Skip to main content Accessibility help
Hostname: page-component-cd4964975-8cclj Total loading time: 0 Render date: 2023-03-30T06:22:25.335Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

9 - Cardiovascular Psychophysiology

from Systemic Psychophysiology

Published online by Cambridge University Press:  27 January 2017

John T. Cacioppo
University of Chicago
Louis G. Tassinary
Texas A & M University
Gary G. Berntson
Ohio State University
Get access


Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Allen, J. J., Chambers, A. S., & Towers, D. N. (2007). The many metrics of cardiac chronotropy: a pragmatic primer and a brief comparison of metrics. Biological Psychology, 74: 243262.CrossRefGoogle Scholar
Ameloot, K., Palmers, P. J., & Malbrain, M. L. (2015). The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Current Opinion on Critical Care, 21: 232239.CrossRefGoogle ScholarPubMed
Anderson, C. R. (1998). Identification of cardiovascular pathways in the sympathetic nervous system. Clinical and Experimental Pharmacology and Physiology, 25: 449452.CrossRefGoogle ScholarPubMed
Andersson, U. & Tracey, K. J. (2012). Reflex principles of immunological homeostasis. Annual Review of Immunology, 30: 313335.CrossRefGoogle ScholarPubMed
Annila, P. A., Yli-Hankala, A. M., & Lindgren, L. (1994). The effect of atropine on the T-wave amplitude of ECG during isoflurane anaesthesia. International Journal of Clinical Monitoring and Computing, 11: 4347.CrossRefGoogle ScholarPubMed
Armour, J. A. (2008). Potential clinical relevance of the “little brain” on the mammalian heart. Experimental Physiology, 93: 165176.CrossRefGoogle Scholar
Babbs, C. F. (2012). Oscillometric measurement of systolic and diastolic blood pressures validated in a physiologic mathematical model. Biomedical Engineering Online, 11: 56.CrossRefGoogle Scholar
Bachen, E. A., Manuck, S. B., Cohen, S., Muldoon, M. F., Raibel, R., Herbert, T. B., & Rabin, B. S. (1995). Adrenergic blockade ameliorates cellular immune responses to mental stress in humans. Psychosomatic Medicine, 57: 366372.CrossRefGoogle ScholarPubMed
Bailey, R. H. & Bauer, J. H. (1993). A review of common errors in the indirect measurement of blood pressure. Archives of Internal Medicine, 153: 27412748.CrossRefGoogle ScholarPubMed
Barbato, E. (2009). Role of adrenergic receptors in human coronary vasomotion. Heart, 95: 603608.CrossRefGoogle ScholarPubMed
Barde, P. B., Jindal, G. D., Singh, R., & Deepak, K. K. (2006). New method of electrode placement for determination of cardiac output using impedance cardiography. Indian Journal of Physiology and Pharmacology, 50: 234240.Google ScholarPubMed
Bar-Haim, Y., Marshall, P. J., & Fox, N. A. (2000). Developmental changes in heart period and high frequency heart period variability from 4 months to 4 years of age. Developmental Psychobiology, 37: 4456.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Beaudin, A. E., Brugniaux, J. V., Vöhringer, M., Flewitt, J., Green, J. D., Friedrich, M. G., & Poulin, M. J. (2011). Cerebral and myocardial blood flow responses to hypercapnia and hypoxia in humans. American Journal of Physiology: Heart and Circulatory Physiology, 301: H1678H1686.Google ScholarPubMed
Beker, F., Weber, M., Fink, R. H., & Adams, D. J. (2003). Muscarinic and nicotinic ACh receptor activation differentially mobilize Ca2+ in rat intracardiac ganglion neurons. Journal of Neurophysiology, 90: 19561964.CrossRefGoogle ScholarPubMed
Benschop, R. J., Nieuwenhuis, E. E. S., Tromp, E. A. M., Godart, G. L. R., Ballieux, R. E., & van Doornen, L. P. J. (1994). Effects of βadrenergic blockade on immunologic and cardiovascular changes induced by mental stress. Circulation, 89: 762769.CrossRefGoogle Scholar
Bernstein, D. P. (1986). A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Critical Care Medicine, 14: 904909.CrossRefGoogle ScholarPubMed
Bernstein, D. P., Henry, I. C., Lemmens, H. J., Chaltas, J. L., DeMaria, A. N., Moon, J. B., & Kahn, A. M. (2015). Validation of stroke volume and cardiac output by electrical interrogation of the brachial artery in normals: assessment of strengths, limitations, and sources of error. Journal of Clinical Monitoring and Computing, 29: 789800.CrossRefGoogle ScholarPubMed
Bernstein, D. P. & Lemmens, H. J. (2005). Stroke volume equation for impedance cardiography. Medical and Biological Engineering and Computers, 43: 443450.CrossRefGoogle ScholarPubMed
Berntson, G. G., Bechara, A., Damasio, H., Tranel, D., Norman, G. J., & Cacioppo, J. T. (2011). The insula and evaluative processes. Psychological Science, 22: 8086.CrossRefGoogle ScholarPubMed
Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., … & van der Molen, M. W. (1997). Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology, 34: 623648.CrossRefGoogle ScholarPubMed
Berntson, G. G. & Cacioppo, J. T. (1999). Heart rate variability: a neuroscientific perspective for furthur studies. Cardiac Electrophysiology Review, 3: 279282.CrossRefGoogle Scholar
Berntson, G. G. & Cacioppo, J. T. (2007). Integrative physiology: homeostasis, allostasis and the orchestration of systemic physiology. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (eds.), Handbook of Psychophysiology, 3rd edn. (pp. 433452). Cambridge University Press.CrossRefGoogle Scholar
Berntson, G. G., Cacioppo, J. T., Binkley, P. F., Uchino, B. N., Quigley, K. S., & Fieldstone, A. (1994). Autonomic cardiac control: III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology, 31: 599608.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1991). Autonomic determinism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98: 459487.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993a). Cardiac psychophysiology and autonomic space in humans: empirical perspectives and conceptual implications. Psychological Bulletin, 114: 296322.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993b). Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30: 183196.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1995). The metrics of cardiac chronotropism: biometric perspectives. Psychophysiology, 32: 162171.CrossRefGoogle ScholarPubMed
Berntson, G. G., Lozano, D. L., & Chen, Y. J. (2005). Filter properties of the root mean square successive difference (RMSSD) statistic in heart rate. Psychophysiology, 42: 246252.CrossRefGoogle ScholarPubMed
Berntson, G. G., Lozano, D. L., Chen, Y. J., & Cacioppo, J. T. (2004). Where to Q in PEP: reliability and validity. Psychophysiology, 41: 333337.CrossRefGoogle Scholar
Berntson, G. G., Norman, G. J., Hawkley, L. C., & Cacioppo, J. T. (2008). Cardiac autonomic balance versus cardiac regulatory capacity. Psychophysiology, 45: 643652.CrossRefGoogle ScholarPubMed
Bertinieri, G., di Rienzo, M., Cavallazzi, A., Ferrari, A. U., Pedotti, A., & Mancia, G. (1985). A new approach to analysis of the arterial baroreflex. Journal of Hypertension, 3: S79S81.Google ScholarPubMed
Billman, G. E. (2013). The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Frontiers in Physiology, 4: article 26.CrossRefGoogle Scholar
Borow, K. M. & Newberger, J. W. (1982). Noninvasive estimation of central aortic pressure using the oscillometric method for analyzing systemic artery pulsatile blood flow: comparative study of indirect systolic, diastolic and mean brachial artery pressure with simultaneous direct ascending aortic pressure measurements. American Heart Journal, 103: 879886.CrossRefGoogle ScholarPubMed
Bosch, J. A., Berntson, G. G., Cacioppo, J. T., Dhabhar, F. S., & Marucha, P. T. (2003). Acute stress evokes a selective mobilization of T cells that differ in chemokine receptor expression: a potential pathway linking immunologic reactivity to cardiovascular disease. Brain, Behavior, & Immunity, 17: 251259.CrossRefGoogle ScholarPubMed
Bosch, J. A., de Geus, E. J., Kelder, A., Veerman, E. C., Hoogstraten, J., & Amerongen, A. V. (2001). Differential effects of active versus passive coping on secretory immunity. Psychophysiology, 38: 836846.CrossRefGoogle ScholarPubMed
Brack, K. E. (2015). The heart’s “little brain” controlling cardiac function in the rabbit. Experimental Physiology, 100: 348353.CrossRefGoogle Scholar
Bresler, M. A., Sheffy, K., Pillar, G., Preiszler, M., & Herscovici, S. (2008). Differentiating between light and deep sleep stages using an ambulatory device based on peripheral arterial tonometry. Physiological Measurement, 29: 571584.CrossRefGoogle ScholarPubMed
Brownley, K. A., Hurwitz, B. E., & Schneiderman, N. (2000). Cardiovascular psychophysiology. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (eds.), Handbook of Psychophysiology, 2nd edn. (pp. 224264). Cambridge University Press.Google Scholar
Cacioppo, J. T. (1994). Social neuroscience: autonomic, neuroendocrine, and immune responses to stress. Psychophysiology, 31: 113128.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Berntson, G. G., Binkley, P. F., Quigley, K. S., Uchino, B. N., & Fieldstone, A. (1994). Autonomic cardiac control: II. Basal response, noninvasive indices, and autonomic space as revealed by autonomic blockades. Psychophysiology, 31: 586598.CrossRefGoogle Scholar
Cacioppo, J. T. & Hawkley, L. C. (2003). Social isolation and health, with an emphasis on underlying mechanisms. Perspectives in Biology and Medicine, 46 S39S52.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Hawkley, L. C., Crawford, L. E., Ernst, J. M., Burleson, M. H., Kowalski, R. B., Malarkey, W. B., Van Cauter, E., & Berntson, G. G. (2002). Loneliness and health: potential mechanisms. Psychosomatic Medicine, 64: 407417.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Malarkey, W. B., Kiecolt-Glaser, J. K., Uchino, B. N., Sgoutas-Emch, S. A., Sheridan, J. F., … & Glaser, R. (1995). Heterogeneity in neuroendocrine and immune responses to brief psychological stressors as a function of autonomic cardiac activation. Psychosomatic Medicine, 57: 154164.CrossRefGoogle ScholarPubMed
Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (eds.) (2007). Handbook of Psychophysiology. Cambridge University Press.CrossRefGoogle Scholar
Capuana, L. J., Dywan, J., Tays, W. J., Elmers, J. L., Witherspoon, R., & Segalowitz, S. J. (2014). Factors influencing the role of cardiac autonomic regulation in the service of cognitive control. Biological Psychology, 102: 8889.CrossRefGoogle ScholarPubMed
Cechetto, D. F. (2014). Cortical control of the autonomic nervous system. Experimental Physiology, 99: 326331.CrossRefGoogle ScholarPubMed
Chin, K. Y. & Panerai, R. B. (2012). Comparative study of Finapres devices. Blood Pressure Monitoring, 17: 171178.CrossRefGoogle ScholarPubMed
Chowdhary, S., Marsh, A. M., Coote, J. H., & Townend, J. N. (2004). Nitric oxide and cardiac muscarinic control in humans. Hypertension, 43: 10231028.CrossRefGoogle ScholarPubMed
Chung, J. (2009). Echocardiography in 2009: state of the art. Journal of Invasive Cardiology, 21: 346351.Google ScholarPubMed
Cnockaert, L., Migeotte, P. F., Daubigny, L., Prisk, G. K., Grenez, F., & , R. C. (2008). A method for the analysis of respiratory sinus arrhythmia using continuous wavelet transforms. IEEE Transactions in Biomedical Engineering, 55: 16401642.CrossRefGoogle ScholarPubMed
Cole, S. W., Hawkley, L. C., Arevalo, J. M., & Cacioppo, J. T. (2011). Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes. Proceedings of the National Academy of Sciences of the USA, 108: 30803085.CrossRefGoogle Scholar
Contrada, R. J. (1992). T-wave amplitude: on the meaning of a psychophysiological index. Biological Psychology, 33: 249258.CrossRefGoogle ScholarPubMed
Corretti, M. C., Anderson, T. J., Benjamin, E. J., Celermajer, D., Charbonneau, F., Creager, M. A., … & Vogel, R. (2002). Guidelines for the ultrasound assessment of endothelial-dependent flow-mediated vasodilation of the brachial artery. Journal of the American College of Cardiology, 39: 257265.CrossRefGoogle ScholarPubMed
Cotter, G., Schachner, A., Sasson, L., Dekel, H., & Moshkovitz, Y. (2006). Impedance cardiography revisited. Physiological Measures, 27: 817827.CrossRefGoogle ScholarPubMed
Critchley, H. D., Nagai, Y., Gray, M. A., & Mathias, C. J. (2011). Dissecting axes of autonomic control in humans: insights from neuroimaging. Autonomic Neuroscience, 161: 3442.CrossRefGoogle ScholarPubMed
Critchley, H. D., Rotshtein, P., Nagai, Y., O’Doherty, J., Mathias, C. J., & Dolan, R. J. (2005a). Activity in the human brain predicting differential heart rate responses to emotional facial expressions. NeuroImage, 24: 751762.CrossRefGoogle ScholarPubMed
Critchley, H. D., Taggart, P., Sutton, P. M., Holdright, D. R., Batchvarov, V., Hnatkova, K., … & Dolan, R. J. (2005b). Mental stress and sudden cardiac death: asymmetric midbrain activity as a linking mechanism. Brain, 128: 7585.CrossRefGoogle ScholarPubMed
Cybulski, G. (2011). Ambulatory Impedance Cardiography: The Systems and their Applications (Lecture Notes in Electrical Engineering). Berlin: Springer-Verlag.CrossRefGoogle Scholar
Dampney, R. A., Polson, J. W., Potts, P. D., Hirooka, Y., & Horiuchi, J. (2003). Functional organization of brain pathways subserving the baroreceptor reflex: studies in conscious animals using immediate early gene expression. Cellular and Molecular Neurobiology, 23: 597616.CrossRefGoogle ScholarPubMed
Davies, J. I. & Struthers, A. D. (2003). Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses. Journal of Hypertension, 21: 463472.CrossRefGoogle ScholarPubMed
De Vito, P. (2014). Atrial natriuretic peptide: an old hormone or a new cytokine? Peptides, 58: 108116.CrossRefGoogle ScholarPubMed
deBoer, R. W., Karemaker, J. M., & Strackee, J. (1987). Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. American Journal of Physiology, 253: 680689.Google ScholarPubMed
Demeter, R. J., Parr, K. L., Toth, P. D., & Woods, J. R. (1993). Use of noninvasive bioelectric impedance to predict cardiac output in open heart recovery. Biological Psychology, 36: 2332.CrossRefGoogle ScholarPubMed
Dessy, C., Moniotte, S., Ghisdal, P., Havaux, X., Noirhomme, P., & Balligand, J. L. (2004). Endothelial β3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. Circulation, 110: 948954.CrossRefGoogle ScholarPubMed
Di Rienzo, M., Parati, G., Castiglioni, P., Tordi, R., Mancia, G., & Pedotti, A. (2001). Baroreflex effectiveness index: an additional measure of baroreflex control of heart rate in daily life. American Journal of Physiology, 280: R744R751.Google ScholarPubMed
Docherty, J. R. (2002). Age-related changes in adrenergic neuroeffector transmission. Autonomic Neuroscience, 96: 812.CrossRefGoogle ScholarPubMed
Eckberg, D. L. (1997). Sympathovagal balance: a critical appraisal. Circulation, 96: 32243232.CrossRefGoogle ScholarPubMed
Eckberg, D. L. (1998). Sympathovagal balance: a critical appraisal – reply. Circulation, 98: 26432644.Google ScholarPubMed
Eckberg, D. L. (2000). Physiological basis for human autonomic rhythms. Annals of Medicine, 32: 341349.CrossRefGoogle ScholarPubMed
Eckberg, D. L. (2003). The human respiratory gate. Journal of Physiology, 548: 339352.Google ScholarPubMed
Fabiani, M., Low, K. A., Tan, C. H., Zimmerman, B., Fletcher, M. A., Schneider-Garces, N., … & Gratton, G. 2014. Taking the pulse of aging: mapping pulse pressure and elasticity in cerebral arteries with optical methods. Psychophysiology, 51: 10721088.CrossRefGoogle ScholarPubMed
Fitzsimons, J. T. (1998). Angiotensin, thirst, and sodium appetite. Physiological Reviews, 78: 583686.CrossRefGoogle ScholarPubMed
Frederiks, J., Swenne, C. A., TenVoorde, B. J., Honzíková, N., Levert, J. V., Maan, A. C., … & Bruschke, A. V. (2000). The importance of high-frequency paced breathing in spectral baroreflex sensitivity assessment. Journal of Hypertension, 18: 16351644.CrossRefGoogle ScholarPubMed
Fukuda, N. & Granzier, H. L. (2005). Titin/connectin-based modulation of the Frank-Starling mechanism of the heart. Journal of Muscle Research & Cell Motility, 26: 319323.CrossRefGoogle Scholar
Fukuda, N., Terui, T., Ishiwata, S. I., & Kurihara, S. (2010). Titin-based regulations of diastolic and systolic functions of mammalian cardiac muscle. Journal of Molecular and Cellular Cardiology, 48: 876881.CrossRefGoogle ScholarPubMed
Fukuda, N., Terui, T., Ohtsuki, I., Ishiwata, S. I., & Kurihara, S. (2009). Titin and troponin: central players in the Frank-Starling mechanism of the heart. Current Cardiology Reviews, 5: 119124.CrossRefGoogle Scholar
Furedy, J. J., Heslegrave, R. J., & Scher, H. (1992). T-wave amplitude utility revisited: some physiological and psychophysiological considerations. Biological Psychology, 33: 241248.CrossRefGoogle ScholarPubMed
Gang, Y. & Malik, M. (2002). Heart rate variability in critical care medicine. Current Opinion in Critical Care, 8: 371375.CrossRefGoogle ScholarPubMed
Gianaros, P. J., May, J. C., Siegle, G. J., & Jennings, J. R. (2005). Is there a functional neural correlate of individual differences in cardiovascular reactivity? Psychosomatic Medicine, 67: 3139.CrossRefGoogle Scholar
Gianaros, P. J., Onyewuenyi, I. C., Sheu, L. K., Christie, I. C., & Critchley, H. D. (2012). Brain systems for baroreflex suppression during stress in humans. Human Brain Mapping, 33: 17001716.CrossRefGoogle ScholarPubMed
Gianaros, P. J. & Quigley, K. S. (2001). Autonomic origins of a nonsignal stimulus-elicited bradycardia and its habituation in humans. Psychophysiology, 38: 540547.CrossRefGoogle ScholarPubMed
Gianaros, P. J., Van Der Veen, F. M., & Jennings, J. R. (2004). Regional cerebral blood flow correlates with heart period and high frequency heart period variability during working memory tasks: implications for the cortical and subcortical regulation of cardiac autonomic activity. Psychophysiology, 41: 521530.CrossRefGoogle ScholarPubMed
Gibbons, R. J. & Araoz, P. A. (2004). The year in cardiac imaging. Journal of the American College of Cardiology, 44: 19371944.CrossRefGoogle ScholarPubMed
Glaser, R., Kiecolt-Glaser, J. K., Malarkey, W. B., & Sheridan, J. F. (1998). The influence of psychological stress on the immune response to vaccines. Annals of the New York Academy of Sciences, 840: 649655.CrossRefGoogle ScholarPubMed
Goedhart, A. D., Kupper, N., Willemsen, G., Boomsma, D. I., & de Geus, E. J. (2006). Temporal stability of ambulatory stroke volume and cardiac output measured by impedance cardiography. Biological Psychology, 72: 110117.CrossRefGoogle ScholarPubMed
Goedhart, A. D., Willemsen, G., Houtveen, J. H., Boomsma, D. I., & De Geus, E. J. (2008). Comparing low frequency heart rate variability and preejection period: two sides of a different coin. Psychophysiology, 45: 10861090.CrossRefGoogle ScholarPubMed
Goldberger, A. L. (2013). Clinical Electrocardiography: A Simplified Approach, 8th edn. Philadelphia, PA: Elsevier Saunders.Google Scholar
Goldin, J. G., Ratib, O., & Aberle, D. R. (2000). Contemporary cardiac imaging: an overview. Journal of Thoracic Imaging, 15: 218229.CrossRefGoogle ScholarPubMed
Goldstein, D. S., Bentho, O., Park, M. Y., & Sharabi, Y. (2011). Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Experimental Physiology, 96: 12551261.CrossRefGoogle Scholar
Graham, F. K. (1978). Constraints on measuring heart rate and period sequentially through real and cardiac time. Psychophysiology, 15: 492495.CrossRefGoogle ScholarPubMed
Gratton, G. & Fabiani, M. (2010). Fast optical imaging of human brain function. Frontiers in Human Neuroscience, 4: 52.Google ScholarPubMed
Gray, A. L., Johnson, T. A., Ardell, J. L., & Massari, V. J. (2004a). Parasympathetic control of the heart: II. A novel interganglionic intrinsic cardiac circuit mediates neural control of heart rate. Journal of Applied Physiology, 96: 22732278.CrossRefGoogle Scholar
Gray, A. L., Johnson, T. A., Lauenstein, J. M., Newton, S. S., Ardell, J. L., & Massari, V. J. (2004b). Parasympathetic control of the heart: III. Neuropeptide Y-immunoreactive nerve terminals synapse on three populations of negative chronotropic vagal preganglionic neurons. Journal of Applied Physiology, 96: 22792287.CrossRefGoogle ScholarPubMed
Gray, M., Nagai, Y., & Critchley, H. D. (2012). Brain imaging of stress and cardiovascular responses. In Hjemdahl, P., Rosengren, A., & Steptoe, A. (eds.), Stress and Cardiovascular Disease (pp. 129148). London: Springer.Google Scholar
Gray, M. A., Rylander, K., Harrison, N. A., Wallin, B. G., & Critchley, H. D. (2009). Following one’s heart: cardiac rhythms gate central initiation of sympathetic reflexes. Journal of Neuroscience, 29: 18171825.CrossRefGoogle ScholarPubMed
Grisk, O. & Rettig, R. (2004). Interactions between the sympathetic nervous system and the kidneys in arterial hypertension. Cardiovascular Research, 61: 238246.CrossRefGoogle ScholarPubMed
Grossman, P., Karemaker, J., & Wieling, W. (1991). Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: the need for respiratory control. Psychophysiology, 28: 201216.CrossRefGoogle ScholarPubMed
Grossman, P. & Kollai, M. (1993). Respiratory sinus arrhythmia, cardiac vagal tone, and respiration: within and between individual relations. Psychophysiology, 30: 486495.CrossRefGoogle ScholarPubMed
Grossman, P., van Beek, J., & Wientjes, C. (1990). A comparison of three quantification methods for estimation of respiratory sinus arrhythmia. Psychophysiology, 27: 702714.CrossRefGoogle ScholarPubMed
Grossman, P., Wilhelm, F. H., & Spoerle, M. (2004). Respiratory sinus arrhythmia, cardiac vagal control, and daily activity. American Journal of Physiology: Heart & Circulatory Physiology, 287: H728H734.Google ScholarPubMed
Guimaraes, S. & Moura, D. (2001). Vascular adrenoceptors: an update. Pharmacological Review, 53: 319356.Google ScholarPubMed
Guthrie, D. & Yucha, C. (2004). Urinary concentration and dilution. Nephrolology Nursing Journal, 31: 297303.Google ScholarPubMed
Guyton, A. C. & Hall, J. E. (2010). Textbook of Medical Physiology, 12th edn. Philadelphia: W. B. Saunders.Google Scholar
Hall, J. E. (2010). Guyton and Hall Textbook of Medical Physiology. New York: Elsevier.Google Scholar
Hansson, G. K. & Hermansson, A. (2011). The immune system in atherosclerosis. Nature Immunology, 12: 204212.CrossRefGoogle ScholarPubMed
Hawkley, L. C., Burleson, M. H., Berntson, G. G., & Cacioppo, J. T. (2003). Loneliness in everyday life: cardiovascular activity, psychosocial context, and health behaviors. Journal of Personality and Social Psychology, 85: 105120.CrossRefGoogle ScholarPubMed
Henelius, A., Sallinen, M., Huotilainen, M., Müller, K., Virkkala, J., & Puolamäki, K. (2014). Heart rate variability for evaluating vigilant attention in partial chronic sleep restriction. Sleep, 37: 12571267.CrossRefGoogle ScholarPubMed
Henry, I. C., Bernstein, D. P., & Banet, M. J. (2012). Stroke volume obtained from the brachial artery using transbrachial electrical bioimpedance velocimetry. In Conference Proceedings of the IEEE Engineering Medicine Biology Society, 2012 (pp. 142145). Piscataway, NJ: IEEE.CrossRefGoogle Scholar
Higgins, C. B. (2000). Cardiac imaging. Radiology, 217: 410.CrossRefGoogle ScholarPubMed
Hoetink, A. E., Faes, T. J., Schuur, E. H., Gorkink, R., Goovaerts, H. G., Meijer, J. H., & Heethaar, R. M. (2002). Comparing spot electrode arrangements for electric impedance cardiography. Physiological Measurement, 23: 457467.CrossRefGoogle ScholarPubMed
Hoetink, A. E., Faes, T. J., Visser, K. R., & Heethaar, R. M. (2004). On the flow dependency of the electrical conductivity of blood. IEEE Transactions on Biomedical Engineering, 51: 12511261.CrossRefGoogle Scholar
Ikarashi, A., Nogawa, M., Yamakoshi, T., Tanaka, S., & Yamakoshi, K. (2006). An optimal spot-electrodes array for electrical impedance cardiography through determination of impedance mapping of a regional area along the medial line on the thorax. Conference Proceedings IEEE Engineering in Medicine and Biology Society, 1: 32023205.CrossRefGoogle ScholarPubMed
Iwata, J. & LeDoux, J. E. (1988). Dissociation of associative and nonassociative concomitants of classical fear conditioning in the freely behaving rat. Behavioral Neuroscience, 102: 6676.CrossRefGoogle ScholarPubMed
Jagadeesh, A. M., Singh, N. G., & Mahankali, S. (2012). A comparison of a continuous noninvasive arterial pressure (CNAP™) monitor with an invasive arterial blood pressure monitor in the cardiac surgical ICU. Annals of Cardiac Anaesthesia, 15: 180184.Google ScholarPubMed
Jennings, J. R., Kamarck, T. W., Everson Rose, S. A., Kaplan, G. A., Manuck, S. B., & Salonen, J. T. (2004). Exaggerated blood pressure responses during mental stress are prospectively related to enhanced carotid atherosclerosis in middle-aged Finnish men. Circulation, 110: 21982203.CrossRefGoogle ScholarPubMed
Jennings, J. R., Tahmoush, A. J., & Redmond, D. P. (1980). Noninvasive measurement of peripheral vascular activity. In Martin, I. & Venables, P. H. (eds.), Techniques in Psychophysiology (pp. 69137). New York: John Wiley.Google Scholar
Johnson, T. A., Gray, A. L., Lauenstein, J. M., Newton, S. S., & Massari, V. J. (2004). Parasympathetic control of the heart: I. An interventriculoseptal ganglion is the major source of the vagal intracardiac innervation of the ventricles. Journal of Applied Physiology, 96: 22652272.CrossRefGoogle ScholarPubMed
Joyner, M. J. & Casey, D. P. (2015). Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiological Reviews, 95: 549601.CrossRefGoogle ScholarPubMed
Karelina, K., Norman, G. J., Zhang, N., Morris, J. S., Peng, H., & DeVries, A. C. (2009). Social isolation alters neuroinflammatory response to stroke. Proceedings of the National Academy of Sciences of the USA, 106: 58955900.CrossRefGoogle ScholarPubMed
Kauppinen, P. K., Hyttinen, J. A., & Malmivuo, J. A. (1998). Sensitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model. Annals of Biomedical Engineering, 26: 694702.CrossRefGoogle ScholarPubMed
Kauppinen, P. K., Koobi, T., Hyttinen, J., & Malmivuo, J. (2000). Segmental composition of whole body impedance cardiogram estimated by computer simulations and clinical experiments. Clinical Physiology, 20: 106113.CrossRefGoogle ScholarPubMed
Kelsey, R. M., Reiff, S., Wiens, S., Schneider, T. R., Mezzacappa, E. S., & Guethlein, W. (1998). The ensemble-averaged impedance cardiogram: an evaluation of scoring methods and interrater reliability. Psychophysiology, 35: 337340.CrossRefGoogle ScholarPubMed
Kemmotsu, O., Ueda, M., Otsuka, H., Yamamura, T., Winter, D. C., & Eckerle, J. S. (1991). Arterial tonometry for noninvasive, continuous blood pressure monitoring during anesthesia. Anesthesiology, 75: 333340.CrossRefGoogle ScholarPubMed
Kline, K. P., Ginsburg, G. P., & Johnston, J. R. (1998). T-wave amplitude: relationships to phasic RSA and heart period changes. International Journal of Psychophysiology, 29: 291301.CrossRefGoogle ScholarPubMed
Koh, J., Brown, T. E., Beightol, L. A., & Eckberg, D. L. (1998). Contributions of tidal lung inflation to human R-R interval and arterial pressure fluctuations. Journal of the Autonomic Nervous System, 68: 8995.CrossRefGoogle Scholar
Kreibig, S. D., Gendolla, G. H., & Scherer, K. R. (2012). Goal relevance and goal conduciveness appraisals lead to differential autonomic reactivity in emotional responding to performance feedback. Biological Psychology, 91: 365375.CrossRefGoogle ScholarPubMed
Kubicek, W. G., Karnegis, J. N., Patterson, R. P., Witsoe, D. A., & Mattson, R. H. (1966). Development and evaluation of an impedance cardiac output system. Aerospace Medicine, 37: 12081212.Google ScholarPubMed
Kurzen, H. & Schallreuter, K. U. (2004). Novel aspects in cutaneous biology of acetylcholine synthesis and acetylcholine receptors. Experimental Dermatology, 13: 2730.CrossRefGoogle ScholarPubMed
Kuvin, J. T., Patel, A. R., Sliney, K. A., Pandian, N. G., Rand, W. M., Udelson, J. E., & Karas, R. H. (2001). Peripheral vascular endothelial function testing as a noninvasive indicator of coronary artery disease. Journal of the American College of Cardiology, 38: 18431849.CrossRefGoogle ScholarPubMed
Kuvin, J. T., Patel, A. R., Sliney, K. A., Pandian, N. G., Sheffy, J., Schnall, R. P., … & Udelson, J. E. (2003). Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. American Heart Journal, 146: 168174.CrossRefGoogle ScholarPubMed
Lacey, J. I. & Lacey, B. C. (1962). The law of initial value in the longitudinal study of autonomic constitution: reproducibility of autonomic responses and response patterns over a four year interval. Annals of the New York Academy of Sciences, 98: 12571290.CrossRefGoogle Scholar
Landis, S. C. (1996). The development of cholinergic sympathetic neurons: a role for neuropoietic cytokines? Perspectives in Developmental Neurobiology, 4: 5363.Google ScholarPubMed
Lane, R. D., Reiman, E. M., Ahern, G. L., & Thayer, J. F. (2001). Activity in medial prefrontal cortex correlates with vagal component of heart rate variability during emotion. Brain and Cognition, 47: 97100.Google Scholar
Lang, P. J. (2014). Emotion’s response patterns: the brain and the autonomic nervous system. Emotion Review, 6: 9399.CrossRefGoogle Scholar
Laude, D., Elghozi, J. L., Girard, A., Bellard, E., Bouhaddi, M., Castiglioni, P., … & Stauss, H. M. (2004). Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study). American Journal of Physiology: Regulatory, Integrative and Comparative Physiolology, 286: R226R231.Google Scholar
Lehrer, P. M., Vaschillo, E., Vaschillo, B., Lu, S. E., Eckberg, D. L., Edelberg, R., … & Hamer, R. M. (2003). Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosomatic Medicine, 65: 796805.CrossRefGoogle ScholarPubMed
Levenson, R. W. (2014). Emotion and the autonomic nervous system: introduction to the special section. Emotion Review, 6: 9192.CrossRefGoogle Scholar
Levy, M. N. (1984). Cardiac sympathetic–parasympathetic interactions. Federation Proceedings, 43: 25982602.Google ScholarPubMed
Libby, P. (2003). Vascular biology of atherosclerosis: overview and state of the art. American Journal of Cardiology, 91: 3A6A.CrossRefGoogle ScholarPubMed
Lindh, B. & Hokfelt, T. (1990). Structural and functional aspects of acetylcholine peptide coexistence in the autonomic nervous system. Progress in Brain Research, 84: 175191.CrossRefGoogle ScholarPubMed
Litvack, D. A., Oberlander, T. F., Carney, L. H., & Saul, J. P. (1995). Time and frequency domain methods for heart rate variability analysis: a methodological comparison. Psychophysiology, 32: 492504.CrossRefGoogle ScholarPubMed
Llabre, M. M., Ironson, G. H., Spitzer, S. B., Gellman, M. D., Weidler, D. J., & Schneiderman, N. (1988). How many blood pressure measurements are enough? An application of generalizability theory to the study of blood pressure reliability. Psychophysiology, 25: 97106.CrossRefGoogle Scholar
Longmore, J., Bradshaw, C. M., & Szabadi, E. (1985). Effects of locally and systemically administered cholinoceptor antagonists on the secretory response of human eccrine sweat glands to carbachol. British Journal of Clinical Pharmacology, 20: 17.CrossRefGoogle ScholarPubMed
Lozano, D. L., Norman, G., Knox, D., Wood, B. L., Miller, B. D., Emery, C. F., & Berntson, G. G. (2007). Where to B in dZ/dt. Psychophysiology, 44: 113119.CrossRefGoogle Scholar
Luchner, A. & Schunkert, H. (2004). Interactions between the sympathetic nervous system and the cardiac natriuretic peptide system. Cardiovascular Research, 63: 443449.CrossRefGoogle ScholarPubMed
Lymperopoulos, A. (2013). Physiology and pharmacology of the cardiovascular adrenergic system. Frontiers in Physiology, 4: 240.CrossRefGoogle ScholarPubMed
Macfarlane, P. W., van Oosterom, A., Janse, M., Kligfield, P., Camm, J., & Pahlm, O. (2012). Basic Electrocardiology: Cardiac Electrophysiology, ECG Systems and Mathematical Modeling. New York: Springer.CrossRefGoogle Scholar
Machado-Moreira, C. A., McLennan, P. L., Lillioja, S., van Dijk, W., Caldwell, J. N., & Taylor, N. A. (2012). The cholinergic blockade of both thermally and non-thermally induced human eccrine sweating. Experimental Physiology, 97: 930942.CrossRefGoogle ScholarPubMed
Malliani, A. (1999). The pattern of sympathovagal balance explored in the frequency domain. News in Physiological Sciences, 14: 111117.Google ScholarPubMed
Martínez-García, P., Lerma, C., & Infante, O. (2012). Baroreflex sensitivity estimation by the sequence method with delayed signals. Clinical Autonomic Research, 22: 289297.CrossRefGoogle ScholarPubMed
Matthews, K. A., Salomon, K., Brady, S. S., & Allen, M. T. (2003). Cardiovascular reactivity to stress predicts future blood pressure in adolescence. Psychosomatic Medicine, 65: 410415.CrossRefGoogle ScholarPubMed
Matthews, S. C., Paulus, M. P., Simmons, A. N., Nelesen, R. A., & Dimsdale, J. E. (2004). Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. NeuroImage, 22: 11511156.CrossRefGoogle ScholarPubMed
Monti, A., Medigue, C., & Mangin, L. (2002). Instantaneous parameter estimation in cardiovascular time series by harmonic and time-frequency analysis. IEEE Transactions in Biomedical Engineering, 49: 15471556.CrossRefGoogle ScholarPubMed
Moshkovitz, Y., Kaluski, E., Milo, O., Vered, Z., & Cotter, G. (2004). Recent developments in cardiac output determination by bioimpedance: comparison with invasive cardiac output and potential cardiovascular applications. Current Opinion in Cardiology, 19: 229237.CrossRefGoogle ScholarPubMed
Norman, G. J., Berntson, G. G., & Cacioppo, J. T. (2014). Emotion, somatovisceral afference, and autonomic regulation. Emotion Review, 6: 113123.CrossRefGoogle Scholar
Norman, G. J., Karelina, K., Morris, J. S., Zhang, N., Cochran, M., & DeVries, A. C. (2010a). Social interaction prevents the development of depressive-like behavior post nerve injury in mice: a potential role for oxytocin. Psychosomatic Medicine, 72: 519526.CrossRefGoogle ScholarPubMed
Norman, G. J., Zhang, N., Morris, J. S., Karelina, K., Berntson, G. G., & DeVries, A. C. (2010b). Social interaction modulates autonomic, inflammatory, and depressive-like responses to cardiac arrest and cardiopulmonary resuscitation. Proceedings of the National Academy of Sciences of the USA, 107: 1634216347.CrossRefGoogle ScholarPubMed
O’Brien, E. (1996). Review. A century of confusion: which bladder for accurate blood pressure measurement? Journal of Human Hypertension, 10: 565572.Google ScholarPubMed
Padgett, D. A., Sheridan, J. F., Dorne, J., Berntson, G. G., Candelora, J., & Glaser, R. (1998). Social stress and the reactivation of latent herpes simplex virus type 1. Proceedings of the National Academy of Sciences of the USA, 95: 72317235.CrossRefGoogle ScholarPubMed
Parati, G., Di Rienzo, M., & Mancia, G. (2000). How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. Journal of Hypertension, 18: 719.CrossRefGoogle ScholarPubMed
Parati, G., Ongaro, G., Bilo, G., Glavina, F., Castiglioni, P., Di Rienzo, M., & Mancia, G. (2003). Noninvasive beat to beat blood pressure monitoring: new developments. Blood Pressure Monitoring, 8: 3136.CrossRefGoogle Scholar
Park, G. & Thayer, J. F. (2014). From the heart to the mind: cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli. Frontiers in Psychology, 5: 278.CrossRefGoogle ScholarPubMed
Parker, P., Celler, B. G., Potter, E. K., & McCloskey, D. I. (1984). Vagal stimulation and cardiac slowing. Journal of the Autonomic Nervous System, 11: 226231.CrossRefGoogle ScholarPubMed
Parry, M. J. & McFetridge-Durdle, J. (2006). Ambulatory impedance cardiography: a systematic review. Nursing Research, 55: 283291.CrossRefGoogle ScholarPubMed
Pépin, J. L., Tamisier, R., Borel, J. C., Baguet, J. P., & Lévy, P. (2009). A critical review of peripheral arterial tone and pulse transit time as indirect diagnostic methods for detecting sleep disordered breathing and characterizing sleep structure. Current Opinion in Pulmonary Medicine, 15: 550558.CrossRefGoogle ScholarPubMed
Persson, P. B., Di Rienzo, M., Castiglioni, P., Cerutti, C., Pagani, M., Honzikova, N., … & Parati, G. (2001). Time versus frequency domain techniques for assessing baroreflex sensitivity. Journal of Hypertension, 19: 16991705.CrossRefGoogle ScholarPubMed
Picciotto, M. R., Higley, M. J., & Mineur, Y. S. (2012). Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 76: 116129.CrossRefGoogle ScholarPubMed
Pirola, F. T. & Potter, E. K. (1990). Vagal action on atrioventricular conduction and its inhibition by sympathetic stimulation and neuropeptide Y in anaesthetised dogs. Journal of the Autonomic Nervous System, 31: 112.CrossRefGoogle ScholarPubMed
Pittman, S. D., Ayas, N. T., MacDonald, M. M., Malhotra, A., Fogel, R. B., & White, D. P. (2004). Using a wrist-worn device based on peripheral arterial tonometry to diagnose obstructive sleep apnea: in-laboratory and ambulatory validation. Sleep, 27: 923933.CrossRefGoogle ScholarPubMed
Poliakova, N., Dionne, G., Dubreuil, E., Ditto, B., Pihl, R. O., Pérusse, D., … & Boivin, M. (2014). A methodological comparison of the Porges algorithm, fast Fourier transform, and autoregressive spectral analysis for the estimation of heart rate variability in 5-month-old infants. Psychophysiology, 51: 579583.CrossRefGoogle ScholarPubMed
Porges, S. W. (1992). Autonomic regulation and attention. In Campbell, B. A., Hayne, H., & Richardson, R. (eds.), Attention and Information Processing in Infants and Adults (pp. 201223). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Porges, S. W. & Bohrer, R. E. (1990). Analysis of periodic processes in psychophysiological research. In Cacioppo, J. T. & Tassinary, L. G. (eds.), Principles of Psychophysiology: Physical, Social and Inferential Elements (pp. 708753). Cambridge University Press.Google Scholar
Powell, N. D., Sloan, E. K., Bailey, M. T., Arevalo, J. M., Miller, G. E., Chen, E., & Cole, S. W. (2013). Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via β-adrenergic induction of myelopoiesis. Proceedings of the National Academy of Sciences of the USA, 110: 1657416579.CrossRefGoogle ScholarPubMed
Pumprla, J., Howorka, K., Groves, D., Chester, M., & Nolan, J. (2002). Functional assessment of heart rate variability: physiological basis and practical applications. International Journal of Cardiology, 84: 114.CrossRefGoogle ScholarPubMed
Qu, M. H., Zhang, Y. J., Webster, J. G., & Tompkins, W. J. (1986). Motion artifact from spot and band electrodes during impedance cardiography. IEEE Transactions in Biomedical Engineering, 33: 10291036.CrossRefGoogle ScholarPubMed
Quan, N., Avitsur, R., Stark, J. L., He, L., Lai, W., Dhabhar, F., & Sheridan, J. F. (2003). Molecular mechanisms of glucocorticoid resistance in splenocytes of socially stressed male mice. Journal of Neuroimmunology, 137: 5158.CrossRefGoogle ScholarPubMed
Quigley, K. S. & Berntson, G. G. (1996) Autonomic interactions and chronotropic control of the heart: heart period vs. heart rate. Psychophysiology, 33: 605611.CrossRefGoogle Scholar
Quigley, K. S. & Stifter, C. A. (2006). A comparative validation of sympathetic reactivity in children and adults. Psychophysiology, 43: 357365.CrossRefGoogle ScholarPubMed
Raaijmakers, E., Faes, T. J., Scholten, R. J., Goovaerts, H. G., & Heethaar, R. M. (1999). A meta-analysis of published studies concerning the validity of thoracic impedance cardiography. Annals of the New York Academy of Sciences, 873: 121127.CrossRefGoogle ScholarPubMed
Randall, W., Wurster, R., Randall, D., & Xi Moy, S. (1996). From cardioaccelerator and inhibitory nerves to a “heart brain”: an evolution of concepts. In Shepard, J. T. & Vatner, S. F. (eds.), Nervous Control of the Heart. Amsterdam: Harwood Academic Publishers.Google Scholar
Rashba, E. J., Cooklin, M., MacMurdy, K., Kavesh, N., Kirk, M., Sarang, S., … & Gold, M. R. (2002). Effects of selective autonomic blockade on T-wave alternans in humans. Circulation, 105: 837842.CrossRefGoogle ScholarPubMed
Ren, L. M., Furukawa, Y., Karasawa, Y., Murakami, M., Takei, M., Narita, M., & Chiba, S. (1991). Differential inhibition of neuropeptide Y on the chronotropic and inotropic responses to sympathetic and parasympathetic stimulation in the isolated, perfused dog atrium. Journal of Pharmacology and Experimental Therapeutics, 259: 3843.Google ScholarPubMed
Reyes del Paso, G. A., González, I., & Hernández, J. A. (2004a). Baroreceptor sensitivity and effectiveness varies differentially as a function of cognitive-attentional demands. Biological Psychology, 67: 385395.CrossRefGoogle ScholarPubMed
Reyes del Paso, G. A., Hernández, J. A., & González, I. (2004b). Differential analysis in the time domain of the baroreceptor cardiac reflex sensitivity as a function of sequence length. Psychophysiology, 41: 483488.CrossRefGoogle ScholarPubMed
Reyes del Paso, G. A., Langewitz, W., Mulder, L. J., van Roon, A., & Duschek, S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology, 50: 477487.CrossRefGoogle ScholarPubMed
Richardson, R. J., Grkovic, I., & Anderson, C. R. (2003). Immunohistochemical analysis of intracardiac ganglia of the rat heart. Cell and Tissue Research, 314: 337350.CrossRefGoogle ScholarPubMed
Riese, H., Groot, P. F., van den Berg, M., Kupper, N. H., Magnee, E. H., Rohaan, E. J., … & de Geus, E. J. (2003). Large-scale ensemble averaging of ambulatory impedance cardiograms. Behavioral Research Methods, Instruments and Computers, 35: 467477.CrossRefGoogle ScholarPubMed
Riniolo, T. & Porges, S. W. (1997). Inferential and descriptive influences on measures of respiratory sinus arrhythmia: sampling rate, R-wave trigger accuracy, and variance estimates. Psychophysiology, 34: 613621.CrossRefGoogle ScholarPubMed
Rose, S. C. (2000). Noninvasive vascular laboratory for evaluation of peripheral arterial occlusive disease: Part I. Hemodynamic principles and tools of the trade. Journal of Vascular and Interventional Radiology, 11: 11071114.CrossRefGoogle ScholarPubMed
Rosengren, A., Hawken, S., Ounpuu, S., Sliwa, K., Zubaid, M., Almahmeed, W. A., … & Yusuf, S. (2004). Association of psychosocial risk factors with risk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case control study. Lancet, 364: 953962.CrossRefGoogle ScholarPubMed
Sampaio, K. N., Mauad, H., Spyer, K. M., & Ford, T. W. (2003). Differential chronotropic and dromotropic responses to focal stimulation of cardiac vagal ganglia in the rat. Experimental Physiology, 88: 315327.CrossRefGoogle ScholarPubMed
Shapiro, D., Jamner, L. D., Lane, J. D., Light, K. C., Myrtek, M., Sawada, Y., & Steptoe, A. (1996). Blood pressure publication guidelines. Psychophysiology, 33: 112.CrossRefGoogle ScholarPubMed
Shechter, M., Issachar, A., Marai, I., Koren-Morag, N., Freinark, D., Shahar, Y., & Feinberg, M. S. (2009). Long-term association of brachial artery flow-mediated vasodilation and cardiovascular events in middle-aged subjects with no apparent heart disease. International Journal of Cardiology, 134: 5258.CrossRefGoogle ScholarPubMed
Sheridan, J. F., Stark, J. L., Avitsur, R., & Padgett, D. A. (2000). Social disruption, immunity, and susceptibility to viral infection: role of glucocorticoid insensitivity and NGF. Annals of the New York Academy of Sciences, 917: 894905.CrossRefGoogle ScholarPubMed
Sherwood, A., Allen, M. T., Fahrenberg, J., Kelsey, R. M., Lovallo, W. R., & van Doornen, L. J. (1990). Methodological guidelines for impedance cardiography. Psychophysiology, 27: 123.Google ScholarPubMed
Sherwood, A., Dolan, C. A., & Light, K. C. (1990). Hemodynamics of blood pressure responses during active and passive coping. Psychophysiology, 27: 656668.CrossRefGoogle ScholarPubMed
Sherwood, A., Royal, S. A., Hutcheson, J. S., & Turner, J. R. (1992). Comparison of impedance cardiographic measurements using band and spot electrodes. Psychophysiology, 29: 734741.CrossRefGoogle ScholarPubMed
Simmons, W. K., Avery, J. A., Barcalow, J. C., Bodurka, J., Drevets, W. C., & Bellgowan, P. (2013). Keeping the body in mind: insula functional organization and functional connectivity integrate interoceptive, exteroceptive, and emotional awareness. Human Brain Mapping, 34: 29442958.CrossRefGoogle Scholar
Smith, L. L., Kukielka, M., & Billman, G. E. (2005). Heart rate recovery after exercise: a predictor of ventricular fibrillation susceptibility after myocardial infarction. American Journal of Physiology: Heart and Circulatory Physiology, 288: H17631769.Google ScholarPubMed
Somsen, R. J., Jennings, J. R., & Van der Molen, M. W. (2004). The cardiac cycle time effect revisited: temporal dynamics of the central-vagal modulation of heart rate in human reaction time tasks. Psychophysiology, 41: 941953.CrossRefGoogle ScholarPubMed
Stankovic, Z., Allen, B. D., Garcia, J., Jarvis, K. B., & Mark, M. (2014). 4D flow imaging with MRI. Cardiovascular Diagnosis and Therapy, 4: 173192.Google ScholarPubMed
Steptoe, A., Godaert, G., Ross, A., & Schreurs, P. (1983). The cardiac and vascular components of pulse transmission time: a computer analysis of systolic time intervals. Psychophysiology, 20: 251259.CrossRefGoogle ScholarPubMed
Steptoe, A. & Sawada, Y. (1989). Assessment of baroreceptor reflex function during mental stress and relaxation. Psychophysiology, 26: 140147.CrossRefGoogle ScholarPubMed
Strike, P. C. & Steptoe, A. (2004). Psychosocial factors in the development of coronary artery disease. Progress in Cardiovascular Disesase, 46: 337347.CrossRefGoogle ScholarPubMed
Stuiver, A., de Waard, D., Brookhuis, K. A., Dijksterhuis, C., Lewis-Evans, B., & Mulder, L. J. (2012). Short-term cardiovascular responses to changing task demands. International Journal of Psychophysiology, 85: 153160.CrossRefGoogle ScholarPubMed
Stuiver, A. & Mulder, B. (2014). Cardiovascular state changes in simulated work environments. Frontiers in Neuroscience, 8: article 399.CrossRefGoogle ScholarPubMed
Swenne, C. A. (2013). Baroreflex sensitivity: mechanisms and measurement. Netherlands Heart Journal, 21: 5860.CrossRefGoogle Scholar
Takahashi, H., Maehara, K., Onuki, N., Saito, T., & Maruyama, Y. (2003). Decreased contractility of the left ventricle is induced by the neurotransmitter acetylcholine, but not by vagal stimulation in rats. Japanese Heart Journal, 44: 257270.CrossRefGoogle Scholar
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation, 93: 10431065.CrossRef
Ter Horst, G. J., Hautvast, R. W., De Jongste, M. J., & Korf, J. (1996). Neuroanatomy of cardiac activity regulating circuitry: a transneuronal retrograde viral labelling study in the rat. European Journal of Neuroscience, 8: 20292041.CrossRefGoogle ScholarPubMed
Thayer, J. F. & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33: 8188.CrossRefGoogle Scholar
Thayer, J. F. & Uijtdehaage, S. H. (2001). Derivation of chronotropic indices of autonomic nervous system activity using impedance cardiography. Biomedical Sciences Instrumentation, 37: 331336.Google ScholarPubMed
Thayer, J. F., Yamamoto, S. S., & Brosschot, J. F. (2010). The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. International Journal of Cardiology, 141: 122131.CrossRefGoogle ScholarPubMed
Thijssen, D. H., Black, M. A., Pyke, K. E., Padilla, J., Atkinson, G., Harris, R. A., … & Green, D. J. (2011). Assessment of flow-mediated dilation in humans: a methodological and physiological guideline. American Journal of Physiology: Heart and Circulatory Physiology, 300: H2H12.Google ScholarPubMed
Tomaka, J., Blascovich, J., Kelsey, R. M., & Leitten, C. L. (1993). Subjective, physiological, and behavioral effects of threat and challenge appraisal. Journal of Personality and Social Psychology, 65: 248260.CrossRefGoogle Scholar
Tomaka, J., Blascovich, J., & Swart, L. (1994). Effects of vocalization on cardiovascular and electrodermal responses during mental arithmetic. International Journal of Psychophysiology, 18: 2333.CrossRefGoogle ScholarPubMed
Ursino, M. & Magosso, E. (2003). Short-term autonomic control of cardiovascular function: a mini review with the help of mathematical models. Journal of Integrative Neuroscience, 2: 219247.CrossRefGoogle ScholarPubMed
Vallbo, A. B., Hagbarth, K. E., & Wallin, B. G. (2004). Microneurography: how the technique developed and its role in the investigation of the sympathetic nervous system. Journal of Applied Physiology, 96: 12621269.CrossRefGoogle ScholarPubMed
Van De Water, J. M., Miller, T. W., Vogel, R. L., Mount, B. E., & Dalton, M. L. (2003). Impedance cardiography: the next vital sign technology? Chest, 123: 20282033.CrossRefGoogle ScholarPubMed
van der Meer, B. J., Vonk Noordegraaf, A., Bax, J. J., Kamp, O., & de Vries, P. M. (1999). Non-invasive evaluation of left ventricular function by means of impedance cardiography. Acta Anaesthesiology Scandinavica, 43: 130134.CrossRefGoogle ScholarPubMed
van Dijk, A. E., van Lien, R., van Eijsden, M., Gemke, R. J., Vrijkotte, T. G., & de Geus, E. J. (2013). Measuring cardiac autonomic nervous system (ANS) activity in children. Journal of Visualized Experiments (JOVE), 29: e50073. Scholar
van Lien, R., Neijts, M., Willemsen, G., & de Geus, E. J. (2015). Ambulatory measurement of the ECG T-wave amplitude. Psychophysiology, 52: 225237.CrossRefGoogle ScholarPubMed
van Lien, R., Schutte, N. M., Meijer, J. H., & de Geus, E. J. (2013). Estimated preejection period (PEP) based on the detection of the R-wave and dZ/dt-min peaks does not adequately reflect the actual PEP across a wide range of laboratory and ambulatory conditions. International Journal of Psychophysiology, 87: 6069.CrossRefGoogle Scholar
van Montfrans, G. A. (2001). Oscillometric blood pressure measurements: progress and problems. Blood Pressure Monitoring, 6: 287290.CrossRefGoogle Scholar
Van Roon, A. M., Mulder, L. J., Althaus, M., & Mulder, G. (2004). Introducing a baroreflex model for studying cardiovascular effects of mental workload. Psychophysiology, 41: 961981.CrossRefGoogle ScholarPubMed
van Vark, L. C., Bertrand, M., Akkerhuis, K. M., Brugts, J. J., Fox, K., Mourad, J. J., & Boersma, E. (2012). Angiotensin-converting enzyme inhibitors reduce mortality in hypertension: a meta-analysis of randomized clinical trials of renin–angiotensin–aldosterone system inhibitors involving 158998 patients. European Heart Journal, 33: 20882097.CrossRefGoogle ScholarPubMed
Vuurmans, T. J. L., Boer, P., & Koomans, H. A. (2003). Effects of endothelin1 and endothelin1 receptor blockade on cardiac output, aortic pressure, and pulse wave velocity in humans. Hypertension, 41: 12531258.CrossRefGoogle Scholar
Wallin, B. G. & Charkoudian, N. (2007). Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity. Muscle and Nerve, 36: 595614.CrossRefGoogle ScholarPubMed
Wang, Y. P., Kuo, T. B., Lai, C. T., Lee, G. S., & Yang, C. C. (2012). Effects of breathing frequency on baroreflex effectiveness index and spontaneous baroreflex sensitivity derived by sequence analysis. Journal of Hypertension, 30: 21512158.CrossRefGoogle ScholarPubMed
Ward, A. R., Alarcón, G., Nigg, J. T., & Musser, E. D. (2015). Variation in parasympathetic dysregulation moderates short-term memory problems in childhood attention-deficit/hyperactivity disorder. Journal of Abnormal Child Psychology, 43: 15731583.CrossRefGoogle ScholarPubMed
Watkins, L., Fainman, C., Dimsdale, J., & Ziegler, M. (1995). Assessment of baroreflex control from beat-to-beat blood pressure and heart rate changes: a validation study. Psychophysiology, 32: 411414.CrossRefGoogle ScholarPubMed
Weber, E. J., Molenaar, P. C., & van der Molen, M. W. (1992). A nonstationarity test for the spectral analysis of physiological time series with an application to respiratory sinus arrhythmia. Psychophysiology, 29: 5565.CrossRefGoogle ScholarPubMed
Weyman, A. E. (2005). The year in echocardiography. Journal of the American College of Cardiology, 45: 448455.CrossRefGoogle ScholarPubMed
Wilhelm, F. H., Grossman, P., & Coyle, M. A. (2004). Improving estimation of cardiac vagal tone during spontaneous breathing using a paced breathing calibration. Biomedical Sciences Instrumentation, 40: 317324.Google ScholarPubMed
Wilhelm, F. H., Grossman, P., & Roth, W. T. (1999). Analysis of cardiovascular regulation. Biomedical Sciences and Instrumentation, 35: 135140.Google ScholarPubMed
Wilkinson, I. B. & Webb, D. J. (2001). Venous occlusion plethysmography in cardiovascular research: methodology and clinical applications. British Journal of Clinical Pharmacology, 52: 631646.CrossRefGoogle ScholarPubMed
Wood, D. (2001). Established and emerging cardiovascular risk factors. American Heart Journal, 141: 4957.CrossRefGoogle ScholarPubMed
Woods, R. L. (2004). Cardioprotective functions of atrial natriuretic peptide and B-type natriuretic peptide: a brief review. Clinical and Experimental Pharmacology and Physiology, 31: 791794.CrossRefGoogle ScholarPubMed