Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-07T13:43:36.669Z Has data issue: false hasContentIssue false

1 - Accretion disks

Published online by Cambridge University Press:  05 January 2014

Henk Spruit
Affiliation:
Max-Planck Institut f¨ur Astrophysik, Germany
Ignacio González Martínez-País
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Tariq Shahbaz
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Jorge Casares Velázquez
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

Abstract

In this lecture the basic theory of accretion disks is reviewed, with emphasis on aspects relevant for X-ray binaries and cataclysmic variables. The text gives a general introduction as well as a selective discussion of a number of more recent topics.

1.1 Introduction

Accretion disks are inferred to exist as objects of very different scales: millions of kilometers in low mass X-ray binaries (LMXB) and cataclysmic variables (CV), solar-radius-to-AU-scale disks in protostellar objects, and AU-to-parsec-scale disks in active galactic nuclei (AGN).

An interesting observational connection exists between accretion disks and jets (such as the spectacular jets from AGN and protostars) and outflows (the “CO-outflows” from protostars and the “broad-line regions” in AGN). Lacking direct (i.e., spatially resolved) observations of disks, theory has tried to provide models, with varying degrees of success. Uncertainty still exists with respect to some basic questions. In this situation, progress made by observations or modeling of a particular class of objects has direct impact on the understanding of other objects, including the enigmatic connection with jets.

In this lecture I concentrate on the more basic aspects of accretion disks, but an attempt is made to mention topics of current interest as well. Some emphasis is on those aspects of accretion disk theory that connect to the observations of LMXB and CVs. For other reviews on the basics of accretion disks, see Pringle (1981) and Papaloizou and Lin (1995). For a more extensive introduction, see the textbook by Frank et al. (2002). For a comprehensive text on CVs, see Warner (1995).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowicz, M. A., Czerny, B., Lasota, J. P., and Szuszkiewicz, E. 1988. Slim accretion disks. ApJ, 332(Sept.), 646–658.Google Scholar
Abramowicz, M. A., Kato, S., and Matsumoto, R. 1989. Numerical models of slim accretion disks. PASJ, 41, 1215–1218.Google Scholar
Agaronian, F. A., and Sunyaev, R. A. 1984. Gamma-ray line emission, nuclear destruction and neutron production in hot astrophysical plasmas – the deuterium boiler as a gamma-ray source. MNRAS, 210(Sept.), 257–277.Google Scholar
Armitage, P. J. 1998. Turbulence and angular momentum transport in global accretion disk simulation. ApJ, 501 (July), L189+.Google Scholar
Armitage, P. J., and Livio, M. 1998. Hydrodynamics of the stream-disk impact in interacting binaries. ApJ, 493(Jan.), 898+.Google Scholar
Balbus, S. A. 2003. Enhanced angular momentum transport in accretion disks. ARA&A, 41, 555––597.Google Scholar
Balbus, S. A., and Hawley, J. F. 1991. A powerful local shear instability in weakly magnetized disks. I – Linear analysis. II – Nonlinear evolution. ApJ, 376(July), 214–233.Google Scholar
Begelman, M. C., McKee, C. F., and Shields, G. A. 1983. Compton heated winds and coronae above accretion disks. I Dynamics. ApJ, 271 (Aug.), 70–88.Google Scholar
Bisnovatyi-Kogan, G. S. 1993. A self-consistent solution for an accretion disc structure around a rapidly rotating non-magnetized star. A&A, 274(July), 796+.Google Scholar
Bisnovatyi-Kogan, G. S., and Blinnikov, S. I. 1977. Disk accretion onto a black hole at subcritical luminosity. A&A, 59(July), 111–125.Google Scholar
Bisnovatyi-Kogan, G. S., and Lamzin, S. A. 1984. Stars with neutron cores – the possibility of the existence of objects with a low neutrino luminosity. Soviet Ast, 28(Apr.), 187+.Google Scholar
Bisnovatyi-Kogan, G. S., and Ruzmaikin, A. A. 1976. The accretion of matter by a collapsing star in the presence of a magnetic field. II – Selfconsistent stationary picture. Ap&SS, 42(July), 401–424.Google Scholar
Blaes, O. M., and Hawley, J. F. 1988. Nonaxisymmetric disk instabilities – a linear and nonlinear synthesis. ApJ, 326(Mar.), 277–291.Google Scholar
Blandford, R. D. 1976. Accretion disc electrodynamics – a model for double radio sources. MNRAS, 176(Sept.), 465–481.Google Scholar
Blandford, R. D., and Begelman, M. C. 1999. On the fate of gas accreting at a low rate on to a black hole. MNRAS, 303(Feb.), L1–L5.Google Scholar
Blandford, R. D., and Payne, D. G. 1982. Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS, 199(June), 883–903.Google Scholar
Bondi, H. 1952. On spherically symmetrical accretion. MNRAS, 112, 195+.
Bradshaw, P. 1969. A note on reverse transition. Journal of Fluid Mechanics, 35, 387–390.Google Scholar
Brandenburg, A., Nordlund, A., Stein, R. F., and Torkelsson, U. 1995. Dynamo-generated turbulence and large-scale magnetic fields in a Keplerian shear flow. ApJ, 446(June), 741+.Google Scholar
Cannizzo, J. K., Shafter, A. W., and Wheeler, J. C. 1988. On the outburst recurrence time for the accretion disk limit cycle mechanism in dwarf novae. ApJ, 333(Oct.), 227–235.Google Scholar
Cannon, R. C., Eggleton, P. P., Zytkow, A. N., and Podsiadlowski, P. 1992. The structure and evolution of Thorne-Zytkow objects. ApJ, 386(Feb.), 206–214.Google Scholar
Chandrasekhar, C. 1961. Hydrodynamic and Hydromagnetic Stability. International Series of Monographs on Physics, Oxford: Clarendon.
Chen, X., Abramowicz, M. A., Lasota, J.-P., Narayan, R., and Yi, I. 1995. Unified description of accretion flows around black holes. ApJ, 443(Apr.), L61–L64.Google Scholar
Chevalier, R. A. 1993. Neutron star accretion in a stellar envelope. ApJ, 411 (July), L33–L36.Google Scholar
Courant, R., and Friedrichs, K. O. 1948. Supersonic flow and shock waves. Pure and Applied Mathematics, New York: Interscience.
D'Angelo, C. R., Giannios, D., Dullemond, C., and Spruit, H. 2008. Soft X-ray components in the hard state of accreting black holes. A&A, 488(Sept.), 441–450.Google Scholar
D'Angelo, C. R., and Spruit, H. C. 2010. Episodic accretion on to strongly magnetic stars. MNRAS, 406(Aug.), 1208–1219.Google Scholar
Davis, S. W., Stone, J. M., and Pessah, M. E. 2010. Sustained magnetorotational turbulence in local simulations of stratified disks with zero net magnetic flux. ApJ, 713(Apr.), 52–65.Google Scholar
De Villiers, J.-P., and Hawley, J. F. 2003. Global general relativistic magnetohydrodynamic simulations of accretion tori. ApJ, 592(Aug.), 1060–1077.Google Scholar
Deufel, B., and Spruit, H. C. 2000. Comptonization in an accretion disk illuminated by protons. A&A, 362(Oct.), 1–8.Google Scholar
Deufel, B., Dullemond, C. P., and Spruit, H. C. 2001. X-ray spectra from protons illuminating a neutron star. A&A, 377(Oct.), 955–963.Google Scholar
Deufel, B., Dullemond, C. P., and Spruit, H. C. 2002. X-ray spectra from accretion disks illuminated by protons. A&A, 387(June), 907–917.Google Scholar
Di Matteo, T., Celotti, A., and Fabian, A. C. 1999. Magnetic flares in accretion disc coronae and the spectral states of black hole candidates: the case of GX339-4. MNRAS, 304(Apr.), 809–820.Google Scholar
Dubrulle, B. 1992. A turbulent closure model for thin accretion disks. A&A, 266(Dec.), 592–604.Google Scholar
Dullemond, C. P., Dominik, C., and Natta, A. 2001. Passive irradiated circumstellar disks with an inner hole. ApJ, 560(Oct.), 957–969.Google Scholar
Dullemond, C. P., and Spruit, H. C. 2005. Evaporation of ion-irradiated disks. A&A, 434(May), 415–422.Google Scholar
Emmering, R. T., Blandford, R. D., and Shlosman, I. 1992. Magnetic acceleration of broad emission-line clouds in active galactic nuclei. ApJ, 385(Feb.), 460–477.Google Scholar
Esin, A. A., Narayan, R., Cui, W., Grove, J. E., and Zhang, S.-N. 1998. Spectral transitions in Cygnus X-1 and other black hole X-ray binaries. ApJ, 505(Oct.), 854–868.Google Scholar
Fabian, A. C., Vaughan, S., Nandra, K., Iwasawa, K., Ballantyne, D. R., Lee, J. C., De Rosa, A., Turner, A., and Young, A. J. 2002. A long hard look at MCG-6-30-15 with XMM-Newton. MNRAS, 335(Sept.), L1–L5.Google Scholar
Frank, J., King, A., and Raine, D. J. 2002. Accretion Power in Astrophysics: Third Edition. Cambridge, UK: Cambridge University Press.
Fromang, S., Papaloizou, J., Lesur, G., and Heinemann, T. 2007. MHD simulations of the magnetorotational instability in a shearing box with zero net flux. II. The effect of transport coefficients. A&A, 476(Dec.), 1123–1132.Google Scholar
Galeev, A. A., Rosner, R., and Vaiana, G. S. 1979. Structured coronae of accretion disks. ApJ, 229(Apr.), 318–326.Google Scholar
Gammie, C. F. 1997. Nonlinear outcome of gravitational instability in optically thick disks. Pages 704+ of: D. T., Wickramasinghe, G. V., Bicknell, and L., Ferrario (eds.), IAU Colloq. 163: Accretion Phenomena and Related Outflows. Astronomical Society of the Pacific Conference Series, vol. 121.
Gilfanov, M., Churazov, E., and Revnivtsev, M. 1999. Reflection and noise in Cygnus X-1. A&A, 352(Dec.), 182–188.Google Scholar
Gilham, S. 1981. Scale-free axisymmetric accretion with weak viscosity. MNRAS, 195(June), 755–763.Google Scholar
Haardt, F., Maraschi, L., and Ghisellini, G. 1994. A model for the X-ray and ultraviolet emission from Seyfert galaxies and galactic black holes. ApJ, 432(Sept.), L95–L99.Google Scholar
Hameury, J.-M., Menou, K., Dubus, G., Lasota, J.-P., and Hure, J.-M. 1998. Accretion disc outbursts: a new version of an old model. MNRAS, 298(Aug.), 1048–1060.Google Scholar
Hawley, J. F. 1991. Three-dimensional simulations of black hole tori. ApJ, 381 (Nov.), 496–507.Google Scholar
Hawley, J. F., Balbus, S. A., and Winters, W. F. 1999. Local hydrodynamic stability of accretion disks. ApJ, 518(June), 394–404.Google Scholar
Hawley, J. F., Gammie, C. F., and Balbus, S. A. 1995. Local three-dimensional magnetohydro-dynamic simulations of accretion disks. ApJ, 440(Feb.), 742+.Google Scholar
Hirose, S., Krolik, J. H., and Blaes, O. 2009. Radiation-dominated disks are thermally stable. ApJ, 691 (Jan.), 16–31.Google Scholar
Hirose, S., Krolik, J. H., De Villiers, J.-P., and Hawley, J. F. 2004. Magnetically driven accretion flows in the Kerr metric. II. Structure of the magnetic field. ApJ, 606(May), 1083–1097.Google Scholar
Honma, F., Kato, S., Matsumoto, R., and Abramowicz, M. A. 1991. Stability of slim, transonic accretion disk models. PASJ, 43(Apr.), 261–273.Google Scholar
Horne, K. 1985. Images of accretion discs. I – The eclipse mapping method. MNRAS, 213(Mar.), 129–141.Google Scholar
Horne, K. 1993. Eclipse Mapping of Accretion Disks: The First Decade. Pages 117–147 of: J. Craig, Wheeler (ed.), Accretion Disk In Compact Stellar System. Series: Advanced Series in Astrophysics and Cosmology, World Scientific, vol. 9.
Hōshi, R. 1979. Accretion model for outbursts of dwarf nova. Progress of Theoretical Physics, 61 (May), 1307–1319.Google Scholar
Hurley, K., Boggs, S. E., Smith, D. M., Duncan, R. C., Lin, R., Zoglauer, A., Krucker, S., Hurford, G., Hudson, H., Wigger, C., Hajdas, W., Thompson, C., Mitrofanov, I., Sanin, A., Boynton, W., Fellows, C., von Kienlin, A., Lichti, G., Rau, A., and Cline, T. 2005. An exceptionally bright flare from SGR 1806-20 and the origins of short-duration γ-ray bursts. Nature, 434(Apr.), 1098–1103.Google Scholar
Ichimaru, S. 1977. Bimodal behavior of accretion disks – theory and application to Cygnus X-1 transitions. ApJ, 214(June), 840–855.Google Scholar
Illarionov, A. F., and Sunyaev, R. A. 1975. Why the number of galactic X-ray stars is so small?A&A, 39(Feb.), 185+.Google Scholar
Inogamov, N. A., and Sunyaev, R. A. 1999. Spread of matter over a neutron-star surface during disk accretion. Astronomy Letters, 25(May), 269–293.Google Scholar
Ji, H., Burin, M., Schartman, E., and Goodman, J. 2006. Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks. Nature, 444(Nov.), 343–346.Google Scholar
Kato, M. 1997. Optically Thick Winds from Degenerate Dwarfs. I. Classical Novae ofPopulations I and II. ApJS, 113(Nov.), 121+.Google Scholar
King, A. R. 1995. Cataclysmic variable stars. Edited by B., Warner, Cambridge Astrophysics Series, vol. 28, pp. 419–456.
King, A. R. 2004. Ultraluminous X-ray sources and star formation. MNRAS, 347(Jan.), L18–L20.Google Scholar
King, A. R., and Begelman, M. C. 1999. Radiatively Driven Outflows and Avoidance of Common-Envelope Evolution in Close Binaries. ApJ, 519(July), L169–L171.Google Scholar
King, A. R., and Ritter, H. 1999. Cygnus X-2, super-Eddington mass transfer, and pulsar binaries. MNRAS, 309(Oct.), 253–260.Google Scholar
Kippenhahn, R., and Thomas, H.-C. 1981. Rotation and stellar evolution. Pages 237–254 of: D., Sugimoto, D. Q., Lamb, and D. N., Schramm (eds.), Fundamental Problems in the Theory of Stellar Evolution. IAU Symposium, vol. 93.
Klahr, H. H., and Bodenheimer, P. 2003. Turbulence in accretion disks: vorticity generation and angular momentum transport via the global baroclinic instability. ApJ, 582(Jan.), 869–892.Google Scholar
Kley, W. 1991. On the influence of the viscosity on the structure of the boundary layer of accretion disks. A&A, 247(July), 95–107.Google Scholar
Kley, W., Papaloizou, J. C. B., and Lin, D. N. C. 1993. On the angular momentum transport associated with convective eddies in accretion disks. ApJ, 416(Oct.), 679+.Google Scholar
Königl, A. 1989. Self-similar models of magnetized accretion disks. ApJ, 342(July), 208–223.Google Scholar
Königl, A., and Kartje, J. F. 1994. Disk-driven hydromagnetic winds as a key ingredient of active galactic nuclei unification schemes. ApJ, 434(Oct.), 446–467.Google Scholar
Krolik, J. H., and Hawley, J. F. 2010 (Mar.). General relativistic MHD jets. Pages 265+ of: T., Belloni (ed.), Lecture Notes in Physics, Berlin Springer Verlag. Lecture Notes in Physics, Berlin Springer Verlag, vol. 794.
Kuulkers, E., Howell, S. B., and van Paradijs, J. 1996. SXTs and TOADs: close encounters of thesamekind. ApJ, 462(May), L87+.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1959. Fluid Mechanics. Course of theoretical physics, Oxford: Pergamon Press.
Lee, C.-F., Mundy, L. G., Reipurth, B., Ostriker, E. C., and Stone, J. M. 2000. CO outflows from young stars: confronting the jet and wind models. ApJ, 542(Oct.), 925–945.Google Scholar
Lesur, G., and Longaretti, P.-Y. 2005. On the relevance of subcritical hydrodynamic turbulence to accretion disk transport. A&A, 444(Dec.), 25–44.Google Scholar
Lesur, G., and Ogilvie, G. I. 2008. On self-sustained dynamo cycles in accretion discs. A&A, 488(Sept.), 451–461.Google Scholar
Lesur, G., and Papaloizou, J. C. B. 2010. The subcritical baroclinic instability in local accretion disc models. A&A, 513(Apr.), A60+.Google Scholar
Lewin, W. H. G., van Paradijs, J., and van den Heuvel, E. P. J. 1995. Lewin, Walter H. G.; Van Paradijs, Jan; Van den Heuvel, Edward P. J. (eds.), X-Ray Binaries. Cambridge Astrophysics Series, Cambridge, MA: Cambridge University Press.
Lightman, A. P., and Eardley, D. M. 1974. Black holes in binary systems: instability of disk accretion. ApJ, 187(Jan.), L1+.Google Scholar
Lin, D. N. C., and Taam, R. E. 1984 (May). On the structure, stability and evolution of accretion disks in soft x-ray transient sources. Pages 83–102 of: S. E., Woosley (ed.), American Institute of Physics Conference Series. American Institute of Physics Conference Series, vol. 115.
Liu, B. F., Mineshige, S., Meyer, F., Meyer-Hofmeister, E., and Kawaguchi, T. 2002. Two-temperature coronal flow above a thin disk. ApJ, 575(Aug.), 117–126.Google Scholar
Long, M., Romanova, M. M., and Lovelace, R. V. E. 2008. Three-dimensional simulations of accretion to stars with complex magnetic fields. MNRAS, 386(May), 1274–1284.Google Scholar
Lovelace, R. V. E. 1976. Dynamo model of double radio sources. Nature, 262(Aug.), 649–652.Google Scholar
Lüst, R. 1952. Die Entwicklung einer um einen Zentralkörper rotierenden Gasmasse. Z. Naturforsch., 7.Google Scholar
Lynden-Bell, D., and Pringle, J. E. 1974. The evolution of viscous discs and the origin of the nebular variables. MNRAS, 168(Sept.), 603–637.Google Scholar
Lyutyi, V. M., and Syunyaev, R. A. 1976a. Nature of the optical variability of the X-ray binary systems CYG X-2 - V1341 CYG and SCO X-1 – V818 SCO. AZh, 53(June), 511–526.Google Scholar
Lyutyi, V. M., and Syunyaev, R. A. 1976b. Nature of the optical variability in the x-ray binaries Cygnus X-2 and Scorpius X-1. Soviet Ast, 20(June), 290–298.Google Scholar
Martin, E. L., Rebolo, R., Casares, J., and Charles, P. A. 1992. High lithium abundance in the secondary of the black-hole binary system V404 Cygni. Nature, 358(July), 129–131.Google Scholar
Martin, E. L., Rebolo, R., Casares, J., and Charles, P. A. 1994a. Li abundances in late-type companions to neutron stars and black hole candidates. ApJ, 435(Nov.), 791–796.Google Scholar
Martin, E. L., Spruit, H. C., and van Paradijs, J. 1994b. Energy implications of Li production in X-ray transients. A&A, 291 (Nov.), L43–L46.Google Scholar
Massey, B. S. 1968. Mechanics of Fluids, Chapman and Hall, London (6th Ed., 1989).
Meyer, F., and Meyer-Hofmeister, E. 1981. On the elusive cause of cataclysmic variable outbursts. A&A, 104, L10+.Google Scholar
Meyer, F., and Meyer-Hofmeister, E. 1982. Vertical structure of accretion disks. A&A, 106(Feb.), 34–42.Google Scholar
Meyer, F., and Meyer-Hofmeister, E. 1994. Accretion disk evaporation by a coronal siphon flow. A&A, 288(Aug.), 175–182.Google Scholar
Meyer-Hofmeister, E., and Meyer, F. 1999. Black hole soft X-ray transients: evolution of the cool disk and mass supply for the ADAF. A&A, 348(May), 154–160.Google Scholar
Meyer-Hofmeister, E., and Ritter, H. 1993. Accretion disks in close binaries. Pages 143–168 of: J., Sahade, G. E., McCluskey Jr., and Y., Kondo (eds.), Astrophysics and Space Science Library. Astrophysics and Space Science Library, vol. 177.
Meyer-Hofmeister, E., Schandl, S., and Meyer, F. 1997. The structure of the accretion disk rim in supersoft X-ray sources. A&A, 321 (May), 245–253.Google Scholar
Migliari, S., and Fender, R. P. 2006. Jets in neutron star X-ray binaries: a comparison with black holes. MNRAS, 366(Feb.), 79–91.Google Scholar
Miller, K. A., and Stone, J. M. 1997. Magnetohydrodynamic simulations of stellar magnetosphere-accretion disk interaction. ApJ, 489(Nov.), 890+.Google Scholar
Mineshige, S., and Wheeler, J. C. 1989. Disk-instability model for soft-X-ray transients containing black holes. ApJ, 343(Aug.), 241–253.Google Scholar
Mineshige, S., and Wood, J. H. 1989. Viscous evolution of accretion discs in the quiescence of dwarf novae. Pages 221+ of: F., Meyer (ed.), NATO ASIC Proc. 290: Theory of Accretion Disks.
Moll, R. 2009. Decay of the toroidal field in magnetically driven jets. A&A, 507(Dec.), 1203–1210.Google Scholar
Nakamura, K. E., Matsumoto, R., Kusunose, M., and Kato, S. 1996. Global structures of advection-dominated two-temperature accretion disks. PASJ, 48(Oct.), 761–769.Google Scholar
Narayan, R., and Popham, R. 1994. Accretion disk boundary layers. Pages 293+ of: W. J., Duschl, J., Frank, F., Meyer, E., Meyer-Hofmeister, and W. M., Tscharnuter (eds.), NATO ASIC Proc. 417: Theory of Accretion Disks – 2.
Narayan, R., and Yi, I. 1994. Advection-dominated accretion: a self-similar solution. ApJ, 428(June), L13–L16.Google Scholar
Narayan, R., Goldreich, P., and Goodman, J. 1987. Physics of modes in a differentially rotating system – analysis of the shearing sheet. MNRAS, 228(Sept.), 1–41.Google Scholar
Narayan, R., Kato, S., and Honma, F. 1997. Global structure and dynamics of advection-dominated accretion flows around black holes. ApJ, 476(Feb.), 49+.Google Scholar
Narayan, R., Yi, I., and Mahadevan, R. 1995. Explaining the spectrum of Sagittarius A* with a model of an accreting black hole. Nature, 374(Apr.), 623–625.Google Scholar
Nayakshin, S., Rappaport, S., and Melia, F. 1999 (Apr.). Time dependent disk models for the microquasar GRS1915+105. Pages 730+ of: AAS/High Energy Astrophysics Division #4. Bulletin of the American Astronomical Society, vol. 31.
O'Donoghue, D., Chen, A., Marang, F., Mittaz, J. P. D., Winkler, H., and Warner, B. 1991. WX CET and the WZ SGE stars. MNRAS, 250(May), 363–372.Google Scholar
Ogilvie, G. I. 1999. Time-dependent quasi-spherical accretion. MNRAS, 306(June), L9–L13.Google Scholar
Osaki, Y. 1974. An accretion model for the outbursts of U Geminorum stars. PASJ, 26, 429–436.Google Scholar
Osaki, Y. 1994. Disk instability model for SU UMa stars: SU UMa/WZ Sge connection. Pages 93+ of: W. J., Duschl, J., Frank, F., Meyer, E., Meyer-Hofmeister, and W. M., Tscharnuter (eds.), NATO ASIC Proc. 417: Theory of Accretion Disks – 2.
Ostriker, E. C., Gammie, C. F., and Stone, J. M. 1999. Kinetic and structural evolution of self-gravitating, magnetized clouds: 2.5-dimensional simulations of decaying turbulence. ApJ, 513(Mar.), 259–274.Google Scholar
Paczyński, B. 1978. A model of self-gravitating accretion disk. Acta Astron, 28, 91–109.Google Scholar
Paczyński, B. 1991. A polytropic model of an accretion disk, a boundary layer, and a star. ApJ, 370(Apr.), 597–603.Google Scholar
Paczyński, B. 1998. Are Gamma-Ray Bursts in Star-Forming Regions?ApJ, 494(Feb.), L45+.Google Scholar
Papaloizou, J. C. B., and Lin, D. N. C. 1995. Theory of accretion disks I: Angular momentum transport processes. ARA&A, 33, 505–540.Google Scholar
Piran, T. 1978. The role of viscosity and cooling mechanisms in the stability of accretion disks. ApJ, 221(Apr.), 652–660.Google Scholar
Podolak, M., Hubbard, W. B., and Pollack, J. B. 1993. Gaseous accretion and the formation of giant planets. Pages 1109–1147 of: E. H., Levy and J. I., Lunine (eds.), Protostars and Planets III. University of Arizona Press.
Podsiadlowski, P., and Rappaport, S. 2000. Cygnus X-2: the descendant of an intermediate-mass x-ray binary. ApJ, 529(Feb.), 946–951.Google Scholar
Popham, R. 1997. Boundary layers in cataclysmic variables and pre-main-sequence Stars. Pages 230+ of: D. T., Wickramasinghe, G. V., Bicknell, and L., Ferrario (eds.), IAU Colloq. 163: Accretion Phenomena and Related Outflows. Astronomical Society of the Pacific Conference Series, vol. 121.
Popham, R., and Narayan, R. 1991. Does accretion cease when a star approaches breakup?ApJ, 370(Apr.), 604–614.Google Scholar
Popham, R., Woosley, S. E., and Fryer, C. 1999. Hyperaccreting black holes and gamma-ray bursts. ApJ, 518(June), 356–374.Google Scholar
Pringle, J. E. 1981. Accretion discs in astrophysics. ARA&A, 19, 137–162.Google Scholar
Pringle, J. E., and Savonije, G. J. 1979. X-ray emission from dwarf novae. MNRAS, 187(June), 777–783.Google Scholar
Quataert, E., Narayan, R., and Reid, M. J. 1999. What is the accretion rate in Sagittarius A*?ApJ, 517(June), L101–L104.Google Scholar
Rafikov, R. R. 2009. Properties of gravitoturbulent accretion disks. ApJ, 704(Oct.), 281–291.Google Scholar
Rappaport, S. A., Fregeau, J. M., and Spruit, H. 2004. Accretion onto fast X-ray pulsars. ApJ, 606(May), 436–443.Google Scholar
Rees, M. J. 1978. Accretion and the quasar phenomenon. Phys Scr, 17(Mar.), 193–200.Google Scholar
Rees, M. J., Begelman, M. C., Blandford, R. D., and Phinney, E. S. 1982. Ion-supported tori and the origin of radio jets. Nature, 295(Jan.), 17–21.Google Scholar
Regev, O., and Hougerat, A. A. 1988. Accretion disc boundary layers – geometrically an optically thin case. MNRAS, 232(May), 81–89.Google Scholar
Revnivtsev, M., Gilfanov, M., and Churazov, E. 1999. The frequency resolved spectroscopy of CYG X-1: fast variability of the Fe K._α line. A&A, 347(July), L23–L26.Google Scholar
Rincon, F., Ogilvie, G. I., and Cossu, C. 2007. On self-sustaining processes in Rayleigh-stable rotating plane Couette flows and subcritical transition to turbulence in accretion disks. A&A, 463(Mar.), 817–832.Google Scholar
Różyczka, M., and Spruit, H. C. 1993. Numerical simulations of shock-driven accretion. ApJ, 417(Nov.), 677+.Google Scholar
Rutten, R. G. M., van Paradijs, J., and Tinbergen, J. 1992. Reconstruction of the accretion disk in six cataclysmic variable stars. A&A, 260(July), 213–226.Google Scholar
Rybicki, G. B., and Lightman, A. P. 1979. Radiative Processes in Astrophysics. New York, Wiley-Interscience, 393 p.
Sakimoto, P. J., and Coroniti, F. V. 1989. Buoyancy-limited magnetic viscosity in quasi-stellar object accretion disk models. ApJ, 342(July), 49–63.Google Scholar
Sawada, K., Matsuda, T., Inoue, M., and Hachisu, I. 1987. Is the standard accretion disc model invulnerable?MNRAS, 224(Jan.), 307–322.Google Scholar
Schandl, S., and Meyer, F. 1994. Herculis X-1: Coronal winds producing the tilted shape of the accretion disk. A&A, 289(Sept.), 149–161.Google Scholar
Schultz, A. L., and Price, R. H. 1985. Pair production in spherical accretion onto black holes. ApJ, 291(Apr.), 1–7.Google Scholar
Shakura, N. I., and Sunyaev, R. A. 1973. Black holes in binary systems. Observational appearance. A&A, 24, 337–355.Google Scholar
Shapiro, S. L., Lightman, A. P., and Eardley, D. M. 1976. A two-temperature accretion disk model for Cygnus X-1 – structure and spectrum. ApJ, 204(Feb.), 187–199.Google Scholar
Shi, J., Krolik, J. H., and Hirose, S. 2010. What is the numerically converged amplitude of magnetohydrodynamics turbulence in stratified shearing boxes?ApJ, 708(Jan.), 1716–1727.Google Scholar
Siuniaev, R. A., and Shakura, N. I. 1977. Disk reservoirs in binary systems and prospects for observing them. Pis ma Astronomicheskii Zhurnal, 3(June), 262–266.Google Scholar
Smak, J. 1971. Eruptive binaries. II. U Geminorum. Acta Astron., 21, 15+.
Smak, J. 1984. Outbursts of dwarf novae. PASP, 96(Jan.), 5–18.Google Scholar
Spitzer, L. 1965. Physics of Fully Ionized Gases. Interscience Tracts on Physics and Astronomy, New York: Interscience Publication, 2nd rev. ed.
Spruit, H. C. 1987. Stationary shocks in accretion disks. A&A, 184(Oct.), 173–184.Google Scholar
Spruit, H. C. 1996. Cyclic accretion from an accretion disk onto a neutron star magnetosphere. Pages 377–382 of: Kluwer Academic Publishers. Lives of Neutron Stars, NATO ASI Series C., Vol. 477.
Spruit, H. C. 1997. X-ray spectrum of a disk illuminated by ions. Pages 67–76 of: E., Meyer-Hofmeister and H., Spruit (ed), Accretion Disks – New Aspects. Lecture Notes in Physics, Berlin Springer Verlag, vol. 487.
Spruit, H. C. 2010a. Theories of the solar cycle: a critical view. ArXiv e-prints.
Spruit, H. C. 2010b. Theory of magnetically powered jets. In: Lecture Notes in Physics, Berlin Springer Verlag.
Spruit, H. C., and Deufel, B. 2002. The transition from a cool disk to an ion supported flow. A&A, 387(June), 918–930.Google Scholar
Spruit, H. C., Matsuda, T., Inoue, M., and Sawada, K. 1987. Spiral shocks and accretion in discs. MNRAS, 229(Dec.), 517–527.Google Scholar
Spruit, H. C., and Rutten, R. G. M. 1998. The stream impact region in the disc of WZ SGE. MNRAS, 299(Sept.), 768–776.Google Scholar
Spruit, H. C., and Taam, R. E. 1993. An instability associated with a magnetosphere-disk interaction. ApJ, 402(Jan.), 593–604.Google Scholar
Strom, S. E., Edwards, S., and Skrutskie, M. F. 1993. Evolutionary time scales for circumstellar disks associated with intermediate- and solar-type stars. Pages 837–866 of: E. H., Levy and J. I., Lunine (eds.), Protostars and Planets III. University of Arizona Press.
Sunyaev, R. A., and Titarchuk, L. G. 1980. Comptonization of X-rays in plasma clouds – typical radiation spectra. A&A, 86(June), 121–138.Google Scholar
Syunyaev, R. A., and Shakura, N. I. 1977. Disk reservoirs in binary systems and prospects for observing them. Soviet Astronomy Letters, 3(June), 138+.Google Scholar
Taam, R. E. 1996. Common-envelope evolution, the formation of CVs, LMXBs, and the fate of HMXBs. Pages 3+ of: J., van Paradijs, E. P. J., van den Heuvel, and E., Kuulkers (eds.), Compact Stars in Binaries. IAU Symposium, vol. 165.
Taam, R. E., and Sandquist, E. L. 2000. Common envelope evolution of massive binary stars. ARA&A, 38, 113–141.Google Scholar
Treves, A., Maraschi, L., and Abramowicz, M. 1988. Basic elements of the theory of accretion. PASP, 100(Apr.), 427–451.Google Scholar
Turner, N. J. 2004. On the vertical structure of radiation-dominated accretion disks. ApJ, 605(Apr.), L45–L48.Google Scholar
van Paradijs, J., and McClintock, J. E. 1995. Optical and ultraviolet observations of X-ray binaries. Pages 58–125 of: W. H. G., Lewin, J., van Paradijs, and E. P. J., van den Heuvel (eds.), X-ray Binaries. Cambridge University Press.
van Paradijs, J., and Verbunt, F. 1984 (May). A comparison of soft x-ray transients and dwarf novae. Pages 49–62 of: S. E., Woosley (ed), American Institute ofPhysics Conference Series. American Institute of Physics Conference Series, vol. 115.
Velikhov, P. E. 1959. Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field. J Expl Theoret Phys (USSR), 36, 1398.Google Scholar
Wang, J.-M., and Zhou, Y.-Y. 1999. Self-similar solution of optically thick advection-dominated flows. ApJ, 516(May), 420–424.Google Scholar
Warner, B. 1987. Absolute magnitudes of cataclysmic variables. MNRAS, 227(July), 23–73.Google Scholar
Warner, B. 1995. Cataclysmic variable stars. Cambridge Astrophysics Series, vol. 28.
Wood, J. H., Horne, K., Berriman, G., and Wade, R. A. 1989a. Eclipse studies of the dwarf nova OY Carinae in quiescence. ApJ, 341(June), 974–996.Google Scholar
Wood, J. H., Horne, K., and Vennes, S. 1992. Eclipse studies of the dwarf nova HT Cassiopeiae. II – White dwarf and accretion disk. ApJ, 385(Jan.), 294–305.Google Scholar
Wood, J. H., Marsh, T. R., Robinson, E. L., Stiening, R. F., Horne, K., Stover, R. J., Schoembs, R., Allen, S. L., Bond, H. E., Jones, D. H. P., Grauer, A. D., and Ciardullo, R. 1989b. The ephemeris and variations of the accretion disc radius in IP Pegasi. MNRAS, 239(Aug.), 809–824.Google Scholar
Woosley, S. E. 1993. Gamma-ray bursts from stellar mass accretion disks around black holes. ApJ, 405(Mar.), 273–277.Google Scholar
Yi, I. (1999, Apr.). Advection-dominated accretion flows. Pages 279+ of: J. A., Sellwood and J., Goodman (ed), Astrophysical Discs – an EC Summer School. Astronomical Society of the Pacific Conference Series, vol. 160.
Zdziarski, A. A. 1998. Hot accretion discs with thermal Comptonization and advection in luminous black hole sources. MNRAS, 296(June), L51+.Google Scholar
Zdziarski, A. A., Lubinski, P., and Smith, D. A. 1999. Correlation between Compton reflection and X-ray slope in Seyferts and X-ray binaries. MNRAS, 303(Feb.), L11–L15.Google Scholar
Zel'dovich, Y. B. 1981. On the friction of fluids between rotating cylinders. Royal Society of London Proceedings Series A, 374(Feb.), 299–312.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×