the major theories postulated to explain gait dysfunction in NPH. Gait dysfunction in NPH has characteristic features that include a slow pace, short stride length, wide stance, and low foot-floor elevation. Objective measures of gait can be used to quantify the pattern of walking and step-taking, focusing on walking speed, stride length, cadence, equilibrium, and posture. Recognition of cortical involvement in locomotion stems from multiple research efforts evaluating gait in healthy individuals and those with cognitive disturbances.

References

1. FeinbergDA, MarkAS. Human brain motion and cerebrospinal fluid circulation demonstrated with MR velocity imaging. Radiology 1987;163(3):7939.
2. NaylerGL, FirminDN, LongmoreDB. Blood flow imaging by cine magnetic resonance. J Comput Assist Tomogr 1986;10(5):71522.
3. PelcNJ, HerfkensRJ, ShimakawaA, EnzmannDR. Phase contrast cine magnetic resonance imaging. Magn Reson Q 1991;7(4):22954.
4. SechtemU, PflugfelderP, HigginsCB. Quantification of cardiac function by conventional and cine magnetic resonance imaging. Cardiovasc Intervent Radiol 1987;10(6):36573.
5. PelcLR, PelcNJ, RayhillSC, et al. Arterial and venous blood flow: noninvasive quantitation with MR imaging. Radiology 1992;185(3):80912.
6. BuonocoreMH, BogrenH. Factors influencing the accuracy and precision of velocity-encoded phase imaging. Magn Reson Med 1992;26(1):14154.
7. GreilG, GevaT, MaierSE, PowellAJ. Effect of acquisition parameters on the accuracy of velocity encoded cine magnetic resonance imaging blood flow measurements. J Magn Reson Imaging 2002;15(1):4754.
8. McCauleyTR, PenaCS, HollandCK, PriceTB, GoreJC. Validation of volume flow measurements with cine phase-contrast MR imaging for peripheral arterial waveforms. J Magn Reson Imaging 1995;5(6):6638.
9. EnzmannDR, PelcNJ. Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology 1991;178(2):46774.
10. WahlinA, AmbarkiK, HaukssonJ, et al. Phase contrast MRI quantification of pulsatile volumes of brain arteries, veins, and cerebrospinal fluids compartments: repeatability and physiological interactions. J Magn Reson Imaging 2012;35(5):105562.
11. PelcNJ, SommerFG, LiKC, et al. Quantitative magnetic resonance flow imaging. Magn Reson Q 1994;10(3):12547.
12. WentlandAL, WiebenO, KorosecFR, HaughtonVM. Accuracy and reproducibility of phase-contrast MR imaging measurements for CSF flow. AJNRAm J Neuroradiol 31(7):13316.
13. BurkartDJ, FelmleeJP, JohnsonCD, et al. Cine phase-contrast MR flow measurements: improved precision using an automated method of vessel detection. J Comput Assist Tomogr 1994;18(3):46975.
14. BalédentO, Henry-FeugeasMC, Idy-PerettiI. Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Invest Radiol 2001;36(7):36877.
15. AlperinN, LeeSH. PUBS: pulsatility-based segmentation of lumens conducting non-steady flow. Magn Reson Med 2003;49(5):93444.
16. EnzmannDR, PelcNJ. Cerebrospinal fluid flow measured by phase-contrast cine MR. AJNR Am J Neuroradiol 1993;14(6):13017; discussion 9–10.
17. BradleyWG, Jr., ScalzoD, QueraltJ, et al. Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 1996;198(2):5239.
18. CapelC, Gondry-JouetC, KrejpowiczB, et al., eds. Intracranial compliance study by phase contrast magnetic resonance imaging in newborns and children. International Society for Magnetic Resonance in Medicine; 2012; Melbourne, Australia.
19. BatemanGA.Vascular compliance in normal pressure hydrocephalus. AJNR Am J Neuroradiol 2000;21(9):157485.
20. Stoquart-ElSankariS, BalédentO, Gondry-JouetC, et al. Aging effects on cerebral blood and cerebrospinal fluid flows. J Cereb Blood Flow Metab 2007;27(9):156372.
21. BrugieresP, Idy-PerettiI, IffeneckerC, et al. CSF flow measurement in syringomyelia. AJNR Am J Neuroradiol 2000;21(10):178592.
22. SaliouG, ParadotG, GondryC, et al. A phase-contrast MRI study of acute and chronic hydrodynamic alterations after hydrocephalus induced by subarachnoid hemorrhage. J Neuroimaging 2012;22(4):343–50.
23. BalédentO, FinL, KhuoyL, et al. Brain hydrodynamics study by phase-contrast magnetic resonance imaging and transcranial color doppler. J Magn Reson Imaging 2006;24(5):9951004.
24. MarmarouA, ShulmanK, RosendeRM. A nonlinear analysis of the cerebrospinal fluid system and intracranial pressure dynamics. J Neurosurg 1978;48(3):33244.
25. AlperinNJ, LeeSH, LothF, RaksinPB, LichtorT. MR-Intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology 2000;217(3):87785.
26. BouzerarR, CzosnykaM, CzosnykaZ, BalédentO. Physical phantom of craniospinal hydrodynamics. Acta Neurochir Suppl 2012;113:659.
27. GideonP, StahlbergF, ThomsenC, et al. Cerebrospinal fluid flow and production in patients with normal pressure hydrocephalus studied by MRI. Neuroradiology 1994;36(3):21015.
28. YamadaS, MiyazakiM, KanazawaH, et al. Visualization of cerebrospinal fluid movement with spin labeling at MR imaging: preliminary results in normal and pathophysiologic conditions. Radiology 2008;249(2):64452.
29. BulatM, KlaricaM. Recent insights into a new hydrodynamics of the cerebrospinal fluid. Brain Res Rev 2011;65(2):99112.
30. JohansonCE, DuncanJA, 3rd, KlingePM, et al. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 2008;5:10.
31. HingwalaD, ChatterjeeS, KesavadasC, ThomasB, KapilamoorthyTR. Applications of 3D CISS sequence for problem solving in neuroimaging. Indian J Radiol Imaging 2011;21(2):907.
32. Stoquart-El SankariS, LehmannP, Gondry-JouetC, et al. Phase-contrast MR imaging support for the diagnosis of aqueductal stenosis. AJNR Am J Neuroradiol 2009;30(1):20914.
33. OiS, ShimodaM, ShibataM, et al. Pathophysiology of long-standing overt ventriculomegaly in adults. J Neurosurg 2000;92(6):93340.
34. AdamsRD, FisherCM, HakimS, OjemannRG, SweetWH. Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure. A treatable syndrome. N Engl J Med 1965;273:11726.
35. HakimS, AdamsRD. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J Neurol Sci 1965;2(4):30727.
36. CzosnykaM, CzosnykaZ, KeongN, et al. Pulse pressure waveform in hydrocephalus: what it is and what it isn’t. Neurosurg Focus 2007;22(4):E2.
37. BretP, GuyotatJ, ChazalJ. Is normal pressure hydrocephalus a valid concept in 2002? A reappraisal in five questions and proposal for a new designation of the syndrome as “chronic hydrocephalus”. J Neurol Neurosurg Psychiatry 2002;73(1):912.
38. MarmarouA, BergsneiderM, RelkinN, KlingeP, BlackPM. Development of guidelines for idiopathic normal-pressure hydrocephalus: introduction. Neurosurgery 2005;57(3 Suppl):S13; discussion ii–v.
39. GreitzD, HannerzJ, RahnT, BolanderH, EricssonA. MR imaging of cerebrospinal fluid dynamics in health and disease. On the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension. Acta Radiol 1994;35(3):20411.
40. LuetmerPH, HustonJ, FriedmanJA, et al. Measurement of cerebrospinal fluid flow at the cerebral aqueduct by use of phase-contrast magnetic resonance imaging: technique validation and utility in diagnosing idiopathic normal pressure hydrocephalus. Neurosurgery 2002;50(3):53443; discussion 43–4.
41. JackCR, Jr., MokriB, LawsER, Jr., et al. MR findings in normal-pressure hydrocephalus: significance and comparison with other forms of dementia. J Comput Assist Tomogr 1987;11(6):92331.
42. KraussJK, RegelJP, VachW, et al. Flow void of cerebrospinal fluid in idiopathic normal pressure hydrocephalus of the elderly: can it predict outcome after shunting?Neurosurgery 1997;40(1):6773; discussion 73–4.
43. DixonGR, FriedmanJA, LuetmerPH, et al. Use of cerebrospinal fluid flow rates measured by phase-contrast MR to predict outcome of ventriculoperitoneal shunting for idiopathic normal-pressure hydrocephalus. Mayo Clin Proc 2002;77(6):50914.
44. El SankariS, FichtenA, Gondry-JouetC, et al. Correlation between tap test and CSF aqueductal stroke volume in idiopathic normal pressure hydrocephalus. Acta Neurochir Suppl 2012;113:436.
45. WagshulME, ChenJJ, EgnorMR, McCormackEJ, RochePE. Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J Neurosurg 2006;104(5):81019.
46. BalédentO, Gondry-JouetC, MeyerME, et al. Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus. Invest Radiol 2004;39(1):4555.
47. KitagakiH, MoriE, IshiiK, et al. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol 1998;19(7):127784.
48. Pierre-KahnA, HirschJF, RenierD, MetzgerJ, MaroteauxP.Hydrocephalus and achondroplasia. A study of 25 observations. Childs Brain 1980;7(4):20519.
49. Sainte-RoseC, LaCombeJ, Pierre-KahnA, RenierD, HirschJF. Intracranial venous sinus hypertension: cause or consequence of hydrocephalus in infants?J Neurosurg 1984;60(4):72736.
50. BhadeliaRA, BogdanAR, WolpertSM. Cerebrospinal fluid flow waveforms: effect of altered cranial venous outflow. A phase-contrast MR flow imaging study. Neuroradiology 1998;40(5):28392.
51. Stoquart-ElsankariS, LehmannP, VilletteA, et al. A phase-contrast MRI study of physiologic cerebral venous flow. J Cereb Blood Flow Metab 2009;29(6):120815.
52. BatemanGA. The pathophysiology of idiopathic normal pressure hydrocephalus: cerebral ischemia or altered venous hemodynamics?AJNR Am J Neuroradiol 2008;29(1):198203.
53. MartinBA, ReymondP, NovyJ, BalédentO, StergiopulosN. A coupled hydrodynamic model of the cardiovascular and cerebrospinal fluid system. Am J Physiol Heart Circ Physiol 302(7):H1492509.
54. MillerK, ed. Biomechanics of the Brain. New York, Dordrecht, Heidelberg, London: Springer Science+Business Media; 2011.
55. MallucciC, SgourosS, eds. Cerebrospinal Fluid Disorders. New York, London: Informa Healthcare; 2010.
56. BunckAC, KroegerJR, JuettnerA, et al. Magnetic resonance 4D flow analysis of cerebrospinal fluid dynamics in Chiari I malformation with and without syringomyelia. Eur Radiol 2012;22(9):1860–70.
57. StadlbauerA, SalomonowitzE, BrenneisC, et al. Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results. Eur Radiol 2012;22(1):23242.