Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-cxxrm Total loading time: 1.604 Render date: 2021-12-04T04:33:17.937Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Section 2 - Reproductive Biology and Cryobiology

Published online by Cambridge University Press:  27 March 2021

Jacques Donnez
Affiliation:
Catholic University of Louvain, Brussels
S. Samuel Kim
Affiliation:
University of Kansas School of Medicine
Get access
Type
Chapter
Information
Fertility Preservation
Principles and Practice
, pp. 35 - 66
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Weng, SL, Taylor, SL, Morshedi, M et al. Caspase activity and apoptotic markers in ejaculated human sperm. Mol Hum Reprod, 2002;8:984991.CrossRefGoogle ScholarPubMed
Paasch, U, Grunewald, S, Agarwal, A, Glandera, HJ. Activation pattern of caspases in human spermatozoa. Fertil Steril, 2004;81 (Suppl. 1):802809.CrossRefGoogle ScholarPubMed
Barroso, G, Morshedi, M, Oehninger, S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod, 2000;15:13381344.CrossRefGoogle ScholarPubMed
Almeida, C, Sousa, M, Barros, A. Phosphatidylserine translocation in human spermatozoa from impaired spermatogenesis. Reprod Biomed Online, 2009;19:770777.CrossRefGoogle ScholarPubMed
Koppers, AJ, De Iuliis, GN, Finnie, JM, McLaughlin, EA, Aitken, RJ. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab, 2008;93:31993207.CrossRefGoogle ScholarPubMed
Aitken, RJ, De Iuliis, GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod, 2010;16:313.CrossRefGoogle ScholarPubMed
Aitken, RJ, Koopman, P, Lewis, SE. Seeds of concern. Nature, 2004;432:4852.CrossRefGoogle ScholarPubMed
Sakkas, D, Moffatt, O, Manicardi, GC et al. Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod, 2002;66:10611067.CrossRefGoogle ScholarPubMed
Aitken, RJ, De Iuliis, GN, McLachlan, RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl, 2009;32:4656.CrossRefGoogle ScholarPubMed
Muriel, L, Garrido, N, Ferna´ndez, JL et al. Value of the sperm deoxyribonucleic acid fragmentation level, as measured by the sperm chromatin dispersion test, in the outcome of in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril, 2006;85:371383.CrossRefGoogle ScholarPubMed
Zini, A, Boman, JM, Belzile, E, Ciampi, A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod, 2008;23:26632668.CrossRefGoogle ScholarPubMed
Aitken, RJ, De Iuliis, GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online, 2007;14:727733.CrossRefGoogle ScholarPubMed
Benchaib, M, Lornage, J, Mazoyer, C et al. Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril, 2007;87:93100.CrossRefGoogle ScholarPubMed
Van Voorhis, BJ. Clinical practice. In vitro fertilization. N Engl J Med, 2007;356:379386.CrossRefGoogle ScholarPubMed
Aitken, RJ. Just how safe is assisted reproductive technology for treating male infertility? Expert Rev Obstet Gynaecol, 2008;3:267271.CrossRefGoogle Scholar
Uppangala, S, Pudakalakatti, S, D’souza, F et al. Influence of sperm DNA damage on human preimplantation embryo metabolism. Reprod Biol, 2016;16:234241.CrossRefGoogle ScholarPubMed
Hansen, M, Kurinczuk, JJ, Bower, C, Webb, S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med, 2002;346:725730.CrossRefGoogle ScholarPubMed
Maher, ER, Afnan, M, Barratt, CL. Epigenetic risks related to assisted reproductive technologies: epigenetics, imprinting, ART and icebergs? Hum Reprod, 2003;18:25082511.CrossRefGoogle ScholarPubMed
Shiota, K, Yamada, S. Intrauterine environment-genome interaction and children’s development (3): assisted reproductive technologies and developmental disorders. J Toxicol Sci, 2009;34 (Suppl. 2):S287S291.Google Scholar
Hansen, M, Colvin, L, Petterson, B et al. Admission to hospital of singleton children born following assisted reproductive technology (ART). Hum Reprod, 2008;23:12971305.CrossRefGoogle Scholar
Ericson, A, Nygren, KG, Olausson, PO, Kallen, B. Hospital care utilization of infants born after IVF. Hum Reprod, 2002;17:929932.CrossRefGoogle ScholarPubMed
Kallen, B, Finnstrom, O, Nygren, KG, Olausson, PO. In vitro fertilization in Sweden: child morbidity including cancer risk. Fertil Steril, 2005;84:605610.CrossRefGoogle ScholarPubMed
Klemetti, R, Sevon, T, Gissler, M, Hemminki, E. Health of children born as a result of in vitro fertilization. Pediatrics, 2006;118:18191827.CrossRefGoogle ScholarPubMed
Ludwig, AK, Katalinic, A, Thyen, U et al. Physical health at 5.5 years of age of term-born singletons after intracytoplasmic sperm injection: results of a prospective, controlled, single-blinded study. Fertil Steril, 2009;91:115124.CrossRefGoogle ScholarPubMed
Wikstrand, MH, Niklasson, A, Strömland, K, Hellström, A. Abnormal vessel morphology in boys born after intracytoplasmic sperm injection. Acta Paediatr, 2008;97:15121517.CrossRefGoogle ScholarPubMed
Kissin, DM, Zhang, Y, Boulet, SL et al. Association of assisted reproductive technology (ART) treatment and parental infertility diagnosis with autism in ART-conceived children. Hum Reprod, 2015;30:454465.CrossRefGoogle ScholarPubMed
Ponjaert-Kristoffersen, I, Bonduelle, M, Barnes, J et al. International collaborative study of intracytoplasmic sperm injection-conceived, in vitro fertilization-conceived, and naturally conceived 5-year-old child outcomes: cognitive and motor assessments. Pediatrics, 2005;115:e283e289.CrossRefGoogle ScholarPubMed
Ludwig, A, Katalinic, A, Thyen, U et al. Neuromotor development and mental health at 5.5 years of age of singletons born at term after intracytoplasmatic sperm injection ICSI: results of a prospective controlled single-blinded study in Germany. Fertil Steril, 2009;91:125132.CrossRefGoogle ScholarPubMed
Baujat, G, Legeai-Mallet, L, Finidori, G, Cormier-Daire, V, Le Merrer, M. Achondroplasia. Best Pract Res Clin Rheumatol, 2008;22:318.CrossRefGoogle ScholarPubMed
Dunson, DB, Colombo, B, Baird, DD. Changes with age in the level and duration of fertility in the menstrual cycle. Hum Reprod, 2002;17:13991403.CrossRefGoogle ScholarPubMed
Singh, NP, Muller, CH, Berger, RE. Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril, 2003;80:14201430.CrossRefGoogle ScholarPubMed
Schmid, TE, Eskenazi, B, Baumgartner, A et al. The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod, 2007;22:180187.CrossRefGoogle ScholarPubMed
Smit, M, Romijn, JC, Wildhagen, MF, Weber, RF, Dohle, GR. Sperm chromatin structure is associated with the quality of spermatogenesis in infertile patients. Fertil Steril, 2010;94(5):17481752. CrossRefGoogle ScholarPubMed
Sloter, E, Nath, J, Eskenazi, B, Wyrobek, AJ. Effects of male age on the frequencies of germinal and heritable chromosomal abnormalities in humans and rodents. Fertil Steril, 2004;81:925943.CrossRefGoogle ScholarPubMed
Sloter, ED, Marchetti, F, Eskenazi, B et al. Frequency of human sperm carrying structural aberrations of chromosome 1 increases with advancing age. Fertil Steril, 2007;87:10771086.CrossRefGoogle ScholarPubMed
Crow, JF. The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet, 2000;1:4047.CrossRefGoogle ScholarPubMed
Goriely, A, Hansen, RM, Taylor, IB et al. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat Genet, 2009;41:12471252.CrossRefGoogle ScholarPubMed
Sipos, A, Rasmussen, F, Harrison, G et al. Paternal age and schizophrenia: a population based cohort study. BMJ, 2004;329:1070.CrossRefGoogle ScholarPubMed
Reichenberg, A, Gross, R, Weiser, M et al. Advancing paternal age and autism. Arch Gen Psychiatry, 2006;63:10261032.CrossRefGoogle ScholarPubMed
Frans, EM, Sandin, S, Reichenberg, A et al. Advancing paternal age and bipolar disorder. Arch Gen Psychiatry, 2008;65:10341040.CrossRefGoogle ScholarPubMed
Green, RF, Devine, O, Crider, KS et al. Association of paternal age and risk for major congenital anomalies from the National Birth Defects Prevention Study, 1997–2004. Ann Epidemiol, 2010;20:241249.CrossRefGoogle Scholar
Zhu, JL, Vestergaard, M, Madsen, KM, Olsen, J. Paternal age and mortality in children. Eur J Epidemiol, 2008;23:443447.CrossRefGoogle ScholarPubMed
Herati, AS, Zhelyazkova, BH, Butler, PR et al. Age-related alterations in the genetics and genomics of the male germ line. Fertil Steril, 2017;107:319323.CrossRefGoogle ScholarPubMed
Weir, CP, Robaire, B. Spermatozoa have decreased antioxidant enzymatic capacity and increased reactive oxygen species production during aging in the Brown Norway rat. J Androl, 2007;28:229240.CrossRefGoogle ScholarPubMed
Fraga, CG, Motchnik, PA, Shigenaga, MK et al. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci U S A, 1991;88:1100311006.CrossRefGoogle ScholarPubMed
Fraga, CG, Motchnik, PA, Wyrobek, AJ, Rempel, DM, Ames, BN. Smoking and low antioxidant levels increase oxidative damage to DNA. Mut Res, 1996;351:199203.CrossRefGoogle Scholar
Mostafa, T, Tawadrous, G, Roaia, MM et al. Effect of smoking on seminal plasma ascorbic acid in infertile and fertile males. Andrologia, 2006;38:221224.CrossRefGoogle ScholarPubMed
Zenzes, MT. Smoking and reproduction: gene damage to human gametes and embryos. Hum Reprod Update, 2000;6:122131.CrossRefGoogle ScholarPubMed
Ji, BT, Shu, XO, Linet, MS et al. Paternal cigarette smoking and the risk of childhood cancer among offspring of non-smoking mothers. J Natl Cancer Inst, 1997;89:238244.CrossRefGoogle Scholar
Chang, JS. Parental smoking and childhood leukemia. Methods Mol Biol, 2009;472:103137.CrossRefGoogle ScholarPubMed
Plichart, M, Menegaux, F, Lacour, B et al. Parental smoking, maternal alcohol, coffee and tea consumption during pregnancy and childhood malignant central nervous system tumours: the ESCALE study (SFCE).Eur J Cancer Prev, 2008;17:376383.CrossRefGoogle Scholar
Rudant, J, Menegaux, F, Leverger, G et al. Childhood hematopoietic malignancies and parental use of tobacco and alcohol: the ESCALE study (SFCE). Cancer Causes Control, 2008;19:12771290.CrossRefGoogle Scholar
Lee, KM, Ward, MH, Han, S et al. Paternal smoking, genetic polymorphisms in CYP1A1 and childhood leukemia risk. Leuk Res, 2009;33:250258.CrossRefGoogle ScholarPubMed
Abel, EL. Paternal and maternal alcohol consumption: effects on offspring in two strains of rats. Alcohol Clin Exp Res, 1989;13:533541.CrossRefGoogle ScholarPubMed
Stoichev, II, Todorov, DK, Christova, LT. Dominant-lethal mutations and micronucleus induction in male BALB/c, BDF1 and H mice by tobacco smoke. Mutat Res, 1993;319:285292.CrossRefGoogle Scholar
Chabory, E, Damon, C, Lenoir, A et al. Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest, 2009;119:20742085.Google ScholarPubMed
De Iuliis, GN, Thomson, LK, Mitchell, LA et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2’-deoxyguanosine, a marker of oxidative stress. Biol Reprod, 2009;81:517524.CrossRefGoogle ScholarPubMed
Kodama, H, Yamaguchi, R, Fukuda, J, Kasai, H, Tanaka, T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril, 1997;68:519524.CrossRefGoogle ScholarPubMed
Badouard, C, Me´ne´zo, Y, Panteix, G et al. Determination of new types of DNA lesions in human sperm. Zygote, 2008;16:913.CrossRefGoogle ScholarPubMed
Horak, S, Polanska, J, Widlak, P. Bulky DNA adducts in human sperm: relationship with fertility, semen quality, smoking, and environmental factors. Mutat Res, 2003;537:5365.CrossRefGoogle ScholarPubMed
Gaspari, L, Chang, SS, Santella, RM et al. Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as a marker of DNA damage and infertility. Mutat Res, 2003;535:155160.CrossRefGoogle ScholarPubMed
Knudson, CM, Tung, KS, Tourtellotte, WG, Brown, GA, Korsmeyer, SJ. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science, 1995;270:9699.CrossRefGoogle ScholarPubMed
Rodriguez, I, Ody, C, Araki, K, Garcia, I, Vassalli, P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J, 1997;16:22622270.CrossRefGoogle ScholarPubMed
Boekelheide, K. Mechanisms of toxic damage to spermatogenesis. J Natl Cancer Inst Monogr, 2005;34:68.CrossRefGoogle Scholar
Barroso, G, Morshedi, M, Oehninger, S. Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod, 2000;15:13381344.CrossRefGoogle ScholarPubMed
Sakkas, D, Mariethoz, E, St John, JC. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp Cell Res, 1999;251:350355.CrossRefGoogle ScholarPubMed
Meyer-Ficca, ML, Lonchar, J, Credidio, C et al. Disruption of poly(ADP-ribose) homeostasis affects spermiogenesis and sperm chromatin integrity in mice. Biol Reprod, 2009;81:4655.CrossRefGoogle ScholarPubMed
Zhao, M, Shirley, CR, Hayashi, S et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis, 2004;38:200213.CrossRefGoogle ScholarPubMed
Walters, JLH, De Iuliis, GN, Dun, MD et al. Pharmacological inhibition of arachidonate 15-lipoxygenase protects human spermatozoa against oxidative stress. Biol Reprod, 2018;98:784794.CrossRefGoogle ScholarPubMed
Khaki, A, Fathiazad, F, Nouri, M et al. Beneficial effects of quercetin on sperm parameters in streptozotocin-induced diabetic male rats. Phytother Res, 2010;24(9):1285–1291.CrossRefGoogle Scholar
Metukuri, MR, Reddy, CM, Reddy, PR, Reddanna, P. Bacterial LPS mediated acute inflammation-induced spermatogenic failure in rats: role of stress response proteins and mitochondrial dysfunction. Inflammation, 2010;33(4):235243.CrossRefGoogle ScholarPubMed
Issam, C, Samir, H, Zohra, H, Monia, Z, Hassen, BC. Toxic responses to deltamethrin (DM) low doses on gonads, sex hormones and lipoperoxidation in male rats following subcutaneous treatments. J Toxicol Sci, 2009;34:663670.CrossRefGoogle ScholarPubMed
Pin˜a-Guzma´n, B, Sa´nchez-Gutie´rrez, M, Marchetti, F et al. Methyl-parathion decreases sperm function and fertilization capacity after targeting spermatocytes and maturing spermatozoa. Toxicol Appl Pharmacol, 2009;238:141149.CrossRefGoogle Scholar
Aly, HA, Dome`nech, O, Abdel-Naim, AB. Aroclor 1254 impairs spermatogenesis and induces oxidative stress in rat testicular mitochondria. Food Chem Toxicol, 2009;47:17331738.CrossRefGoogle ScholarPubMed
Rezvanfar, M, Sadrkhanlou, R, Ahmadi, A et al. Protection of cyclophosphamide-induced toxicity in reproductive tract histology, sperm characteristics, and DNA damage by an herbal source; evidence for role of free-radical toxic stress. Hum Exp Toxicol, 2008;27:901910.CrossRefGoogle ScholarPubMed
Ozen, OA, Kus, MA, Kus, I, Alkoc, OA, Songur, A. Protective effects of melatonin against formaldehyde-induced oxidative damage and apoptosis in rat testes: an immunohistochemical and biochemical study. Syst Biol Reprod Med, 2008;54:169176.CrossRefGoogle ScholarPubMed
Aly, HA, Lightfoot, DA, El-Shemy, HA. Modulatory role of lipoic acid on lipopolysaccharide-induced oxidative stress in adult rat Sertoli cells in vitro. Chem Biol Interact, 2009;182:112118.CrossRefGoogle ScholarPubMed
Piña-Guzmán, B, Solís-Heredia, MJ, Rojas-García, AE et al. Genetic damage caused by methyl-parathion in mouse spermatozoa is related to oxidative stress. Toxicol Appl Pharmacol, 2006;216:216224.CrossRefGoogle ScholarPubMed
Shaman, JA, Yamauchi, Y, Ward, WS. Sperm DNA fragmentation: awakening the sleeping genome. Biochem Soc Trans, 2007;35:626628.CrossRefGoogle ScholarPubMed
Boaz, SM, Dominguez, K, Shaman, JA, Ward, WS. Mouse spermatozoa contain a nuclease that is activated by pretreatment with EGTA and subsequent calcium incubation. J Cell Biochem, 2008;103:16361645.CrossRefGoogle ScholarPubMed
Zubkova, EV, Robaire, B. Effects of ageing on spermatozoal chromatin and its sensitivity to in vivo and in vitro oxidative challenge in the Brown Norway rat. Hum Reprod, 2006;21:29012910.CrossRefGoogle ScholarPubMed
Lozano, GM, Bejarano, I, Espino, J et al. Relationship between caspase activity and apoptotic markers in human sperm in response to hydrogen peroxide and progesterone. J Reprod Dev, 2009;55:615621.CrossRefGoogle ScholarPubMed
Koppers, AJ, Mitchell, LA, Wang, P et al. Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem J, 2011;436:687698.CrossRefGoogle Scholar
De Iuliis, GN, Newey, RJ, King, BV, Aitken, RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One, 2009;4:e6446.CrossRefGoogle ScholarPubMed
Mitchell, LA, De Iuliis, GN, Aitken, RJ. The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality:development of an improved methodology. Int J Androl, 2010;34(1):2–13.CrossRefGoogle Scholar
Thompson, LA, Barratt, CL, Bolton, AE, Cooke, ID. The leukocytic reaction of the human uterine cervix. Am J Reprod Immunol, 1992;28:8589.CrossRefGoogle ScholarPubMed
Kurosaka, K, Takahashi, M, Watanabe, N, Kobayashi, Y. Silent cleanup of very early apoptotic cells by macrophages. J Immunol, 2003;171:46724679.CrossRefGoogle ScholarPubMed
Ricci, G, Perticarari, S, Fragonas, E et al. Apoptosis in human sperm: its correlation with semen quality and the presence of leukocytes. Hum Reprod, 2002;17:26652672.CrossRefGoogle ScholarPubMed
Pujianto, DA, Curry, BJ, Aitken, RJ. Prolactin exerts a prosurvival effect on human spermatozoa via mechanisms that involve the stimulation of Akt phosphorylation and suppression of caspase activation and capacitation. Endocrinology, 2010;151(3):12691279.CrossRefGoogle ScholarPubMed
Safari, H, Khanlarkhani, N, Sobhani, A et al. Effect of brain-derived neurotrophic factor (BDNF) on sperm quality of normozoospermic men. Hum Fertil (Camb), 2018;21(4):248–254.CrossRefGoogle Scholar
Fahy, GM, Wowk, B. Principles of ice-free cryopreservation by vitrification. Methods Mol Biol, 2020;2180:(in press).Google Scholar
Fahy, GM. Overview of biological vitrification. In Liebermann, J, Tucker, M (eds.) Vitrification in Assisted Reproduction: From Basic Science to Clinical Application. New York: Taylor & Francis Books, Ltd. 2015, 122.Google Scholar
Sakurai, M, Furuki T, Akao K et al. Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc Natl Acad Sci U S A, 2008;105:50935098.CrossRefGoogle Scholar
Hengherr, S, Worland, MR, Reuner, A, Brummer, F, Schill, RO. High-temperature tolerance in anhydrobiotic tardigrades is limited by glass transition. Physiol Biochem Zool, 2009;82:749755.CrossRefGoogle ScholarPubMed
Gehenio, PM, Luyet, BJ. A study of the mechanism of death by cold in the plasmodium of the myxomycetes. Biodynamica, 1939;2:122.Google Scholar
Luyet, BJ, Gehenio, PM. The mechanism of injury and death by low temperature. Biodynamica, 1940;3:3360.Google Scholar
Goetz, A, Goetz, SS. Vitrification and crystallization of organic cells at low temperatures. J Applied Physics, 1938;9:718729.CrossRefGoogle Scholar
Luyet, B. The vitrification of organic colloids and of protoplasm. Biodynamica, 1937;1:114.Google Scholar
Fahy, GM, Hirsh, A. Prospects for organ preservation by vitrification. In Pegg, DE, Jacobsen, IA, Halasz, NA (eds.) Organ Preservation, Basic and Applied Aspects. Lancaster: MTP Press. 1982, 399404.CrossRefGoogle Scholar
Mazur, P. Cryobiology: the freezing of biological systems. Science, 1970;168:939949.CrossRefGoogle ScholarPubMed
Mullen, SF, Fahy, GM. Fundamental aspects of vitrification as a method of reproductive cell, tissue, and organ cryopreservation. In Donnez, J, Kim, S (eds) Principles & Practice of Fertility Preservation. Cambridge: Cambridge University Press. 2011, 145163.CrossRefGoogle Scholar
Mazur, P, Schneider, U, Mahowald, AP. Characteristics and kinetics of subzero chilling injury in Drosophila embryos. Cryobiology, 1992;29:3968.CrossRefGoogle ScholarPubMed
Mazur, P, Cole, KW, Hall, JW, Schreuders, PD, Mahowald, AP. Cryobiological preservation of Drosophila embryos. Science, 1992;258:18961897.CrossRefGoogle ScholarPubMed
Steponkus, PL, Myers SP, Lynch DV et al. Cryopreservation of Drosophila melanogaster embryos. Nature, 1990;345:170172.CrossRefGoogle ScholarPubMed
Martino, A, Songsasen, N, Leibo, SP. Development into blastocysts of bovine oocytes cryopreserved by ultra-rapid cooling. Biol Reprod, 1996;54:10591069.CrossRefGoogle ScholarPubMed
Rall, WF, Meyer, TK. Zona fracture damage and its avoidance during the cryopreservation of mammalian embryos. Theriogenology, 1989;31:683692.CrossRefGoogle ScholarPubMed
Williams, RJ, Carnahan, DL. Fracture faces and other interfaces as ice nucleation sites. Cryobiology, 1990;27:479482.CrossRefGoogle ScholarPubMed
Rall, WF, Fahy, GM. Ice-free cryopreservation of mouse embryos at −196°C by vitrification. Nature, 1985;313:573575.CrossRefGoogle Scholar
Seki, S, Jin, B, Mazur, P. Extreme rapid warming yields high functional survivals of vitrified 8-cell mouse embryos even when suspended in a half-strength vitrification solution and cooled at moderate rates to −196°C. Cryobiology, 2014;68:7178.CrossRefGoogle Scholar
Vajta, G, Kuwayama, M, Vanderzwalmen, P. Disadvantages and benefits of vitrification. In Tucker, MJ, Liebermann, J (eds.) Vitrification in Assisted Reproduction, A User’s Manual and Trouble-Shooting Guide. London: Informa UK. 2007, 3344.CrossRefGoogle Scholar
Vajta, G. Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod Biomed Online, 2006;12:779796.CrossRefGoogle ScholarPubMed
Taylor, MJ, Song, YC, Brockbank, KG. Vitrification in tissue preservation: new developments. In Fuller, BJ, Lane, N, Benson, EE (eds.) Life in the Frozen State. Boca Raton: CRC Press. 2004, 603641.CrossRefGoogle Scholar
Fahy, GM. Vitrification. In McGrath, JJ, Diller, KR (eds.) Low Temperature Biotechnology: Emerging Applications and Engineering Contributions. New York: American Society of Mechanical Engineers. 1988, 113146.Google Scholar
Fahy, GM, MacFarlane, DR, Angell, CA, Meryman, HT. Vitrification as an approach to cryopreservation. Cryobiology, 1984;21:407426.CrossRefGoogle ScholarPubMed
Wowk, B. Thermodynamic aspects of vitrification. Cryobiology, 2010;60:1122.CrossRefGoogle ScholarPubMed
Angell, CA. Liquid fragility and the glass transition in water and aqueous solutions. Chemical Reviews, 2002;102:26272650.CrossRefGoogle ScholarPubMed
Fahy, GM, Rall, WF. Vitrification: An overview. In Liebermann, J, Tucker, MJ (eds.) Vitrification in Assisted Reproduction: A User’s Manual and Troubleshooting Guide. London: Informa Healthcare. 2007, 120.Google Scholar
Bruggeller, P, Mayer, E. Complete vitrification in pure liquid water and dilute aqueous solutions. Nature, 1980;288:569571.CrossRefGoogle Scholar
Fahy, GM, Levy, DI, Ali, SE. Some emerging principles underlying the physical properties, biological actions, and utility of vitrification solutions. Cryobiology, 1987;24:196213.CrossRefGoogle ScholarPubMed
MacFarlane, DR. Devitrification in glass-forming aqueous solutions. Cryobiology, 1986;23:230244.CrossRefGoogle Scholar
MacFarlane, DR, Forsyth, M. Devitrification and recrystallization of glass forming aqueous solutions. In Pegg, DE, Karow, AM, Jr (eds.) The Biophysics of Organ Cryopreservation. New York: Plenum Press. 1987, 237257.CrossRefGoogle Scholar
Takahashi, T, Hirsh, A, Erbe, EF et al. Vitrification of human monocytes. Cryobiology, 1986;23:103115.CrossRefGoogle ScholarPubMed
Fahy, GM. Understanding and controlling ice nucleation and growth in the renal inner medulla. Cryobiology, 2015;71:540.CrossRefGoogle Scholar
Forsyth, M, MacFarlane, DR. Recrystallization revisited. Cryo-Letters, 1986;7:367378.Google Scholar
Goetz, A, Goetz, SS. Death by devitrification in yeast cells. Biodynamica, 1938;2:18.Google Scholar
Bank, H. Visualization of freezing damage. II. Structural alterations during warming. Cryobiology, 1973;10:157170.CrossRefGoogle ScholarPubMed
Boutron, P. Comparison with the theory of the kinetics and extent of ice crystallization and of the glass-forming tendency in aqueous cryoprotective solutions. Cryobiology, 1986;23:88102.CrossRefGoogle ScholarPubMed
Boutron, P, Mehl, P. Theoretical prediction of devitrification tendency: determination of critical warming rates without using finite expansions. Cryobiology, 1990;27:359377.CrossRefGoogle ScholarPubMed
Boutron, P. Glass-forming tendency and stability of the amorphous state in solutions of a 2,3-butanediol containing mainly the levo and dextro isomers in water, buffer, and Euro-Collins. Cryobiology, 1993;30:8697.CrossRefGoogle Scholar
Stiles, W. On the cause of cold death of plants. Protoplasma, 1930;9:459468.CrossRefGoogle Scholar
Anonymous. Curriculum vitae and list of publications of B. J. Luyet. Cryobiology, 1975;12:440453.Google Scholar
Luyet, BJ, Thoennes, G. The survival of plant cells immersed in liquid air. Science, 1938;88:284285.CrossRefGoogle ScholarPubMed
Luyet, BJ, Gehenio, PM. The survival of moss vitrified in liquid air and its relation to water content. Biodynamica, 1938;2:17.Google Scholar
Keith, SC, Jr. Factors influencing the survival of bacteria at temperatures in the vicinity of the freezing point of water. Science, 1913;37:877879.CrossRefGoogle ScholarPubMed
Smith, AU. Effects of low temperatures on living cells and tissues. In Harris, RJC (ed.) Biological Applications of Freezing and Drying. New York: Academic Press. 1954, 153.Google Scholar
Polge, C, Smith, AU, Parkes, AS. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature, 1949;164:666.CrossRefGoogle ScholarPubMed
Lovelock, JE. The protective action of neutral solutes against haemolysis by freezing and thawing. Biochem J, 1954;56:265270.CrossRefGoogle ScholarPubMed
Luyet, BJ, Gehenio, PM. Effect of the rewarming velocity on the survival of embryonic tissues frozen after treatment with ethylene glycol. Biodynamica, 1954;7:213223.Google ScholarPubMed
Meryman, HT. X-ray analysis of rapidly frozen gelatin gels. Biodynamica, 1958;8:6972.Google Scholar
Luyet, B, Rapatz, G. Patterns of ice formation in some aqueous solutions. Biodynamica, 1958;8:168.Google Scholar
Luyet, B. On the amount of water remaining amorphous in frozen aqueous solutions. Biodynamica, 1969;10:277291.Google Scholar
Dubochet, J, McDowall, AW. Vitrification of pure water for electron microscopy. J Microsc, 1981;124:RP3RP4.CrossRefGoogle Scholar
Farrant, J. Mechanism of cell damage during freezing and thawing and its prevention. Nature, 1965;205:12841287.CrossRefGoogle Scholar
Luyet, B, Kroener, C. The temperature of the “glass transition” in aqueous solutions of glycerol and ethylene glycol. Biodynamica, 1966;10:3340.Google ScholarPubMed
Luyet, B, Rasmussen, D. Study by differential thermal analysis of the temperatures of instability of rapidly cooled solutions of glycerol, ethylene glycol, sucrose, and glucose. Biodynamica, 1968;10:167191.Google ScholarPubMed
Rasmussen, D, Luyet, B. Complementary study of some non-equilibrium phase transitions in frozen solutions of glycerol, ethylene glycol, glucose, and sucrose. Biodynamica, 1969;10:319331.Google Scholar
Rasmussen, D, Luyet, B. Contribution to the establishment of the temperature-concentration curves of homogeneous nucleation in solutions of some cryoprotective agents. Biodynamica, 1970;11:3344.Google ScholarPubMed
Luyet, B, Rasmussen, DH. On some inconspicuous changes occurring in aqueous systems subjected to below zero C temperatures. Biodynamica, 1973;11:209215.Google Scholar
Rapatz, G, Luyet, B. Electron microscope study of erythrocytes in rapidly cooled suspensions containing various concentrations of glycerol. Biodynamica, 1968;10:193210.Google ScholarPubMed
Rapatz, G. Resumption of activity in frog hearts after freezing to low temperatures. Biodynamica, 1970;11:112.Google ScholarPubMed
Rapatz, G, Keener, R. Effect of concentration of ethylene glycol on the recovery of frog hearts after freezing to low temperatures. Cryobiology, 1974;11:571572.CrossRefGoogle Scholar
Boutron, P, Kaufmann, A. Stability of the amorphous state in the system water-glycerol-dimethylsulfoxide. Cryobiology, 1978;15:93108.CrossRefGoogle Scholar
Boutron, P, Kaufmann, A. Stability of the amorphous state in the system water-glycerol-ethylene glycol. Cryobiology, 1979;16:8389.CrossRefGoogle Scholar
Boutron, P. Stability of the amorphous state in the system water-1,2-propanediol. Cryobiology, 1979;16:557568.CrossRefGoogle Scholar
Boutron, P. levo- and dextro-2,3-butanediol and their racemic mixture: very efficient solutes for vitrification. Cryobiology, 1990;27:5569.CrossRefGoogle Scholar
Boutron, P, Arnaud, F. Comparison of the cryoprotection of red blood cells by 1,2-propanediol and glycerol. Cryobiology, 1984;21:348358.CrossRefGoogle ScholarPubMed
Mehl, P, Boutron, P. Cryoprotection of red blood cells by 1,3-butanediol and 2,3-butanediol. Cryobiology, 1988;25:4454.CrossRefGoogle ScholarPubMed
James, ER. Cryopreservation of Schistosoma mansoni schistosomula using 40% v/v (10 M) methanol and rapid cooling. Cryo-Letters, 1980;1:535544.Google Scholar
James, ER, Farrant, J. Recovery of infective Schistosoma mansoni schistosomula from liquid nitrogen: a step towards storage of a live schistosomiasis vaccine. Trans Roy Soc Trop Med Hyg, 1977;71:498500.CrossRefGoogle ScholarPubMed
Fahy, GM. Vitrification as an approach to organ cryopreservation: past, present, and future. In Smit Sibinga, CT, Das, PC, Meryman, HT (eds.) Cryopreservation and Low Temperature Biology in Blood Transfusion. Boston: Kluwer. 1990, 255268.CrossRefGoogle Scholar
Fahy, GM. Prospects for vitrification of whole organs. Cryobiology, 1981;18:617.CrossRefGoogle Scholar
MacFarlane, DR, Angell, CA, Fahy, GM. Homogeneous nucleation and glass formation in cryoprotective systems at high pressures. Cryo-Letters, 1981;2:353358.Google Scholar
Fahy, GM, MacFarlane, DR, Angell, CA. Recent progress toward vitrification of kidneys. Cryobiology, 1982;19:668669.CrossRefGoogle Scholar
Fahy, GM, MacFarlane, DR, Angell, CA, Meryman, HT. Vitrification as an approach to cryopreservation. Cryobiology, 1983;20:699.Google Scholar
Rall, WF, Reid, DS, Farrant, J. Innocuous biological freezing during warming. Nature, 1980;286:511514.CrossRefGoogle ScholarPubMed
Rall, WF. The role of intracellular ice in the slow warming injury of mouse embryos. In Zeilmaker, GH (ed.) Frozen Storage of Laboratory Animals. New York: Gustav Fischer Verlag. 1981, 3344.Google Scholar
Lehn-Jensen, H, Rall, WF. Cryomicroscopic observations of cattle embryos during freezing and thawing. Theriogenology, 1983;19:263277.CrossRefGoogle ScholarPubMed
Ashburner, M. Frosted flies. Science, 1992;258:18961897.CrossRefGoogle ScholarPubMed
Mazur, P, Seki, S. Survival of mouse ooctyes after being cooled in a vitrification solution to -196°C at 95° to 70,000 °C/min and warmed at 610° to 118,000 °C/min: A new paradigm for cryopreservation by vitrification. Cryobiology, 2011;62:17.CrossRefGoogle Scholar
Fahy, GM, Wowk B, Wu J et al. Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology, 2004;48:157178.CrossRefGoogle ScholarPubMed
Baudot, A, Alger, L, Boutron, P. Glass-forming tendency in the system water-dimethyl sulfoxide. Cryobiology, 2000;40:151158.CrossRefGoogle ScholarPubMed
Baudot, A, Odagescu, V. Thermal properties of ethylene glycol and aqueous solutions. Cryobiology, 2004;48:283294.CrossRefGoogle ScholarPubMed
Toner, M, Cravalho, EG, Chiang, YM. Vitrification of biological cell suspensions: the importance of ultrarapid cooling and warming. Cryobiology, 1988;25:551.CrossRefGoogle Scholar
Kuleshova, LL, MacFarlane, DR, Trounson, AO, Shaw, JM. Sugars exert a major influence on the vitrification properties of ethylene glycol-based solutions and have low toxicity to embryos and oocytes. Cryobiology, 1999;38:119130.CrossRefGoogle Scholar
Fahy, GM. Process for preparing novel ice-controlling molecules. US Patent 6,303,388 B1 (October 16, 2001).Google Scholar
Wowk, B, Leitl, E, Rasch, CM et al. Vitrification enhancement by synthetic ice blocking agents. Cryobiology, 2000;40:228236.CrossRefGoogle ScholarPubMed
Wowk, B, Fahy, GM. Inhibition of bacterial ice nucleation by polyglycerol polymers. Cryobiology, 2002;44:1423.CrossRefGoogle ScholarPubMed
Kami, D, Kasuga, J, Arakawa, K, Fujikawa, S. Improved cryopreservation by diluted vitrification solution with supercooling-facilitating flavonol glycoside. Cryobiology, 2008;57:242245.CrossRefGoogle ScholarPubMed
Shibao, Y, Fujiwara, K, Kawasaki, Y et al. The effect of a novel cryoprotective agent, carboxylated epsilon-poly-l-lysine, on the developmental ability of re-vitrified mouse embryos at the pronuclear stage. Cryobiology, 2014;68:200204.CrossRefGoogle ScholarPubMed
Takahashi, T, Hirsh, A, Erbe, E, Williams, RJ. Mechanism of cryoprotection by extracellular polymeric solutes. Biophys J, 1988;54:509518.CrossRefGoogle ScholarPubMed
Fahy, GM, Saur, J, Williams, RJ. Physical problems with the vitrification of large biological systems. Cryobiology, 1990;27:492510.CrossRefGoogle ScholarPubMed
Fahy, GM, Wowk B, Pagotan R et al. Physical and biological aspects of renal vitrification. Organogenesis, 2009;5:167175.CrossRefGoogle ScholarPubMed
Pegg, DE, Wusteman, MC, Boylan, S. Fractures in cryopreserved elastic arteries. Cryobiology, 1997;34:183192.CrossRefGoogle ScholarPubMed
McIntyre, RL, Fahy, GM. Aldehyde-stabilized cryopreservation. Cryobiology, 2015;71:448458.CrossRefGoogle ScholarPubMed
Manuchehrabadi, N, Gao Z, Zhang J et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci Transl Med, 2017;9:eaah4586.CrossRefGoogle ScholarPubMed
Ali, J, Shelton, J. Development of vitrification solutions. In Tucker, MJ, Liebermann, J (eds.) Vitrification in Assisted Reproduction, A User’s Manual and Trouble-shooting Guide. London: Informa Healthcare. 2007, 4563.CrossRefGoogle Scholar
Fahy, GM, Wowk, B, Wu, J, Paynter, S. Improved vitrification solutions based on predictability of vitrification solution toxicity. Cryobiology, 2004;48:2235.CrossRefGoogle ScholarPubMed
McGrath, JJ. Cold shock: thermoelastic stress in chilled biological membranes. In Diller, KR (ed.) Network Thermodynamics, Heat and Mass Transfer in Biotechnology. New York: United Engineering Center. 1987, 5766.Google Scholar
Ting, AY, Yeoman RR, Campos JR et al. Morphological and functional preservation of pre-antral follicles after vitrification of macaque ovarian tissue in a closed system. Hum Reprod, 2013;28:12671279.CrossRefGoogle Scholar
Briard, JG, Ferandez, M, de Luna, P, Woo, TK, Ben, RN. QSAR accelerated discovery of potent ice recrystallization inhibitors. Sci Rep, 2016;6 DOI:10.1038/srep26403.CrossRefGoogle ScholarPubMed
Poisson, JS, Acker, JP, Briard, JG, Meyer, JE, Ben, RN. Modulating intracellular ice growth with cell permeable small molecule ice recrystallization inhibitors. Langmuir, 2019 June 11;35(23):74527458.CrossRefGoogle Scholar
Fahy, GM, Guan, N, De Graaf, IAM et al. Cryopreservation of precision-cut tissue slices. Xenobiotica, 2013;43:113132.CrossRefGoogle ScholarPubMed
Fahy, GM. Cryoprotectant toxicity neutralization. Cryobiology, 2010;60:S45S53.CrossRefGoogle ScholarPubMed
Larman, MG, Katz-Jaffe, MG, Sheehan, CB, Gardner, DK. 1,2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology. Hum Reprod, 2007;22:250259.CrossRefGoogle ScholarPubMed
Elmoazzen, HY, Elliott, JA, McGann, LE. Osmotic transport across cell membranes in nondilute solutions: a new nondilute solute transport equation. Biophys J, 2009;96:25592571.CrossRefGoogle ScholarPubMed
Benson, JD, Kearsley, AJ, Higgins, AZ. Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function. Cryobiology, 2012;64:144151.CrossRefGoogle ScholarPubMed
Zeron, Y, Tomczak, M, Crowe, J, Arav, A. The effect of liposomes on thermotropic membrane phase transitions of bovine spermatozoa and oocytes: implications for reducing chilling sensitivity. Cryobiology, 2002;45:143152.CrossRefGoogle ScholarPubMed
Horvath, G, Seidel, GE, Jr. Vitrification of bovine oocytes after treatment with cholesterol-loaded methyl-beta-cyclodextrin. Theriogenology, 2006;66:10261033.CrossRefGoogle ScholarPubMed
Burton, V, Mitchell, HK, Young, P, Petersen, NS. Heat shock protection against cold stress of Drosophila melanogaster. Mol Cell Biol, 1988;8:35503552.CrossRefGoogle ScholarPubMed
Tomczak, MM, Hincha DK, Estrada SD et al. A mechanism for stabilization of membranes at low temperatures by an antifreeze protein. Biophy J, 2002;82:874881.CrossRefGoogle ScholarPubMed
Zhou, GB, Li, N. Cryopreservation of porcine oocytes: recent advances. Mol Hum Reprod, 2009;15:279285.CrossRefGoogle ScholarPubMed
Cameron, RD, Beebe, LF, Blackshaw, AW. Cryopreservation and transfer of pig embryos. Soc Reprod Fertil Suppl, 2006;62:277291.Google ScholarPubMed
Song, YC et al. Stability of vitrified tissues in the vapor phase of liquid nitrogen. Cryobiology, 2002;45:243.Google Scholar