Skip to main content Accessibility help
  • Print publication year: 2017
  • Online publication date: December 2017

10 - Importance of Trait-Related Flexibility for Food-Web Dynamics and the Maintenance of Biodiversity

from Part II - Food Webs: From Traits to Ecosystem Functioning
Abrams, P. A. and Matsuda, H. (1997). Prey adaptation as a cause of predator–prey cycles. Evolution, 51, 17421750.
Bauer, B., Vos, M., Klauschies, T., and Gaedke, U. (2014). Diversity, functional similarity and top–down control drive synchronization and the reliability of ecosystem function. American Naturalist, 183, 394409.
Becks, L., Ellner, S. P., Jones, L. E., and Hairston, N. G. (2010). Reduction of adaptive genetic diversity radically alters eco-evolutionary community dynamics. Ecology Letters, 13, 989997.
Becks, L., Ellner, S. P., Jones, L. E., and Hairston, N. G. Jr. (2012). The functional genomics of an eco-evolutionary feedback loop, linking gene expression, trait evolution, and community dynamics. Ecology Letters, 15, 492501.
Binzer, A., Guill, C., Brose, U., and Rall, B. C. (2012). The dynamics of food chains under climate change and nutrient enrichment. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 29352944.
Boit, A., Martinez, N. D., Williams, R. J., and Gaedke, U. (2012). Mechanistic theory and modeling of complex food web dynamics in Lake Constance. Ecology Letters, 15, 594602.
Bolnick, D. I., Amarasekare, P., Araujo, M. S., et al. (2011). Why intraspecific trait variation matters in community ecology. Trends in Ecology and Evolution, 26, 183192.
Brose, U., Jonsson, T., Berlow, E. L., et al. (2006a). Consumer-resource body-size relationships in natural food webs. Ecology, 87, 24112417.
Brose, U., Williams, R. J., and Martinez, N. D. (2006b). Allometric scaling enhances stability in complex food webs. Ecology Letters, 9, 12281236.
Conti, L., Schmidt-Kloibe, A., Grenouillet, G., and Graf, W. (2014). A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia, 721(1), 297315.
Cortez, M. H. (2011). Comparing the qualitatively different effects rapidly evolving and rapidly induced defences have on predator–prey interactions. Ecology Letters, 14, 202209.
Cortez, M. H. and Ellner, S. P. (2010). Understanding rapid evolution in predator–prey interactions using the theory of fast–slow dynamical systems. American Naturalist, 176, 109127.
De Roos, A. M. and Persson, L. (2001). Physiologically structured models: from versatile technique to ecological theory. Oikos, 94(1), 5171.
De Roos, A. M., Persson, L., and McCauley, E. (2003). The influence of size-dependent life-history traits on the structure and dynamics of populations and communities. Ecology Letters, 6, 473487.
De Roos, A. M., Schellekens, T., van Kooten, T., et al. (2007). Food-dependent growth leads to overcompensation in stage-specific biomass when mortality increases: the influence of maturation versus reproduction regulation. American Naturalist, 170, 5976.
De Roos, A. M., Schellekens, T., van Kooten, T., et al. (2008). Simplifying a physiologically structured population model to a stage-structured biomass model. Theoretical Population Biology, 73, 4762.
De Roos, A. M. and Persson, P. (2013). Population and Community Ecology of Ontogenetic Development. Princeton, NJ: Princeton University Press.
Dieckmann, U. and Law, R. (1996). The dynamical theory of coevolution: a derivation from stochastic ecological processes. Journal of Mathematical Biology, 34, 579612.
Digel, C., Curtsdotter, A., Riede, J., Klarner, B., and Brose, U. (2014). Unravelling the complex structure of forest soil food webs: higher omnivore and more trophic levels. Oikos, 123, 11571172.
dos Santos, F. A. S., Johst, K., and Grimm, V. (2011). Neutral communities may lead to decreasing diversity–disturbance relationships: insights from a generic simulation model. Ecology Letters, 14, 653660.
Duffy, J. E., Cardinale, B. J., France, K. E., et al. (2007). The functional role of biodiversity in ecosystems: incorporating trophic complexity. Ecology Letters, 10, 522538.
Edwards, K. F., Klausmeier, C. A., and Litchman, E. (2013a). A three-way tradeoff maintains functional diversity under variable resource supply. American Naturalist, 182, 786800.
Edwards, K. F., Klausmeier, C. A., and Litchman, E. (2013b). Functional traits predict variation in phytoplankton community structure across lakes of the United States. Ecology, 94, 16261635.
Feio, M. J. and Doledec, S. (2012). Integration of invertebrate traits into predictive models for indirect assessment of stream functional integrity: a case study in Portugal. Ecological Indicators, 15, 236247.
Gallagher, R. V., Hughes, L., and Leishman, M. R. (2013). Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography, 36(5), 531540.
Gray, D. K. and Arnott, S. E. (2011). Does dispersal limitation impact the recovery of zooplankton communities damaged by a regional stressor? Ecological Applications, 21, 12411256.
Grime, J. P. (1977). Evidence for existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist, 111, 11691194.
Grimm, V., Revilla, E., Berger, U., et al. (2005). Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science, 310, 987991.
Grover, J. P. (1991). Resource competition in a variable environment: phytoplankton growing according to the Variable–Internal–Stores model. American Naturalist, 138, 811835.
Guill, C. (2009). Alternative dynamical states in stage-structured consumer populations. Theoretical Population Biology, 76, 168178.
Heckmann, L., Drossel, B., Brose, U., and Guill, C. (2012). Interactive effects of body-size structure and adaptive foraging on food-web stability. Ecology Letters, 15, 243250.
Hillebrand, H. and Matthiessen, B. (2009). Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters, 12, 14051419.
Hooper, D. U., Chapin, F. S., Ewel, J. J., et al. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs, 75, 335.
Janse, J. H., De Senerpont Domis, L. N., Scheffer, M., et al. (2008). Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PCLake. Limnologica – Ecology and Management of Inland Waters, 38(3), 203219.
Janse, J. H., Scheffer, M., Lijklema, L., et al. (2010). Estimating the critical phosphorus loading of shallow lakes with the ecosystem model PCLake: sensitivity, calibration and uncertainty. Ecological Modelling, 221(4), 654665. doi:10.1016/j.ecolmodel.2009.07.023 ER.
Jones, L. E. and Ellner, S. P. (2007). Effects of rapid prey evolution on predator–prey cycles. Journal of Mathematical Biology, 55, 541573.
Jones, L. E., Becks, L., Ellner, S. P., et al. (2009). Rapid contemporary evolution and clonal food web dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 15791591.
Jørgensen, S. E. (1994). Models as instruments for combination of ecological theory and environmental practice. Ecological Modelling, 75, 520.
Kalinkat, G., Schneider, F. D., Digel, C., et al. (2013). Body masses, functional responses and predator–prey stability. Ecology Letters, 16, 11261134.
Kooijman, S. A. L. M. (2010). Dynamic Energy Budget Theory for Metabolic Organisation. Cambridge, UK: Cambridge University Press.
Litchman, E., Klausmeier, C. A., Schofield, O. M., and Falkowski, P. G. (2007). The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters, 10, 11701181.
May, F., Grimm, V., and Jeltsch, F. (2009). Reversed effects of grazing on plant diversity: the role of below-ground competition and size symmetry. Oikos, 118, 18301843.
McGill, B. J., Enquist, B. J., Weiher, E., and Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21, 178185.
Merico, A., Brandt, G., Smith, S. L., and Oliver, M. (2014). Sustaining diversity in trait-based models of phytoplankton communities. Frontiers in Ecology and Evolution, 2, 59, 18.
Metz, J. A. J. and Diekmann, O. (1986). The Dynamics of Physiologically Structured Populations. Springer-Verlag.
Mooij, W. M., Trolle, D., Jeppesen, E., et al. (2010). Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquatic Ecology, 44(3), 633667. doi:10.1007/s10452-010–9339-3 ER.
Mougi, A. (2012). Unusual predator–prey dynamics under reciprocal phenotypic plasticity. Journal of Theoretical Biology, 305, 96102.
Naeem, S. and Wright, J. P. (2003). Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecology Letters, 6, 567579.
Nakazawa, T. (2011). Ontogenetic niche shift, food-web coupling, and alternative stable states. Theoretical Ecology, 4, 479494.
Norberg, J. (2004). Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnology and Oceanography, 49, 12691277.
Petchey, O. L., Beckerman, A. P., Riede, J. O., and Warren, P. H. (2008). Size, foraging, and food-web structure. Proceeding of the National Academy of Sciences, 105, 41914196.
Peters, R. H. (1993). The Ecological Implications of Body Size. Cambridge University Press.
Ponce-Reyes, R., Nicholson, E., Baxter, P. W. J., Fuller, R. A., and Possingham, H. (2013). Extinction risk in cloud forest fragments under climate change and habitat loss. Biodiversity Research, 19, 518529.
Post, D. M. and Palkovacs, E. P. (2009). Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 16291640.
Savage, V. M. and Norberg, J. (2007). A general multi-trait-based framework for studying the effects of biodiversity on ecosystem functioning. Journal of Theoretical Biology, 247, 213229.
Smith, S. L. and Yamanaka, Y. (2007). Optimization-based model of multinutrient uptake kinetics. Limnology and Oceanography, 52, 15451558.
Solan, M., Cardinale, B. J., Downing, A. L., et al. (2004). Extinction and ecosystem function in the marine benthos. Science, 306, 11771180.
Sollie, S., Janse, J. H., Mooij, W. M., Coops, H., and Verhoeven, J. T. A. (2008). The contribution of marsh zones to water quality in Dutch shallow lakes: a modeling study. Environmental Management, 42(6), 10021016. doi:10.1007/s00267-008–9121-7.
Sommer, U., Padisak, J., Reynolds, C. S., and Juhasz-Hagy, P. (1993). Hutchinson’s heritage: the diversity–disturbance relationship in phytoplankton. Hydrobiologia, 249, 17.
Sommer, U., Sommer, F., Santer, B., et al. (2003). Daphnia versus copepod impact on summer phytoplankton: functional compensation at both trophic levels. Oecologia, 135, 639647.
Sommer, U., Adrian, R., Domis, L. D. S., et al. (2012). Beyond the Plankton Ecology Group (PEG) model: mechanisms driving plankton succession. Annual Review of Ecology, Evolution and Systematics, 43, 429448. doi:10.1146/annurev-ecolsys-110411–160251 ER.
Sterner, R. W. and Elser, J. J. (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton, NJ: Princeton University Press.
Tirok, K. and Gaedke, U. (2007). Regulation of planktonic ciliate dynamics and functional composition during spring in Lake Constance. Aquatic Microbial Ecology, 49, 87100.
Tirok, K. and Gaedke, U. (2010). Internally driven alternation of functional traits in a multi-species predator–prey system. Ecology, 91, 17481762.
Tirok, K., Bauer, B., Wirtz, K., and Gaedke, U. (2011). Predator–prey dynamics driven by feedback between functionally diverse trophic levels. PLoS ONE, 6 (11), e27357. doi:10.1371/journal.pone.0027357.
Tomimatsu, H., Sasaki, T., Kurokawa, H., et al. (2013). Sustaining ecosystem functions in a changing world: a call for an integrated approach. Journal of Applied Ecology, 50(5), 11241130.
Urban, M. C., Leibold, M. A., Amarasekare, P., et al. (2008). The evolutionary ecology of metacommunities. Trends in Ecology and Evolution, 23(6) 311317.
van der Stap, I., Vos, M., and Mooij, W. M. (2007). Induced defenses in herbivores and plants differentially modulate a trophic cascade. Ecology, 88, 24742481.
Van Gerven, L. P. A., de Klein, J. J. M., Gerla, D. J., et al. (2015). Competition for light and nutrients in layered communities of aquatic plants. American Naturalist, 186(1), 7283.
Verschoor, A. M., Vos, M., and van der Stap, I. (2004). Inducible defences prevent strong population fluctuations in bi- and tritrophic food chains. Ecology Letters, 7, 11431148.
Violle, C., Navas, M.-L., Vile, D., et al. (2007). Let the concept of trait be functional! Oikos, 116, 882892.
Violle, C., Enquist, B. J., McGill, B. J., et al. (2012). The return of the variance: intraspecific variability in community ecology. Trends in Ecology and Evolution, 27, 244252.
Wagner, A. and Benndorf, J. (2007). Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food-web approach. Oecologia, 151, 351364.
Werner, E. E. and Gilliam, J. F. (1984). The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics, 15, 393425.
Williams, R. J. and Martinez, N. D. (2000). Simple rules yield complex food webs. Nature, 404, 180183.
Wirtz, K. W. and Eckhardt, B. (1996). Effective variables in ecosystem models with an application to phytoplankton succession. Ecological Modelling, 92, 3353.
Woodward, G. and Hildrew, A. G. (2002). Body-size determinants of niche overlap and intraguild predation within a complex food web. Journal of Animal Ecology, 71, 10631074.
Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F., and Hairston, N. G. Jr. (2003). Rapid evolution drives ecological dynamics in a predator–prey system. Nature, 424, 303306.
Yoshida, T., Ellner, S. P., Jones, L. E., et al. (2007). Cryptic population dynamics: rapid evolution masks trophic interactions. PLoS Biology, 5, 18681879.
Zhang, L., Thygesen, U. H., Knudsen, K., and Andersen, K. H. (2013). Trait diversity promotes stability of community dynamics. Theoretical Ecology, 6, 5769.