Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-17T11:00:59.289Z Has data issue: false hasContentIssue false

15 - The Eyes Have It

Using Non-Invasive Eye Tracking to Advance Comparative Social Cognition Research

Published online by Cambridge University Press:  28 July 2022

Bennett L. Schwartz
Affiliation:
Florida International University
Michael J. Beran
Affiliation:
Georgia State University
Get access

Summary

Visual information is important for many aspects of primate social life, including social learning, social relationships, and mate choice. Analyzing the attentional patterns of primates can provide key insights into the mechanisms underlying social interactions. Historically, primate visual attention was studied using live or videotaped looking-time paradigms, potentially prone to human error and providing only rough measures of attentional preferences. However, the application of advanced non-invasive eye-tracking methods is now gaining traction in nonhuman primates. This technology opens doors for conducting novel comparative social cognition research with greater precision than ever before, and allows us to better explore social cognition within and across species. In this chapter, we provide a brief review of previous studies of visual attention both in the field and the laboratory. We then examine ways that eye tracking has elucidated social cognitive processes in primates, with a focus on a comparative social memory paradigm used in human infants, gorillas, chimpanzees, and capuchins. We conclude by highlighting several fruitful directions for future comparative research.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. R., Kuroshima, H., & Fujita, K. (2017). Observational learning in capuchin monkeys: A video deficit effect. Quarterly Journal of Experimental Psychology, 70, 12541262.Google Scholar
Benítez, M. E., Pappano, D. J., Beehner, J. C., & Bergman, T. J. (2017). Evidence for mutual assessment in a wild primate. Scientific Reports, 7, 111.Google Scholar
Bethell, E. J., Holmes, A., MacLarnon, A., & Semple, S. (2012). Evidence that emotion mediates social attention in rhesus macaques. PLoS ONE, 7, e44387.Google Scholar
Biro, D., Inoue-Nakamura, N., Tonooka, R., Yamakoshi, G., Sousa, C., & Matsuzawa, T. (2003). Cultural innovation and transmission of tool use in wild chimpanzees: Evidence from field experiments. Animal Cognition, 6, 213223.CrossRefGoogle ScholarPubMed
Bonnie, K. E., & De Waal, F. B. (2007). Copying without rewards: Socially influenced foraging decisions among brown capuchin monkeys. Animal Cognition, 10, 283292.Google Scholar
Bovet, D., & Vauclair, J. (2000). Picture recognition in animals and humans. Behavioural Brain Research, 109, 143165.Google Scholar
Brand, J., Diamond, S. G., Thomas, N., & Gilbert-Diamond, D. (2020). Evaluating the data quality of the Gazepoint GP3 low-cost eye tracker when used independently by study participants. Behavior Research Methods, 1–13.Google Scholar
Cannon, E. N., & Woodward, A. L. (2012). Infants generate goal‐based action predictions. Developmental Science, 15, 292298.Google Scholar
Carter, A. J., Marshall, H. H., Heinsohn, R., & Cowlishaw, G. (2014). Personality predicts the propensity for social learning in a wild primate. PeerJ, 2, e283.CrossRefGoogle Scholar
Charpentier, M. J., Harté, M., Ngoubangoye, B., Herbert, A., & Kappeler, P. M. (2017). Visual discrimination of kin in mandrills. Ethology, 123, 251259.Google Scholar
Cheney, D. L., & Seyfarth, R. M. (1980). Vocal recognition in free-ranging vervet monkeys. Animal Behaviour, 28, 362367.CrossRefGoogle Scholar
Cheney, D. L., & Seyfarth, R. M. (1982). Recognition of individuals within and between groups of free-ranging vervet monkeys. American Zoologist, 22, 519529.Google Scholar
Cheney, D. L., & Seyfarth, R. M. (1988). Assessment of meaning and the detection of unreliable signals by vervet monkeys. Animal Behaviour, 36, 477486.Google Scholar
Cheney, D. L., Seyfarth, R. M., & Silk, J. B. (1995). The responses of female baboons (Papio cynocephalus ursinus) to anomalous social interactions: Evidence for causal reasoning? Journal of Comparative Psychology, 109, 134141.Google Scholar
Chertoff, S., Margulis, S., & Rodgers, J. D. (2018). Visual processing of faces in juvenile western lowland gorillas without use of training or reinforcement: A pilot study. Animal Behavior and Cognition, 5, 292299.Google Scholar
Chun, M. M., & Turk-Browne, N. B. (2007). Interactions between attention and memory. Current Opinion in Neurobiology, 17, 177184.Google Scholar
Dalmaijer, E. (2014). Is the low-cost EyeTribe eye tracker any good for research? PeerJ PrePrints, e585v1.Google Scholar
Damon, F., Li, Z., Yan, Y., Li, W., Guo, K., Quinn, P., Pascalis, O., & Méary, D. (2019). Preference for attractive faces is species-specific. Journal of Comparative Psychology, 133, 262271.Google Scholar
Damon, F., Méary, D., Quinn, P. C., Lee, K., Simpson, E. A., Paukner, A., … & Pascalis, O. (2017). Preference for facial averageness: Evidence for a common mechanism in human and macaque infants. Scientific Reports, 7(1), 111.Google Scholar
Dindo, M., Thierry, B., & Whiten, A. (2008). Social diffusion of novel foraging methods in brown capuchin monkeys (Cebus apella). Proceedings of the Royal Society B: Biological Sciences, 275, 187193.Google Scholar
Dindo, M., Whiten, A., & de Waal, F. B. (2009). Social facilitation of exploratory foraging behavior in capuchin monkeys (Cebus apella). American Journal of Primatology, 71, 419426.CrossRefGoogle ScholarPubMed
Dubuc, C., Allen, W. L., Cascio, J., Lee, D. S., Maestripieri, D., Petersdorf, M., … & Higham, J. P. (2016). Who cares? Experimental attention biases provide new insights into a mammalian sexual signal. Behavioral Ecology, 27, 6874.Google Scholar
Fagan, J. F. (1970). Memory in the infant. Journal of Experimental Child Psychology, 9, 217226.Google Scholar
Fagan, J. F., Holland, C. R., & Wheeler, K. (2007). The prediction, from infancy, of adult IQ and achievement. Intelligence, 35, 225231.Google Scholar
Fantz, R. L. (1964). Visual experience in infants: Decreased attention to familiar patterns relative to novel ones. Science, 146, 668670.CrossRefGoogle ScholarPubMed
Fantz, R. L., & Nevis, S. (1967). Pattern preferences and perceptual-cognitive development in early infancy. Merrill–Palmer Quarterly of Behavior and Development, 13, 77108.Google Scholar
Fragaszy, D. M., Deputte, B., Cooper, E. J., Colbert‐White, E. N., & Hémery, C. (2011). When and how well can human‐socialized capuchins match actions demonstrated by a familiar human? American Journal of Primatology, 73, 643654.Google Scholar
Fragaszy, D., Izar, P., Visalberghi, E., Ottoni, E. B., & De Oliveira, M. G. (2004). Wild capuchin monkeys use anvils and stone pounding tools. American Journal of Primatology, 64, 359366.Google Scholar
Funke, G., Greenlee, E., Carter, M., Dukes, A., Brown, R., & Menke, L. (2016). Which eye tracker is right for your research? Performance evaluation of several cost variant eye trackers. Proceedings of the Human Factors and Ergonomics Society, 60, 12401244.Google Scholar
Gredebäck, G., Fikke, L., & Melinder, A. (2010). The development of joint visual attention: A longitudinal study of gaze following during interactions with mothers and strangers. Developmental Science, 13, 839848.Google Scholar
Gunhold, T., Whiten, A., & Bugnyar, T. (2014). Video demonstrations seed alternative problem-solving techniques in wild common marmosets. Biology Letters, 10, 20140439.Google Scholar
Hattori, Y., Kano, F., & Tomonaga, M. (2010). Differential sensitivity to conspecific and allospecific cues in chimpanzees and humans: A comparative eye-tracking study. Biology Letters, 6, 610613.Google Scholar
Higham, J. P., Hughes, K. D., Brent, L. J., Dubuc, C., Engelhardt, A., Heistermann, M., … & Stevens, M. (2011). Familiarity affects the assessment of female facial signals of fertility by free-ranging male rhesus macaques. Proceedings of the Royal Society B: Biological Sciences, 278, 34523458.Google Scholar
Hirata, S., Fuwa, K., Sugama, K., Kusunoki, K., & Fujita, S. (2010). Facial perception of conspecifics: Chimpanzees (Pan troglodytes) preferentially attend to proper orientation and open eyes. Animal Cognition, 13, 679688.CrossRefGoogle ScholarPubMed
Hopper, L. M. (2010). “Ghost” experiments and the dissection of social learning in humans and animals. Biological Reviews, 85, 685701.Google Scholar
Hopper, L. M., Gulli, R. A., Howard, L. H., Kano, F., Krupenye, C., Ryan, A. M., & Paukner, A. (2020). The application of noninvasive, restraint-free eye-tracking methods for use with nonhuman primates. Behavior Research Methods, 53, 10031030.Google Scholar
Hopper, L. M., Lambeth, S. P., & Schapiro, S. J. (2012). An evaluation of the efficacy of video displays for use with chimpanzees (Pan troglodytes). American Journal of Primatology, 74, 442449.Google Scholar
Hopper, L. M., Lambeth, S. P., Schapiro, S. J., & Whiten, A. (2008). Observational learning in chimpanzees and children studied through “ghost” conditions. Proceedings of the Royal Society B: Biological Sciences, 275, 835840.Google Scholar
Horner, V., Proctor, D., Bonnie, K. E., Whiten, A., & de Waal, F. B. (2010). Prestige affects cultural learning in chimpanzees. PLoS ONE, 5, e10625.Google Scholar
Howard, L. H., Carrazza, C., & Woodward, A. L. (2014). Neighborhood linguistic diversity predicts infants’ social learning. Cognition, 133, 474479.Google Scholar
Howard, L. H., Festa, C., & Lonsdorf, E. V. (2018). Through their eyes: The influence of social models on attention and memory in capuchin monkeys (Sapajus apella). Journal of Comparative Psychology, 132, 210219.Google Scholar
Howard, L. H., Henderson, A. M., Carrazza, C., & Woodward, A. L. (2015). Infants’ and young children’s imitation of linguistic in‐group and out‐group informants. Child Development, 86, 259275.Google Scholar
Howard, L. H., Riggins, T., & Woodward, A. L. (2020). Learning from others: The effects of agency on event memory in young children. Child Development, 91, 13171335.Google Scholar
Howard, L. H., Wagner, K. E., Woodward, A. L., Ross, S. R., & Hopper, L. M. (2017). Social models enhance apes’ memory for novel events. Scientific Reports, 7, 17.Google Scholar
Howard, L. H., & Woodward, A. L. (2019). Human actions support infant memory. Journal of Cognition and Development, 20, 772789.Google Scholar
Humle, T., Snowdon, C. T., & Matsuzawa, T. (2009). Social influences on ant-dipping acquisition in the wild chimpanzees (Pan troglodytes verus) of Bossou, Guinea, West Africa. Animal Cognition, 12, 3748.Google Scholar
Inoue-Nakamura, N., & Matsuzawa, T. (1997). Development of stone tool use by wild chimpanzees (Pan troglodytes). Journal of Comparative Psychology, 111, 159173.Google Scholar
Jaeggi, A. V., Dunkel, L. P., Van Noordwijk, M. A., Wich, S. A., Sura, A. A., & Van Schaik, C. P. (2010). Social learning of diet and foraging skills by wild immature Bornean orangutans: Implications for culture. American Journal of Primatology, 72, 6271.Google Scholar
Kano, F., & Call, J. (2014a). Cross-species variation in gaze following and conspecific preference among great apes, human infants and adults. Animal Behaviour, 91, 137150.Google Scholar
Kano, F., & Call, J. (2014b). Great apes generate goal-based action predictions: An eye-tracking study. Psychological Science, 25, 16911698.Google Scholar
Kano, F., Call, J., & Tomonaga, M. (2012). Face and eye scanning in gorillas, orangutans, and humans: Unique eye-viewing patterns in humans among hominids. Journal of Comparative Psychology, 126, 388–98.Google Scholar
Kano, F., Hirata, S., & Call, J. (2015). Social attention in the two species of Pan: Bonobos make more eye contact than chimpanzees. PLoS ONE, 10, e0129684.Google Scholar
Kano, F., Krupenye, C., Hirata, S., Tomonaga, M., & Call, J. (2019). Great apes use self-experience to anticipate an agent’s action in a false-belief test. Proceedings of the National Academy of Sciences, 116, 2090420909.Google Scholar
Kano, F., Moore, R., Krupenye, C., Hirata, S., Tomonaga, M., & Call, J. (2018). Human ostensive signals do not enhance gaze following in chimpanzees, but do enhance object-oriented attention. Animal Cognition, 21, 715728.Google Scholar
Kano, F., & Tomonaga, M. (2009). How chimpanzees look at pictures: A comparative eye-tracking study. Proceedings of the Royal Society B: Biological Sciences, 276, 19491955.Google Scholar
Kano, F., & Tomonaga, M. (2010). Face scanning in chimpanzees and humans: Continuity and discontinuity. Animal Behaviour, 79, 227235.Google Scholar
Kano, F., & Tomonaga, M. (2013). Head-mounted eye tracking of a chimpanzee under naturalistic conditions. PLoS ONE, 8, e59785.Google Scholar
Kawaguchi, Y., Kano, F., & Tomonaga, M. (2019). Chimpanzees, but not bonobos, attend more to infant than adult conspecifics. Animal Behaviour, 154, 171181.Google Scholar
Keemink, J. R., Keshavarzi-Pour, M. J., & Kelly, D. J. (2019). Infants’ responses to interactive gaze-contingent faces in a novel and naturalistic eye-tracking paradigm. Developmental Psychology, 55, 13621371.Google Scholar
Kitchen, D. M., Cheney, D. L., & Seyfarth, R. M. (2005). Male chacma baboons (Papio hamadryas ursinus) discriminate loud call contests between rivals of different relative ranks. Animal Cognition, 8, 16.Google Scholar
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2016). Great apes anticipate that other individuals will act according to false beliefs. Science, 354, 110114.CrossRefGoogle ScholarPubMed
Krupenye, C., Kano, F., Hirata, S., Call, J., & Tomasello, M. (2017). A test of the submentalizing hypothesis: Apes’ performance in a false belief task inanimate control. Communicative & Integrative Biology, 10, e1343771.Google Scholar
Lacreuse, A., Martin-Malivel, J., Lange, H. S., & Herndon, J. G. (2007). Effects of the menstrual cycle on looking preferences for faces in female rhesus monkeys. Animal Cognition, 10, 105115.CrossRefGoogle ScholarPubMed
Lonsdorf, E. V. (2005). Sex differences in the development of termite-fishing skills in the wild chimpanzees, Pan troglodytes schweinfurthii, of Gombe National Park, Tanzania. Animal Behaviour, 70, 673683.CrossRefGoogle Scholar
Lonsdorf, E. V. (2006). What is the role of mothers in the acquisition of termite-fishing behaviors in wild chimpanzees (Pan troglodytes schweinfurthii)? Animal Cognition, 9, 3646.Google Scholar
Lonsdorf, E. V., Bonnie, K. E., Grim, M., Krupnick, A., Prestipino, M., & Whyte, J. (2016). Seeding an arbitrary convention in capuchin monkeys: The effect of social context. Behaviour, 153, 633654.Google Scholar
Lonsdorf, E. V., Eberly, L. E., & Pusey, A. E. (2004). Sex differences in learning in chimpanzees. Nature, 428, 715716.Google Scholar
Lonsdorf, E. V., Engelbert, L. M., & Howard, L. H. (2019). A competitive drive? Same‐sex attentional preferences in capuchins. American Journal of Primatology, 81, e22998.Google Scholar
Mandalaywala, T. M., Parker, K. J., & Maestripieri, D. (2014). Early experience affects the strength of vigilance for threat in rhesus monkey infants. Psychological Science, 25, 18931902.Google Scholar
ManyPrimates et al. (2019) Establishing an infrastructure for collaboration in primate cognition research. PLoS ONE, 14, e0223675.Google Scholar
Marticorena, D. C., Ruiz, A. M., Mukerji, C., Goddu, A., & Santos, L. R. (2011). Monkeys represent others’ knowledge but not their beliefs. Developmental Science, 14, 14061416.Google Scholar
Matsuda, Y. T., Myowa-Yamakoshi, M., & Hirata, S. (2016). Familiar face + novel face = familiar face? Representational bias in the perception of morphed faces in chimpanzees. PeerJ, 4, e2304.Google Scholar
Møller, A. P., & Thornhill, R. (1998). Bilateral symmetry and sexual selection: A meta-analysis. The American Naturalist, 151, 174192.Google Scholar
Myowa-Yamakoshi, M., Scola, C., & Hirata, S. (2012). Humans and chimpanzees attend differently to goal-directed actions. Nature Communications, 3, 17.Google Scholar
Myowa-Yamakoshi, M., Yoshida, C., & Hirata, S. (2015). Humans but not chimpanzees vary face-scanning patterns depending on contexts during action observation. PLoS ONE, 10, e0139989.Google Scholar
Nairne, J. S., Cogdill, M., & Lehman, M. (2017). Adaptive memory: Temporal, semantic, and rating-based clustering following survival processing. Journal of Memory and Language, 93, 304314.Google Scholar
Ottoni, E. B., & Mannu, M. (2001). Semifree-ranging tufted capuchins (Cebus apella) spontaneously use tools to crack open nuts. International Journal of Primatology, 22, 347358.Google Scholar
Ottoni, E. B., de Resende, B. D., & Izar, P. (2005). Watching the best nutcrackers: What capuchin monkeys (Cebus apella) know about others’ tool-using skills. Animal Cognition, 8, 215219.Google Scholar
Parr, L. A. (2011). The evolution of face processing in primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 17641777.Google Scholar
Pascalis, O., & de Haan, M. (2003). Recognition memory and novelty preference: What model? Progress in Infancy Research, 3, 95119.Google Scholar
Paukner, A., Wooddell, L. J., Lefevre, C. E., Lonsdorf, E., & Lonsdorf, E. (2017). Do capuchin monkeys (Sapajus apella) prefer symmetrical face shapes? Journal of Comparative Psychology, 131, 7377.Google Scholar
Perry, S. (2011). Social traditions and social learning in capuchin monkeys (Cebus). Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 988996.Google Scholar
Pfefferle, D., Kazem, A. J., Brockhausen, R. R., Ruiz-Lambides, A. V., & Widdig, A. (2014). Monkeys spontaneously discriminate their unfamiliar paternal kin under natural conditions using facial cues. Current Biology, 24, 18061810.Google Scholar
Price, E. E., Lambeth, S. P., Schapiro, S. J., & Whiten, A. (2009). A potent effect of observational learning on chimpanzee tool construction. Proceedings of the Royal Society B: Biological Sciences, 276, 33773383.Google Scholar
Price, E. E., Wood, L. A., & Whiten, A. (2017). Adaptive cultural transmission biases in children and nonhuman primates. Infant Behavior and Development, 48, 4553.Google Scholar
Pritsch, C., Telkemeyer, S., Mühlenbeck, C., & Liebal, K. (2017). Perception of facial expressions reveals selective affect-biased attention in humans and orangutans. Scientific Reports, 7, 112.Google Scholar
Rapaport, L. G., & Brown, G. R. (2008). Social influences on foraging behavior in young nonhuman primates: Learning what, where, and how to eat. Evolutionary Anthropology, 17, 189201.Google Scholar
Rawlins, R. G., & Kessler, M. J. (Eds.). (1986). The Cayo Santiago macaques: History, behavior, and biology. State University of New York Press.Google Scholar
Rosenfield, K. A., Semple, S., Georgiev, A. V., Maestripieri, D., Higham, J. P., & Dubuc, C. (2019). Experimental evidence that female rhesus macaques (Macaca mulatta) perceive variation in male facial masculinity. Royal Society Open Science, 6, 181415.Google Scholar
Ryan, A. M., Freeman, S. M., Murai, T., Lau, A. R., Palumbo, M. C., Hogrefe, C. E., … & Bauman, M. D. (2019). Non-invasive eye tracking methods for new world and old world monkeys. Frontiers in Behavioral Neuroscience, 13, 39.Google Scholar
Schuppli, C., Meulman, E. J., Forss, S. I., Aprilinayati, F., Van Noordwijk, M. A., & Van Schaik, C. P. (2016). Observational social learning and socially induced practice of routine skills in immature wild orang-utans. Animal Behaviour, 119, 8798.Google Scholar
Shaller, G. B. (1963). The mountain gorilla: Ecology and behavior. Chicago University Press.Google Scholar
Shepherd, S. V., & Platt, M. L. (2008). Spontaneous social orienting and gaze following in ringtailed lemurs (Lemur catta). Animal Cognition, 11, 1320.Google Scholar
Simpson, E. A., Suomi, S. J., & Paukner, A. (2016). Evolutionary relevance and experience contribute to face discrimination in infant macaques (Macaca mulatta). Journal of Cognition and Development, 17, 285299.Google Scholar
Van de Waal, E., Renevey, N., Favre, C. M., & Bshary, R. (2010). Selective attention to philopatric models causes directed social learning in wild vervet monkeys. Proceedings of the Royal Society B: Biological Sciences, 277, 21052111.Google Scholar
Vernetti, A., Senju, A., Charman, T., Johnson, M. H., Gliga, T., & BASIS team (2018). Simulating interaction: Using gaze-contingent eye-tracking to measure the reward value of social signals in toddlers with and without autism. Developmental Cognitive Neuroscience, 29, 2129.Google Scholar
Wade, N., & Tatler, B. (2005). The moving tablet of the eye: The origins of modern eye movement research. Oxford University Press.Google Scholar
Waitt, C., & Little, A. C. (2006). Preferences for symmetry in conspecific facial shape among Macaca mulatta. International Journal of Primatology, 27(1), 133145.Google Scholar
Wang, Q., Bolhuis, J., Rothkopf, C. A., Kolling, T., Knopf, M., & Triesch, J. (2012). Infants in control: Rapid anticipation of action outcomes in a gaze-contingent paradigm. PLoS ONE, 7, e30884.Google Scholar
Wass, S., Porayska-Pomsta, K., & Johnson, M. H. (2011). Training attentional control in infancy. Current Biology, 21, 15431547.Google Scholar
Whiten, A., Goodall, J., McGrew, W. C., Nishida, T., Reynolds, V., Sugiyama, Y., … & Boesch, C. (1999). Cultures in chimpanzees. Nature, 399, 682685.Google Scholar
Whiten, A., & Mesoudi, A. (2008). Establishing an experimental science of culture: Animal social diffusion experiments. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 34773488.Google Scholar
Whiten, A., & van de Waal, E. (2018). The pervasive role of social learning in primate lifetime development. Behavioral Ecology and Sociobiology, 72, 116.Google Scholar
Winters, S., Dubuc, C., & Higham, J. P. (2015). Perspectives: The looking time experimental paradigm in studies of animal visual perception and cognition. Ethology, 121, 625640.Google Scholar
Wittig, R. M., Crockford, C., Langergraber, K. E., & Zuberbühler, K. (2014). Triadic social interactions operate across time: A field experiment with wild chimpanzees. Proceedings of the Royal Society B: Biological Sciences, 281, 20133155.Google Scholar
Wittig, R. M., Crockford, C., Seyfarth, R. M., & Cheney, D. L. (2007). Vocal alliances in chacma baboons (Papio hamadryas ursinus). Behavioral Ecology and Sociobiology, 61, 899909.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×