Skip to main content Accessibility help
×
Home
Hostname: page-component-99c86f546-45s75 Total loading time: 2.144 Render date: 2021-12-03T04:09:24.338Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Section 7 - Ovarian Cryopreservation and Transplantation

Published online by Cambridge University Press:  27 March 2021

Jacques Donnez
Affiliation:
Catholic University of Louvain, Brussels
S. Samuel Kim
Affiliation:
University of Kansas School of Medicine
Get access
Type
Chapter
Information
Fertility Preservation
Principles and Practice
, pp. 243 - 322
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, CY, Rosendahl, M, Byskov, AG et al. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod, 2008;23:22662272.CrossRefGoogle ScholarPubMed
Demeestere, I, Simon, P, Emiliani, S et al. Fertility preservation: successful transplantation of cryopreserved ovarian tissue in a young patient previously treated for Hodgkin’s disease. The Oncologist, 2007;12:14371442.CrossRefGoogle Scholar
Donnez, J, Dolmans, MM. Fertility preservation in women. N Engl J Med, 2017;377:16571665.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM, Demylle, D et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. The Lancet, 2004;364:14051410.CrossRefGoogle ScholarPubMed
Gellert, S, Pors, S, Kristensen, SG et al. Transplantation of frozen-thawed ovarian tissue: an update on worldwide activity published in peer-reviewed papers and on the Danish cohort. J Assist Reprod Genet, 2018;35:561570.CrossRefGoogle ScholarPubMed
Meirow, D, Levron, J, Eldar-Geva, T et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med, 2005;353:318321.CrossRefGoogle Scholar
Roux, C, Amiot, C, Agnani, G et al. Live birth after ovarian tissue autograft in a patient with sickle cell disease treated by allogeneic bone marrow transplantation. Fertil Steril, 2010;93:2413. e15e19.CrossRefGoogle Scholar
Sánchez-Serrano, M, Crespo, J, Mirabet, V et al. Twins born after transplantation of ovarian cortical tissue and oocyte vitrification. Fertil Steril, 2010;93:268. e11e13.CrossRefGoogle ScholarPubMed
Silber, S, DeRosa, M, Pineda, Je et al. A series of monozygotic twins discordant for ovarian failure: ovary transplantation (cortical versus microvascular) and cryopreservation. Hum Reprod, 2008;23:15311537.CrossRefGoogle ScholarPubMed
Morris, RT. The ovarian graft. New York Medical Journal, 1895;62:697698.Google Scholar
Parrott, DM. The fertility of mice with orthotopic ovarian grafts derived from frozen tissue. J Reprod Fertil, 1960;1:230241.CrossRefGoogle Scholar
Gosden, R, Baird, D, Wade, J et al. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at-196 C. Hum Reprod, 1994;9:597603.CrossRefGoogle Scholar
Goding, J, McCracken, J, Baird, D. The study of ovarian function in the ewe by means of a vascular autotransplantation technique. J Endocrinol, 1967;39:37-NP.CrossRefGoogle Scholar
Winston, R, Browne, JM. Pregnancy following autograft transplantation of fallopian tube and ovary in the rabbit. The Lancet, 1974;304:494495.CrossRefGoogle Scholar
Scott, JR, Keye, WR, Poulson, AM et al. Microsurgical ovarian transplantation in the primate. Fertil Steril, 1981;36:512515.CrossRefGoogle ScholarPubMed
Leporrier, M, Von Theobald, P, Roffe, JL et al. A new technique to protect ovarian function before pelvic irradiation: heterotopic ovarian autotransplantation. Cancer, 1987;60:22012204.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Silber, SJ, Grudzinskas, G, Gosden, RG. Successful pregnancy after microsurgical transplantation of an intact ovary. N Engl J Med, 2008;359:26172618.CrossRefGoogle ScholarPubMed
Wang, X, Chen, H, Yin, H et al. Cryopreservation: fertility after intact ovary transplantation. Nature, 2002;415:385.CrossRefGoogle ScholarPubMed
von Wolff, M, Donnez, J, Hovatta, O et al. Cryopreservation and autotransplantation of human ovarian tissue prior to cytotoxic therapy–a technique in its infancy but already successful in fertility preservation. Eur J Cancer, 2009;45:15471553.CrossRefGoogle ScholarPubMed
Van der Ven, H, Liebenthron, J, Beckmann, M et al. Ninety-five orthotopic transplantations in 74 women of ovarian tissue after cytotoxic treatment in a fertility preservation network: tissue activity, pregnancy and delivery rates. Hum Reprod, 2016;31:20312041.CrossRefGoogle Scholar
Dittrich, R, Maltaris, T. A simple freezing protocol for the use of an open freezing system for cryopreservation of ovarian tissue. Cryobiology, 2006;52:166.CrossRefGoogle ScholarPubMed
Bagis, H, Aktoprakligil, D, Mercan, HO et al. Stable transmission and transcription of newfoundland ocean pout type III fish antifreeze protein (AFP) gene in transgenic mice and hypothermic storage of transgenic ovary and testis. Mol Reprod Devel, 2006;73:14041411.CrossRefGoogle ScholarPubMed
Arav, A, Natan, D. Directional freezing of reproductive cells and organs. Reprod Dom Anim, 2012;47:193196.CrossRefGoogle ScholarPubMed
Bos-Mikich, A, Marques, L, Rodrigues, JL et al. The use of a metal container for vitrification of mouse ovaries, as a clinical grade model for human ovarian tissue cryopreservation, after different times and temperatures of transport. J Assist Reprod Genet, 2012;29:12671271.CrossRefGoogle Scholar
Youm, HW, Lee, JR, Lee, J et al. Optimal vitrification protocol for mouse ovarian tissue cryopreservation: effect of cryoprotective agents and in vitro culture on vitrified–warmed ovarian tissue survival. Hum Reprod, 2013;29:720730.CrossRefGoogle ScholarPubMed
Lee, J, Kim, SK, Youm, HW et al. Effects of three different types of antifreeze proteins on mouse ovarian tissue cryopreservation and transplantation. PLoS One, 2015;10:e0126252.CrossRefGoogle ScholarPubMed
Lee, JR, Youm, HW, Lee, HJ et al. Effect of antifreeze protein on mouse ovarian tissue cryopreservation and transplantation. Yonsei Med J, 2015;56:778784.CrossRefGoogle ScholarPubMed
Pegg, D, Diaper, M. On the mechanism of injury to slowly frozen erythrocytes. Biophys J, 1988;54:471488.CrossRefGoogle ScholarPubMed
Newton, H, Aubard, Y, Rutherford, A et al. Ovary and ovulation: Low temperature storage and grafting of human ovarian tissue. Hum Reprod, 1996;11:14871491.CrossRefGoogle Scholar
Gook, DA, Edgar, D, Stern, C. Effect of cooling rate and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1, 2-propanediol. Hum Reprod, 1999;14:20612068.CrossRefGoogle ScholarPubMed
Kong, HS, Kim, EJ, Youm, HW et al. Improvement in ovarian tissue quality with supplementation of antifreeze protein during warming of vitrified mouse ovarian tissue. Yonsei Med J, 2018;59:331336.CrossRefGoogle ScholarPubMed
Yin, H, Kim, S, Fisher, J et al. Investigation of optimal conditions for equilibrating ovarian tissue with ethylene glycol prior to vitrification. Fertil Steril, 2001;76:S101.CrossRefGoogle Scholar
Kim, SS. Fertility preservation in female cancer patients: current developments and future directions. Fertil Steril, 2006;85:111.CrossRefGoogle ScholarPubMed
Dissen, G, Lara, H, Fahrenbach, W et al. Immature rat ovaries become revascularized rapidly after autotransplantation and show a gonadotropin-dependent increase in angiogenic factor gene expression. Endocrinology, 1994;134:11461154.CrossRefGoogle ScholarPubMed
Kim, SS, Yang, HW, Kang, HG et al. Quantitative assessment of ischemic tissue damage in ovarian cortical tissue with or without antioxidant (ascorbic acid) treatment. Fertil Steril, 2004;82:679685.CrossRefGoogle ScholarPubMed
Baird, D, Webb, R, Campbell, B et al. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at − 196 C. Endocrinology, 1999;140:462471.CrossRefGoogle ScholarPubMed
Aubard, Y, Piver, P, Cognie, Y et al. Orthotopic and heterotopic autografts of frozen–thawed ovarian cortex in sheep. Hum Reprod, 1999;14:21492154.CrossRefGoogle Scholar
Nugent, D, Newton, H, Gallivan, L et al. Protective effect of vitamin E on ischaemia-reperfusion injury in ovarian grafts. J Reprod Fertil, 1998;114:341346.CrossRefGoogle ScholarPubMed
Kim, EJ, Lee, HJ, Lee, J et al. The beneficial effects of polyethylene glycol-superoxide dismutase on ovarian tissue culture and transplantation. J Assist Reprod Genet, 2015;32:15611569.CrossRefGoogle ScholarPubMed
Imthurn, B, Cox, S-L, Jenkin, G et al. Gonadotrophin administration can benefit ovarian tissue grafted to the body wall: implications for human ovarian grafting. Mol Cell Endocrinol, 2000;163:141146.CrossRefGoogle ScholarPubMed
Xia, X, Yin, T, Yan, J et al. Mesenchymal stem cells enhance angiogenesis and follicle survival in human cryopreserved ovarian cortex transplantation. Cell Transplant, 2015;24:19992010.CrossRefGoogle ScholarPubMed
Labied, S, Delforge, Y, Munaut, C et al. Isoform 111 of vascular endothelial growth factor (VEGF111) improves angiogenesis of ovarian tissue xenotransplantation. Transplantation, 2013;95:426433.CrossRefGoogle ScholarPubMed
Israely, T, Dafni, H, Granot, D et al. Vascular remodeling and angiogenesis in ectopic ovarian transplants: a crucial role of pericytes and vascular smooth muscle cells in maintenance of ovarian grafts. Biol Reprod, 2003;68:20552064.CrossRefGoogle ScholarPubMed
Adhikari, D, Liu, K. Molecular mechanisms underlying the activation of mammalian primordial follicles. Endocr Rev, 2009;30:438464.CrossRefGoogle ScholarPubMed
Roness, H, Kalich-Philosoph, L, Meirow, D. Prevention of chemotherapy-induced ovarian damage: possible roles for hormonal and non-hormonal attenuating agents. Hum Reprod Update, 2014;20:759774.CrossRefGoogle ScholarPubMed
Shaw, J, Bowles, J, Koopman, P et al. Ovary and ovulation: Fresh and cryopreserved ovarian tissue samples from donors with lymphoma transmit the cancer to graft recipients. Hum Reprod, 1996;11:16681673.CrossRefGoogle Scholar
Kim, SS, Radford, J, Harris, M et al. Ovarian tissue harvested from lymphoma patients to preserve fertility may be safe for autotransplantation. Hum Reprod, 2001;16:20562060.CrossRefGoogle ScholarPubMed
Meirow, D, Hardan, I, Dor, J et al. Searching for evidence of disease and malignant cell contamination in ovarian tissue stored from hematologic cancer patients. Hum Reprod, 2008;23:10071013.CrossRefGoogle ScholarPubMed
Dolmans, M-M, Marinescu, C, Saussoy, P et al. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood, 2010: blood-2010–01-265751.CrossRefGoogle Scholar
Kyono, K, Doshida, M, Toya, M et al. Potential indications for ovarian autotransplantation based on the analysis of 5,571 autopsy findings of females under the age of 40 in Japan. Fertil Steril, 2010;93:24292430.CrossRefGoogle ScholarPubMed
Rosendahl, M, Andersen, CY, Ernst, E et al. Ovarian function after removal of an entire ovary for cryopreservation of pieces of cortex prior to gonadotoxic treatment: a follow-up study. Hum Reprod, 2008;23:24752483.CrossRefGoogle ScholarPubMed
Harel, S, Ferme, C, Poirot, C. Management of fertility in patients treated for Hodgkin lymphoma. Haematologica, 2011: haematol. 2011.045856.CrossRefGoogle Scholar
Dolmans, M-M, Donnez, J, Camboni, A et al. IVF outcome in patients with orthotopically transplanted ovarian tissue. Hum Reprod, 2009;24:27782787.CrossRefGoogle ScholarPubMed
Donnez, J, Martinez-Madrid, B, Jadoul, P et al. Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update, 2006;12:519535.CrossRefGoogle ScholarPubMed
Newton, H, Fisher, J, Arnold, J et al. Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Hum Reprod, 1998;13:376380.CrossRefGoogle ScholarPubMed
Fuller, B, Paynter, S. Fundamentals of cryobiology in reproductive medicine. Reprod Biomed Online, 2004;9:680691.CrossRefGoogle ScholarPubMed
Hovatta, O. Methods for cryopreservation of human ovarian tissue. Reprod Biomed Online, 2005;10:729734.CrossRefGoogle ScholarPubMed
Zhou, X-H, Zhang, D, Shi, J et al. Comparison of vitrification and conventional slow freezing for cryopreservation of ovarian tissue with respect to the number of intact primordial follicles: A meta-analysis. Medicine, 2016;95:e4095.CrossRefGoogle ScholarPubMed
Kawamura, K, Cheng, Y, Suzuki, N et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci U S A, 2013;110:17474–17479.CrossRefGoogle ScholarPubMed
Suzuki, N, Yoshioka, N, Takae, S et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod, 2015;30:608615.CrossRefGoogle ScholarPubMed
McLaughlin, M, Albertini, D, Wallace, W et al. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. MHR: Basic Science of Reproductive Medicine, 2018;24:135142.Google Scholar
Demeestere, I, Simon, P, Emiliani, S et al. Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update, 2009;15:649665.CrossRefGoogle ScholarPubMed
Jensen, AK, Macklon, KT, Fedder, J et al. 86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen-thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children. J Assist Reprod Genet, 2017;34:325336.CrossRefGoogle ScholarPubMed
Jadoul, P, Guilmain, A, Squifflet, J et al. Efficacy of ovarian tissue cryopreservation for fertility preservation: lessons learned from 545 cases. Hum Reprod, 2017;32:10461054.CrossRefGoogle ScholarPubMed
Callejo, J, Salvador, C, Miralles, A et al. Long-term ovarian function evaluation after autografting by implantation with fresh and frozen-thawed human ovarian tissue. J Clin Endocrinol Metab, 2001;86:44894494.CrossRefGoogle ScholarPubMed
Oktay, K, Economos, K, Kan, M et al. Endocrine function and oocyte retrieval after autologous transplantation of ovarian cortical strips to the forearm. JAMA, 2001;286:14901493.CrossRefGoogle ScholarPubMed
Kim, SS, Hwang, I-T, Lee, H-C. Heterotopic autotransplantation of cryobanked human ovarian tissue as a strategy to restore ovarian function. Fertil Steril, 2004;82:930932.CrossRefGoogle ScholarPubMed
Rosendahl, M, Loft, A, Byskov, A et al. Biochemical pregnancy after fertilization of an oocyte aspirated from a heterotopic autotransplant of cryopreserved ovarian tissue: case report. Hum Reprod, 2006;21:20062009.CrossRefGoogle ScholarPubMed
Kim, SS. Revisiting the role of heterotopic ovarian transplantation: futility or fertility. Reprod Biomed Online, 2014;28:141145.CrossRefGoogle ScholarPubMed
Oktay, K, Buyuk, E, Veeck, L et al. Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. The Lancet, 2004;363:837840.CrossRefGoogle ScholarPubMed
Kim, SS, Lee, WS, Chung, MK et al. Long-term ovarian function and fertility after heterotopic autotransplantation of cryobanked human ovarian tissue: 8-year experience in cancer patients. Fertil Steril, 2009;91:23492354.CrossRefGoogle ScholarPubMed
Kristensen, SG, Giorgione, V, Humaidan, P et al. Fertility preservation and refreezing of transplanted ovarian tissue – a potential new way of managing patients with low risk of malignant cell recurrence. Fertil Steril, 2017;107:12061213.CrossRefGoogle ScholarPubMed
Stern, C, Gook, D, Hale, L et al. First reported clinical pregnancy following heterotopic grafting of cryopreserved ovarian tissue in a woman after a bilateral oophorectomy. Hum Reprod, 2013;28:29962999.CrossRefGoogle Scholar
Kim, SS. Assessment of long term endocrine function after transplantation of frozen-thawed human ovarian tissue to the heterotopic site:10 year longitudinal follow-up study. J Assist Reprod Genet, 2012;29:489493.CrossRefGoogle ScholarPubMed
Snow, M, Cox, S-L, Jenkin, G et al. Generation of live young from xenografted mouse ovaries. Science, 2002;297:2227.CrossRefGoogle ScholarPubMed
Gook, DA, Edgar, D, Borg, J et al. Oocyte maturation, follicle rupture and luteinization in human cryopreserved ovarian tissue following xenografting. Hum Reprod, 2003;18:17721781.CrossRefGoogle ScholarPubMed
Kim, SS, Soules, MR, Battaglia, DE. Follicular development, ovulation, and corpus luteum formation in cryopreserved human ovarian tissue after xenotransplantation. Fertil Steril, 2002;78:7782.CrossRefGoogle ScholarPubMed
Kim, SS, Kang, HG, Kim, NH et al. Assessment of the integrity of human oocytes retrieved from cryopreserved ovarian tissue after xenotransplantation. Hum Reprod, 2005;20:25022508.Google ScholarPubMed
Seli, E, Tangir, J. Fertility preservation options for female patients with malignancies. Curr Opin Obstet Gynecol, 2005;17:299308.CrossRefGoogle ScholarPubMed
Courbiere, B, Caquant, L, Mazoyer, C et al. Difficulties improving ovarian functional recovery by microvascular transplantation and whole ovary vitrification. Fertil Steril, 2009;91:26972706.CrossRefGoogle ScholarPubMed
Imhof, M, Bergmeister, H, Lipovac, M et al. Orthotopic microvascular reanastomosis of whole cryopreserved ovine ovaries resulting in pregnancy and live birth. Fertil Steril, 2006;85:12081215.CrossRefGoogle ScholarPubMed
Onions, V, Mitchell, M, Campbell, B et al. Ovarian tissue viability following whole ovine ovary cryopreservation: assessing the effects of sphingosine-1-phosphate inclusion. Hum Reprod, 2008;23:606618.CrossRefGoogle ScholarPubMed
Bedaiwy, MA, Jeremias, E, Gurunluoglu, R et al. Restoration of ovarian function after autotransplantation of intact frozen-thawed sheep ovaries with microvascular anastomosis. Fertil Steril, 2003;79:594602.CrossRefGoogle ScholarPubMed
Siegel, RL, Miller, KD, Jemal, A. Cancer statistics, 2018. CA: A Cancer J Clin, 2018;68:730.Google ScholarPubMed
Burns, KC, Hoefgen, H, Strine, A, Dasgupta, R. Fertility preservation options in pediatric and adolescent patients with cancer. Cancer, 2018;124:18671876.CrossRefGoogle ScholarPubMed
Wallace, WH, Thomson, A, Kelsey, TW. The radiosensitivity of the human oocyte. Hum Reprod, 2003;18:117121.CrossRefGoogle ScholarPubMed
Wallace, WH, Anderson, RA, Irvine, DS. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol, 2005;6:209–18.CrossRefGoogle ScholarPubMed
Meirow, D, Biederman, H, Anderson, RA, Wallace, WH. Toxicity of chemotherapy and radiation on female reproduction. Clin Obst Gynecol, 2010;53:727739.CrossRefGoogle ScholarPubMed
Meirow, D, Nugent, D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update, 2001;7:535543.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM. Fertility preservation in women. Nat Rev Endocrinol, 2013;9:735749.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, M-M. Fertility preservation in women. N Engl J Med, 2017;377:16571665.CrossRefGoogle ScholarPubMed
Jadoul, P, Anckaert, E, Dewandeleer, A et al. Clinical and biologic evaluation of ovarian function in women treated by bone marrow transplantation for various indications during childhood or adolescence. Fertil Steril, 2011;96:126–133.e3.CrossRefGoogle ScholarPubMed
Dalle, JH, Lucchini, G, Balduzzi, A et al. State-of-the-art fertility preservation in children and adolescents undergoing haematopoietic stem cell transplantation: a report on the expert meeting of the Paediatric Diseases Working Party (PDWP) of the European Society for Blood and Marrow Transplantation (EBMT) in Baden, Austria, 29–30 September 2015. Bone Marrow Transplant 2017;52:1029.CrossRefGoogle ScholarPubMed
Oktem, O, Yagmur, H, Bengisu, H, Urman, B. Reproductive aspects of systemic lupus erythematosus. J Reprod Immunol, 2016;117:5765.CrossRefGoogle ScholarPubMed
Gellert, SE, Pors, SE, Kristensen, SG et al. Transplantation of frozen-thawed ovarian tissue: an update on worldwide activity published in peer-reviewed papers and on the Danish cohort. J Assist Reprod Geneti, 2018;35:561570.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM, Demylle, D et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet, 2004;364:14051410.CrossRefGoogle ScholarPubMed
Meirow, D, Levron, J, Eldar-Geva, T et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. New Engl Med, 2005;353:318321.CrossRefGoogle Scholar
Demeestere, I, Simon, P, Emiliani, S, Delbaere, A, Englert, Y. Fertility preservation: successful transplantation of cryopreserved ovarian tissue in a young patient previously treated for Hodgkin’s disease. The Oncologist, 2007;12:14371442.CrossRefGoogle Scholar
Donnez, J, Silber, S, Andersen, CY et al. Children born after autotransplantation of cryopreserved ovarian tissue. a review of 13 live births. Ann Med, 2011;43:437450.CrossRefGoogle ScholarPubMed
Meirow, D, Ra’anani, H, Shapira, M et al. Transplantations of frozen-thawed ovarian tissue demonstrate high reproductive performance and the need to revise restrictive criteria. Fertil Steril, 2016;106:467474.CrossRefGoogle ScholarPubMed
Jensen, AK, Macklon, KT, Fedder, J et al. 86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen-thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children. J Assist Reprod Genet, 2016;34:325336.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, M-M, Pellicer, A et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril, 2013;99:15031513.CrossRefGoogle ScholarPubMed
Donnez, J, Jadoul, P, Pirard, C et al. Live birth after transplantation of frozen-thawed ovarian tissue after bilateral oophorectomy for benign disease. Fertil Steril, 2012;98:720725.CrossRefGoogle ScholarPubMed
Van der Ven, H, Liebenthron, J, Beckmann, M et al. Ninety-five orthotopic transplantations in 74 women of ovarian tissue after cytotoxic treatment in a fertility preservation network: tissue activity, pregnancy and delivery rates. Hum Reprod, 2016;31:20312041.CrossRefGoogle Scholar
Donnez, J, Squifflet, J, Jadoul, P et al. Pregnancy and live birth after autotransplantation of frozen-thawed ovarian tissue in a patient with metastatic disease undergoing chemotherapy and hematopoietic stem cell transplantation. Fertil Steril, 2011;95:1787 e14.CrossRefGoogle Scholar
Rodriguez-Wallberg, KA, Tanbo, T, Tinkanen, H et al. Ovarian tissue cryopreservation and transplantation among alternatives for fertility preservation in the Nordic countries – compilation of 20 years of multicenter experience. Acta Obstet Gynecol Scand, 2016;95:10151026.Google ScholarPubMed
Oktay, K, Harvey, BE, Partridge, AH et al. Fertility preservation in patients with cancer: ASCO Clinical Practice Guideline Update. J Clin Oncol 2018:JCO.2018.78.1914.Google Scholar
Suzuki, N. Clinical practice guidelines for fertility preservation in pediatric, adolescent, and young adults with cancer. Int J Clin Oncol, 2018;24:2027.CrossRefGoogle Scholar
Dolmans, M-M. Recent advances in fertility preservation and counseling for female cancer patients. Expert Rev Anticancer Ther, 2018;18:115120.CrossRefGoogle ScholarPubMed
Jadoul, P, Guilmain, A, Squifflet, J et al. Efficacy of ovarian tissue cryopreservation for fertility preservation: lessons learned from 545 cases. Hum Reprod, 2017;32:10461054.CrossRefGoogle ScholarPubMed
Diaz-Garcia, C, Domingo, J, Garcia-Velasco, JA et al. Oocyte vitrification versus ovarian cortex transplantation in fertility preservation for adult women undergoing gonadotoxic treatments: a prospective cohort study. Fertil Steril, 2018;109:478485.CrossRefGoogle ScholarPubMed
Masciangelo, R, Bosisio, C, Donnez, J, Amorim, CA, Dolmans, M-M. Safety of ovarian tissue transplantation in patients with borderline ovarian tumors. Hum Reprod, 2018;33:212219.CrossRefGoogle ScholarPubMed
Donnez, J, Garcia-Solares, J, Dolmans, MM. Fertility preservation in women with endometriosis. Minerva Ginecol, 2018;70:408414.Google Scholar
Donnez, J, Dolmans, M-M, Squifflet, J, Kerbrat, G, Jadoul, P. Live birth after allografting of ovarian cortex between monozygotic twins with Turner syndrome (45,XO/46,XX mosaicism) and discordant ovarian function. Fertil Steril, 2011;96:14071411.CrossRefGoogle ScholarPubMed
Borgström, B, Hreinsson, J, Rasmussen, C et al. Fertility preservation in girls with Turner syndrome: prognostic signs of the presence of ovarian follicles. JClin Endocrinol Metabol, 2009;94:7480.Google ScholarPubMed
Wallace, WH, Smith, AG, Kelsey, TW, Edgar, AE, Anderson, RA. Fertility preservation for girls and young women with cancer: population-based validation of criteria for ovarian tissue cryopreservation. Lancet Oncol, 2014;15:11291136.CrossRefGoogle Scholar
Donnez, J, Dolmans, MM. Fertility preservation in women. New Engl J Med, 2018;378:399401.Google ScholarPubMed
Wallace, WH, Kelsey, TW, Anderson, RA. Fertility preservation in pre-pubertal girls with cancer: the role of ovarian tissue cryopreservation. Fertil Steril, 2016;105:612.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Gen, 2015;32:11671170.CrossRefGoogle ScholarPubMed
Donnez, J, Martinez-Madrid, B, Jadoul, P et al. Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update, 2006;12:519535.CrossRefGoogle ScholarPubMed
Donnez, J, Jadoul, P, Squifflet, J et al. Ovarian tissue cryopreservation and transplantation in cancer patients. Best Pract Res Clin Obstet Gynaecol, 2010;24:87100.CrossRefGoogle ScholarPubMed
Greve, T, Schmidt, KT, Kristensen, SG, Ernst, E, Andersen, CY. Evaluation of the ovarian reserve in women transplanted with frozen and thawed ovarian cortical tissue. Fertil Steril, 2012;97:1394–8.e1.CrossRefGoogle ScholarPubMed
Wilkosz, P, Greggains, GD, Tanbo, TG, Fedorcsak, P. Female reproductive decline is determined by remaining ovarian reserve and age. PloS One, 2014;9:e108343.CrossRefGoogle ScholarPubMed
Bjelland, EK, Wilkosz, P, Tanbo, TG, Eskild, A. Is unilateral oophorectomy associated with age at menopause? A population study (the HUNT2 Survey). Hum Reprod, 2014;29:835841.CrossRefGoogle Scholar
Kristensen, SG, Rasmussen, A, Byskov, AG, Andersen, CY. Isolation of pre-antral follicles from human ovarian medulla tissue. Hum Reprod, 2011;26:157166.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, M-M, Diaz, C, Pellicer, A. Ovarian cortex transplantation: time to move on from experimental studies to open clinical application. Fertil Steril, 2015;104:10971098.CrossRefGoogle ScholarPubMed
Suzuki, N. Ovarian tissue cryopreservation using vitrification and/or in vitro activated technology. Hum Reprod, 2015;30:24612462.CrossRefGoogle ScholarPubMed
Amorim, CA, Curaba, M, Van Langendonckt, A, Dolmans, M-M, Donnez, J. Vitrification as an alternative means of cryopreserving ovarian tissue. Reprod Biomed Online, 2011;23:160186.CrossRefGoogle ScholarPubMed
Shapira, M, Raanani, H, Barshack, I et al. First delivery in a leukemia survivor after transplantation of cryopreserved ovarian tissue, evaluated for leukemia cells contamination. Fertil Steril, 2017;109:4853.CrossRefGoogle Scholar
Donnez, J, Dolmans, MM. Transplantation of ovarian tissue. Best Pract Res Clin Obstet Gynaecol, 2014;28:11881197.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM, Demylle, D et al. Restoration of ovarian function after orthotopic (intraovarian and periovarian) transplantation of cryopreserved ovarian tissue in a woman treated by bone marrow transplantation for sickle cell anaemia: case report. Hum Reprod, 2005;21:183188.CrossRefGoogle Scholar
Silber, SJ, Lenahan, K, Levine, DJ et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. New Engl J Med, 2005;353:5863.CrossRefGoogle ScholarPubMed
Silber, SJ. Ovary cryopreservation and transplantation for fertility preservation. Mol Hum Reprod, 2012;18:5967.CrossRefGoogle ScholarPubMed
Silber, S. How ovarian transplantation works and how resting follicle recruitment occurs: a review of results reported from one center. Womens Health (Lond), 2016;12:217227.CrossRefGoogle ScholarPubMed
Andersen, CY, Rosendahl, M, Byskov, AG et al. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod, 2008;23:22662272.CrossRefGoogle ScholarPubMed
Kim, SS. Assessment of long term endocrine function after transplantation of frozen-thawed human ovarian tissue to the heterotopic site: 10 year longitudinal follow-up study. J Assist Reprod Genet, 2012;29:489493.CrossRefGoogle ScholarPubMed
Kim, S. Revisiting the role of heterotopic ovarian transplantation: futility or fertility. Reprod Biomed Online, 2014;28:141145.CrossRefGoogle ScholarPubMed
Poirot, C, Abirached, F, Prades, M et al. Induction of puberty by autograft of cryopreserved ovarian tissue. The Lancet, 2012;379:588.CrossRefGoogle ScholarPubMed
Rosendahl, M, Loft, A, Byskov, AG et al. Biochemical pregnancy after fertilization of an oocyte aspirated from a heterotopic autotransplant of cryopreserved ovarian tissue: case report. Hum Reprod, 2006;21:20062009.CrossRefGoogle ScholarPubMed
Stern, CJ, Gook, D, Hale, LG et al. First reported clinical pregnancy following heterotopic grafting of cryopreserved ovarian tissue in a woman after a bilateral oophorectomy. Hum Reprod, 2013;28:29962999.CrossRefGoogle Scholar
Donnez, J, Manavella, DD, Dolmans, MM. Techniques for ovarian tissue transplantation and results. Minerva Ginecol, 2018;70:424431.Google ScholarPubMed
Laschke, MW, Vollmar, B, Menger, MD. Inosculation: connecting the life-sustaining pipelines. Tissue Eng Part B: Rev, 2009;15:455465.CrossRefGoogle ScholarPubMed
Gavish, Z, Peer, G, Roness, H, Cohen, Y, Meirow, D. Follicle activation and ‘burn-out’ contribute to post-transplantation follicle loss in ovarian tissue grafts: the effect of graft thickness. Hum Reprod, 2015;30:1003.CrossRefGoogle ScholarPubMed
Dath, C, Van Eyck, AS, Dolmans, MM et al. Xenotransplantation of human ovarian tissue to nude mice: comparison between four grafting sites. Hum Reprod, 2010;25:17341743.CrossRefGoogle ScholarPubMed
Demeestere, I, Simon, P, Emiliani, S, Delbaere, A, Englert, Y. Orthotopic and heterotopic ovarian tissue transplantation. Hum Reprod Update, 2009;15:649665.CrossRefGoogle ScholarPubMed
Van Eyck, AS, Jordan, BF, Gallez, B et al. Electron paramagnetic resonance as a tool to evaluate human ovarian tissue reoxygenation after xenografting. Fertil Steril, 2009;92:374381.CrossRefGoogle ScholarPubMed
Van Eyck, AS, Bouzin, C, Feron, O et al. Both host and graft vessels contribute to revascularization of xenografted human ovarian tissue in a murine model. Fertil Steril, 2010;93:16761685.CrossRefGoogle ScholarPubMed
Israely, T, Dafni, H, Nevo, N, Tsafriri, A, Neeman, M. Angiogenesis in ectopic ovarian xenotransplantation: multiparameter characterization of the neovasculature by dynamic contrast-enhanced MRI. Magn Reson Med, 2004;52:741750.CrossRefGoogle ScholarPubMed
Baird, DT, Webb, R, Campbell, BK, Harkness, LM, Gosden, RG. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at -196 C. Endocrinology, 1999;140:462471.CrossRefGoogle ScholarPubMed
Nisolle, M, Casanas-Roux, F, Qu, J, Motta, P, Donnez, J. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril, 2000;74:122129.CrossRefGoogle ScholarPubMed
Dolmans, MM, Martinez-Madrid, B, Gadisseux, E et al. Short-term transplantation of isolated human ovarian follicles and cortical tissue into nude mice. Reproduction, 2007;134:253262.CrossRefGoogle ScholarPubMed
Gavish, Z, Spector, I, Peer, G et al. Follicle activation is a significant and immediate cause of follicle loss after ovarian tissue transplantation. J Assist Reprod and Genet, 2018;35:6169.CrossRefGoogle ScholarPubMed
Soleimani, R, Heytens, E, Oktay, K. Enhancement of neoangiogenesis and follicle survival by sphingosine-1-phosphate in human ovarian tissue xenotransplants. PloS One, 2011;6:e19475.CrossRefGoogle ScholarPubMed
Gao, J, Huang, Y, Li, M, et al. Effect of local basic fibroblast growth factor and vascular endothelial growth factor on subcutaneously allotransplanted ovarian tissue in ovariectomized mice. PloS One, 2015;10:e0134035.CrossRefGoogle ScholarPubMed
Tavana, S, Valojerdi, MR, Azarnia, M, Shahverdi, A. Restoration of ovarian tissue function and estrous cycle in rat after autotransplantation using hyaluronic acid hydrogel scaffold containing VEGF and bFGF. Growth Factors, 2016;34:97106.CrossRefGoogle ScholarPubMed
Kang, B-J, Wang, Y, Zhang, L, Xiao, Z, Li, S-W. bFGF and VEGF improve the quality of vitrified-thawed human ovarian tissues after xenotransplantation to SCID mice. J Assist Reprod Genet, 2016;33:281289.CrossRefGoogle ScholarPubMed
Mahmoodi, M, Soleimani Mehranjani, M, Shariatzadeh, SM, Eimani, H, Shahverdi, A. Effects of erythropoietin on ischemia, follicular survival, and ovarian function in ovarian grafts. Reproduction, 2014;147:733741.CrossRefGoogle ScholarPubMed
Mahmoodi, M, Soleimani Mehranjani, M, Shariatzadeh, SM, Eimani, H, Shahverdi, A. N-acetylcysteine improves function and follicular survival in mice ovarian grafts through inhibition of oxidative stress. Reprod Biomed Online, 2015;30:101110.CrossRefGoogle ScholarPubMed
Kolusari, A, Okyay, AG, Koçkaya, EA. The effect of erythropoietin in preventing ischemia–reperfusion injury in ovarian tissue transplantation. Reprod Sci, 2017;25:406413.CrossRefGoogle ScholarPubMed
Manavella, DD, Cacciottola, L, Desmet, CM et al. Adipose tissue-derived stem cells in a fibrin implant enhance neovascularization in a peritoneal grafting site: a potential way to improve ovarian tissue transplantation. Hum Reprod, 2018;33:270279.CrossRefGoogle Scholar
Manavella, DD, Cacciottola, L, Pomme, S et al. Two-step transplantation with adipose tissue-derived stem cells increases follicle survival by enhancing vascularization in xenografted frozen-thawed human ovarian tissue. Hum Reprod, 2018; 33:11071116.CrossRefGoogle ScholarPubMed
Manavella, DD, Cacciottola, L, Amorim, CA, Donnez, J, Dolmans, MM. Adipose tissue-derived stem cells boost vascularization in grafted ovarian tissue by growth factor secretion and differentiation into endothelial cell lineages. Hum Reprod, 2018;33(2):270279.CrossRefGoogle Scholar
Donnez, J, Dolmans, MM, Demyle, D et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet, 2004; 364:14051410.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM. Fertility preservation in women. N Engl J Med, 2018;25:400401.Google Scholar
Van den Abbeel, E, Camus, M, Verheyen, G et al. Slow controlled-rate freezing of sequentially cultured human blastocysts: an evaluation of two freezing strategies. Hum Reprod, 2005;10:29392945.CrossRefGoogle Scholar
Chen, SU, Lien, YR, Chen, HF et al. Observational clinical follow-up of oocyte cryopreservation using a slow-freezing method with 1,2-propanediol plus sucrose followed by ICSI. Hum Reprod, 2005;7:19751980.CrossRefGoogle Scholar
Kuwayama, M, Vajta, G, Kato, O, Leibo, SP. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online, 2005;3:300308.CrossRefGoogle Scholar
Whittingham, DG. Survival of mouse embryos after freezing and thawing. Nature, 1971;233:125129.CrossRefGoogle ScholarPubMed
Whittingham, DG, Leibo, SP, Mazur, P. Survival of mouse embryos frozen to –196℃ and –269℃. Science, 1972;178:411414.CrossRefGoogle ScholarPubMed
Willadsen, SM. Factors affecting the survival of sheep embryos during deep-freezing and thawing in Ciba Foundation Symposium52- The freezing of Mammalian Embryos. Amsterdam Elsevier Excerpta Medica, 1977;175:201.Google Scholar
Gosden, RG, Barid, DT, Wade, JC, Webb, R. Restoration of oophorectomized sheep by ovarian autografts stored at -196 degrees. Hum Reprod, 1994;4:597603.CrossRefGoogle Scholar
Andersen, CY, Rosendahl, M, Byskov, AG et al. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod, 2008;10:22662272.CrossRefGoogle Scholar
Gook, DA, Edgar, DH, Stern, C. Effect of cooling rate and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1, 2- propanediol. Hum Reprod, 1999;8:20612068.CrossRefGoogle Scholar
Keros, V, Xella, S, Hultenby, K et al. Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod, 2009;7:16701683.CrossRefGoogle Scholar
Isachenko, V, Lapidus, I, Ishachenko, E et al. Human ovarian tissue vitrification versus conventional freezing: morphological, endocrinological and molecular biological evaluation. Reproduction, 2009;138:319327.CrossRefGoogle ScholarPubMed
Kim, SS, Limbach, D, He, L, Albertini, D. Assessment of autophage, apoptosis and DNA damage/repair process in cryopreserved ovarian cortex. Fertil Steril, 2010;94:S18,O-60.CrossRefGoogle Scholar
Yeoman, RR, Wolf, DP, Lee, DM. Coculture of monkey ovarian tissue increases survival after vitrification and slow-rate freezing. Fertil Steril, 2005;83:12481254.CrossRefGoogle ScholarPubMed
Kagawa, N, Silber, S, Kuwayama, M. Successful vitrification of bovine and human ovarian tissue. Reprod Biomed Online, 2009;4:568577.CrossRefGoogle Scholar
Amorim, CA, Curaba, M, Van Langendonckt, A, Dolmans, MM, Donnez, J. Vitrification as an alternative means of cryopreserving ovarian tissue. Reprod Biomed Online, 2011;2:160168.CrossRefGoogle Scholar
Ting, AY, Yeoman, RR, Lawson, MS, Zelinski, MB. In vitro development of secondary follicles from cryopreserved rhesus macaque ovarian tissue after slow-rate-freeze or vitrification. Hum Reprod, 2011;9:24612472.CrossRefGoogle Scholar
Sheikhi, M, Hultenby, K, Niklasson, B, Lundqvist, M, Hovatta, O. Clinical grade vitrification of human ovarian tissue: an ultrastructural analysis of follicles and stroma in vitrified tissue. Hum Reprod, 2011;3:594603.CrossRefGoogle Scholar
Lee, J, Kong, HS, Kim, EJ et al. Ovarian injury during cryopreservation and transplantation in mice: a comparative study between cryoinjury and ischemic injury. Hum Reprod, 2016;8:1827–1837.Google Scholar
Shi, Q, Xie, Y, Wang, Y, Li, S. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systemic review and meta-analysis. Sci Rep, 2017;1:8538.CrossRefGoogle Scholar
Laronda, MM, Cmkinnon, Ke, Ting, AY et al. Good manufacturing practice requirements for the production of tissue vitrification and warming and recovery kits for clinical research. J Assist Reprod Genet, 2017;2:291300.CrossRefGoogle Scholar
Lassalle, B, Testart, J, Renard, JP. Human embryo features that influence the success of cryopreservation with the use of 1,2 propanediol. Fertil Steril, 1985; 44: 645651.CrossRefGoogle ScholarPubMed
Nakamura, Y, Obata, R, Okuyama, N et al. Residual ethylene glycol and dimethyl sulphoxide concentration in human ovarian tissue during warming/thawing steps following cryopreservation. Reprod Biomed Online, 2017;3:311313.CrossRefGoogle Scholar
Xu, X, Cui, ZF. Modeling of the co-transport of cryoprotective agents in a porous medium as a model tissue. Biotechnol Prog, 2003,19,972981.CrossRefGoogle Scholar
Igarashi, S, Suzuki, N, Hashimoto, S et al. Heterotopic autotransplantation of ovarian cortex in cynomolgus monkeys. Hum Cell, 2010;1:2634.Google Scholar
HashimotoS, Suzuki N, Yamanaka, M et al. Effects of vitrification solutions and equilibration times on the morphology of cynomolgus ovarian tissue. Reprod Biomed Online, 2010;21:501509.CrossRefGoogle Scholar
Suzuki, N, Hashimoto, S,Igarashi, S et al. Assessment of long-term function of heterotopic transplants of vitrified ovarian tissue in cynomolgus monkeys. Hum Reprod, 2012;8:24202429.CrossRefGoogle Scholar
Kawamura, K, Cheng, Y, Suzuki, N et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment. Proc Natl Acad Sci, 2013;43:1747417479.CrossRefGoogle Scholar
Suzuki, N, Yoshioka, N, Takae, S et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod, 2015;30:608615.CrossRefGoogle ScholarPubMed
Sugishita, Y, Okamoto, N, Uekawa, A et al. Oocyte retrieval after heterotopic transplantation of ovarian tissue cryopreserved by closed vitrification protocol. J Assist Reprod Genet, 2018;35(11):2037–2048.CrossRefGoogle Scholar
Gook, DA, Osborn, SM, Johnston, WI. Cryopreservation of mouse and human oocytes using 1,2-propanediol and the configuration of the meiotic spindle. Hum Reprod, 1993;7:11011109.CrossRefGoogle Scholar
Good, DA, Edgar, DH, Stern, C. Effect of cooling rate and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1,2-propandiol. Hum Reprod, 1999;8:20612068.Google Scholar
Isachenko, V, Isachenko, E, Rahimi, G et al. Cryopreservation of human ovarian tissue by direct plunging into liquid nitrogen. Negative effect of disaccharides in vitrification solution. Cryoletters, 2002;5:333334.Google Scholar
Rahimi, G, Isachenko, E, Isachenko, V et al. Comparison of necrosis in human ovarian tissue after conventional slow freezing or vitrification and transplantation in ovariectomized SCID mice. Reprod Biomed Online, 2004;2:187193.CrossRefGoogle Scholar
Huang, L, Mo, Y, Wang, W et al. Cryopreservation of human ovarian tissue by solid-surface vitrification. Eur J Obstet Reprod Biol, 2008;2:193198.CrossRefGoogle Scholar
Kagawa, N, Kuwayama, M, Nakata, K et al. Production of the first offspring from oocytes derived from fresh and cryopreserved pre-antral follicles of adult mice. Reprod Biomed Online, 2007;6:693699.CrossRefGoogle Scholar
Amorim, CA, Dolmans, MM, David, A et al. Vitrification and xenografting of human ovarian tissue. Fertil Steril, 2012;5:12911298.CrossRefGoogle Scholar
Silber S, Kagawa N, Kuwayama M et al. Duration of fertility after fresh and frozen ovary transplantation. Fertil Steril, 2010;6:2191–2196.CrossRefGoogle Scholar
Green, SH, Smith, AU, Zuckerman, S. The numbers of oocytes in ovarian autografts after freezing and thawing. J Endocrinol, 1956;13:330334.CrossRefGoogle Scholar
Parrott, DMV. The fertility of mice with orthotopic ovarian grafts derived from frozen tissue. J Reprod Fertil, 1960;1:230241.CrossRefGoogle Scholar
Gosden, RG, Baird, DT, Wade, JC et al. Restoration of fertility to oophorectomized sheep by ovarian autografts stored at −196 C. Hum Reprod, 1994;9:597603.CrossRefGoogle Scholar
Donnez, J Dolmans, MM. Fertility preservation in women. N Engl J Med, 2017;377:16571665.CrossRefGoogle ScholarPubMed
Oktay, K, Buyuk, E, Veeck, L et al. Embryo development after heterotopic transplantation of cryopreserved ovarian tissue. Lancet, 2004;363:837840.CrossRefGoogle ScholarPubMed
Poirot, C, Piver, P, Fayet, P et al. Human embryo development after subcutaneous autograft of cryopreserved ovarian tissue. Hum Reprod, 2006;21:i155abstP404.Google Scholar
Rosendahl, M, Loft, A, Byskov, AG et al. Biochemical pregnancy after fertilization of an oocyte aspirated from a heterotopic autotransplant of cryopreserved ovarian tissue: Case Report. Hum Reprod, 2006;21:20062009.CrossRefGoogle ScholarPubMed
Demeestere, I, Simon, P, Emiliani, S et al. Ongoing pregnancy after a second cryopreserved ovarian transplantation procedure. Hum Reprod, 2007;22:i43i44.Google Scholar
Kim, SS, Lee, WS, Chung, MK et al. Long-term ovarian function and fertility after heterotopic autotransplantation of cryobanked human ovarian tissue: 8-year experience in cancer patients. Fertil Steril, 2009;91:23492354.CrossRefGoogle ScholarPubMed
Piver, P, Amiot, C, Agnani, G et al. Two pregnancies obtained after a new technique of autotransplantation of cryopreserved ovarian tissue. Hum Reprod, 2009;24:i15.Google Scholar
Stern, CJ, Gook, D, Hale, LG et al. First reported clinical pregnancy following heterotopic grafting of cryopreserved ovarian tissue in a woman after a bilateral oophorectomy. Hum Reprod, 2013;28:29962999.CrossRefGoogle Scholar
Kristensen, SG, Giorgione, V, Humaidan, P et al. Fertility preservation and refreezing of transplanted ovarian tissue – a potential new way of managing patients with low risk of malignant cell recurrence. Fertil Steril, 2017;107:12061213.CrossRefGoogle ScholarPubMed
Donnez, J, Jadoul, P, Pirard, C et al. Live birth after transplantation of frozen-thawed ovarian tissue after bilateral oophorectomy for benign disease. Fertil Steril, 2012;98:720725.CrossRefGoogle ScholarPubMed
Gougeon, A, Echochard, R, Thalabard, JC. Age-related changes of the population of human ovarian follicles: increase in the disappearance rate of non-growing and early-growing follicles in aging women. Biol Reprod, 1994;50:653663.CrossRefGoogle ScholarPubMed
Gook, DA, Edgar, DH, Stern, C. Effect of cooling rate and dehydration regimen on the histological appearance of human ovarian cortex following cryopreservation in 1, 2- propanediol. Hum Reprod, 1999;14:20612068.CrossRefGoogle ScholarPubMed
Westergaard, CG, Byskov, AG, Andersen, CY. Morphometric characteristics of the primordial to primary follicle transition in the human ovary in relation to age. Hum Reprod, 2007;22:22252231.CrossRefGoogle ScholarPubMed
McLaughlin, M, Kelsey, TW, Wallace, WH et al. An externally validated age-related model of mean follicle density in the cortex of the human ovary. J Assist Reprod Genet, 2015;32:10891095.CrossRefGoogle ScholarPubMed
Faddy, MJ, Gosden, RG, Gougeon, A et al. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod, 1992;7:13421346.CrossRefGoogle ScholarPubMed
Faddy, MJ, Gosden, RG. A model conforming the decline in follicle numbers to the age of menopause in women. Hum Reprod, 1996;11:14841486.CrossRefGoogle Scholar
Wallace, WH, Kelsey, TW. Human ovarian reserve from conception to the menopause. PLoS One, 2010;5:e8772.CrossRefGoogle ScholarPubMed
Schmidt, KL, Ernst, E, Byskov, AG et al. Survival of primordial follicles following prolonged transportation of ovarian tissue prior to cryopreservation. Hum Reprod, 2003;18:26542659.CrossRefGoogle ScholarPubMed
Gook, D, Edgar, DH. Ovarian tissue cryopreservation. In Donnez, J, Kim, SS (eds.) Principles and Practice of Fertility Preservation. New York: Cambridge University Press. 2011, 342356.CrossRefGoogle Scholar
Donnez, J, Dolmans, MM. Ovarian tissue freezing: current status. Curr Opin Obstet Gynecol, 2015;27:222230.CrossRefGoogle ScholarPubMed
Laronda, MM, McKinnon, KE, Ting, AY et al. Good manufacturing practice requirements for the production of tissue vitrification and warming and recovery kits for clinical research. J Assist Reprod Genet, 2017;34:291300.CrossRefGoogle ScholarPubMed
Callejo, J, Salvador, C, Gonzalez-Nunez, S et al. Live birth in a woman without ovaries after autograft of frozen-thawed ovarian tissue combined with growth factors. J Ovarian Res, 2013;6:33.CrossRefGoogle Scholar
von Wolff, M, Germeyer, A, Liebenthron, J et al. Practical recommendations for fertility preservation in women by the FertiPROTEKT network. Part II: fertility preservation techniques. Arch Gynecol Obstet, 2018;297:257267.CrossRefGoogle ScholarPubMed
Van der Ven, H, Liebenthron, J, Beckmann, M et al. Ninety-five orthotopic transplantations in 74 women of ovarian tissue after cytotoxic treatment in a fertility preservation network: tissue activity, pregnancy and delivery rates. Hum Reprod, 2016;31:20312041.CrossRefGoogle Scholar
Kyono, K, Hashimoto, T, Toya, M et al. A transportation network for human ovarian tissue is indispensable to success for fertility preservation. J Assist Reprod Genet, 2017;34:14691474.CrossRefGoogle ScholarPubMed
Lee, J, Kong, HS, Kim, EJ et al. Ovarian injury during cryopreservation and transplantation in mice: a comparative study between cryoinjury and ischemic injury. Hum Reprod, 2016;31:18271837.CrossRefGoogle ScholarPubMed
Baird, DT, Webb, R, Campbell, BK et al. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at −196 C. Endocrinology, 1999;140:462471.CrossRefGoogle ScholarPubMed
Nisolle, M, Casanas-Roux, F, Qu, J et al. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril, 2000;74:122129.CrossRefGoogle ScholarPubMed
Andersen, CY, Rosendahl, M, Byskov, AG et al. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod, 2008;23:22662272.CrossRefGoogle ScholarPubMed
Rosing, B, Montag, M, Isachenko, V et al. Organisation of a cryobank in Germany: an example for fertility preservation in young female patients with cancer. Hum Reprod, 2007;22:i203.Google Scholar
Jensen, AK, Kristensen, SG, Macklon, KT et al. Outcomes of transplantations of cryopreserved ovarian tissue to 41 women in Denmark. Hum Reprod, 2015;30:28382845.CrossRefGoogle ScholarPubMed
Dittrich, R, Lotz, L, Keck, G et al. Live birth after ovarian tissue autotransplantation following overnight transportation before cryopreservation. Fertil Steril, 2012;97:387390.CrossRefGoogle ScholarPubMed
Muller, A, Keller, K, Wacker, J et al. Retransplantation of cryopreserved ovarian tissue: the first live birth in Germany. Dtsch Arztebl Int, 2012;109:813.Google ScholarPubMed
Klocke, S, Tappehorn, C, Griesinger, G. Effects of supra-zero storage on human ovarian cortex prior to vitrification-warming. Reprod Biomed Online, 2014;29:251258.CrossRefGoogle ScholarPubMed
Kim, SS, Yang, HW, Kang, HG et al. Quantitative assessment of ischemic tissue damage in ovarian cortical tissue with or without antioxidant (ascorbic acid) treatment. Fertil Steril, 2004;82:679685.CrossRefGoogle ScholarPubMed
Duncan, FE, Zelinski, M, Gunn, AH et al. Ovarian tissue transport to expand access to fertility preservation: from animals to clinical practice. Reproduction, 2016;152:R201R210.CrossRefGoogle ScholarPubMed
van der Ven, H, Koster, M, Tolba, R et al. Transportation of ovarian tissue for fertility preservation: investigation on the importance of transportation medium. Hum Reprod, 2008;23:i145.Google Scholar
Duncan, FE, Hornick, JE, Lampson, MA et al. Chromosome cohesion decreases in human eggs with advanced maternal age. Aging Cell, 2012;11:11211124.CrossRefGoogle ScholarPubMed
Yin, H, Jiang, H, Kristensen, SG et al. Vitrification of in vitro matured oocytes collected from surplus ovarian medulla tissue resulting from fertility preservation of ovarian cortex tissue. J Assist Reprod Genet, 2016;33:741746.CrossRefGoogle ScholarPubMed
Gook, DA, Gilchrist, RB, Thompson, JG et al. Maturation of human oocytes obtained from small antral follicles during processing of ovarian tissue for cryopreservation. Hum Reprod, 2015;30.Google Scholar
Revel, A, Safran, A, Benshushan, A et al. In vitro maturation and fertilization of oocytes from an intact ovary of a surgically treated patient with endometrial carcinoma: case report. Hum Reprod, 2004;19:16081611.CrossRefGoogle ScholarPubMed
Fasano, G, Dechene, J, Antonacci, R et al. Outcomes of immature oocytes collected from ovarian tissue for cryopreservation in adult and prepubertal patients. Reprod Biomed Online, 2017;34:575582.CrossRefGoogle ScholarPubMed
Hourvitz, A, Yerushalmi, GM, Maman, E et al. Combination of ovarian tissue harvesting and immature oocyte collection for fertility preservation increases preservation yield. Reprod Biomed Online, 2015;31:497505.CrossRefGoogle ScholarPubMed
Isachenko, E, Rahimi, G, Isachenko, V et al. In-vitro maturation of germinal-vesicle oocytes and cryopreservation in metaphase I/ II: a possible additional option to preserve fertility during ovarian tissue cryopreservation. Reprod Biomed Online, 2004;8:553557.CrossRefGoogle ScholarPubMed
Segers, I, Mateizel, I, Van, Moer E et al. In vitro maturation (IVM) of oocytes recovered from ovariectomy specimens in the laboratory: a promising “ex vivo” method of oocyte cryopreservation resulting in the first report of an ongoing pregnancy in Europe. J Assist Reprod Genet, 2015;32:12211231.CrossRefGoogle ScholarPubMed
Prasath, EB, Chan, ML, Wong, WH et al. First pregnancy and live birth resulting from cryopreserved embryos obtained from in vitro matured oocytes after oophorectomy in an ovarian cancer patient. Hum Reprod, 2014;29:276278.CrossRefGoogle Scholar
Uzelac, PS, Delaney, AA, Christensen, GL et al. Live birth following in vitro maturation of oocytes retrieved from extracorporeal ovarian tissue aspiration and embryo cryopreservation for 5 years. Fertil Steril, 2015;104:12581260.CrossRefGoogle ScholarPubMed
Gilchrist, RB, Luciano, AM, Richani, D et al. Oocyte maturation and quality: role of cyclic nucleotides. Reproduction, 2016;152:R143R157.CrossRefGoogle ScholarPubMed
Richani, D, Gilchrist, RB. The epidermal growth factor network: role in oocyte growth, maturation and developmental competence. Hum Reprod Update, 2018;24:114.CrossRefGoogle ScholarPubMed
Albuz, FK, Sasseville, M, Lane, M et al. Simulated physiological oocyte maturation (SPOM): a novel in vitro maturation system that substantially improves embryo yield and pregnancy outcomes. Hum Reprod, 2010;25:29993011.CrossRefGoogle ScholarPubMed
Romero, S, Sanchez, F, Lolicato, F et al. Immature oocytes from unprimed juvenile mice become a valuable source for embryo production when using C-type natriuretic peptide as essential component of culture medium. Biol Reprod, 2016;95:64.CrossRefGoogle ScholarPubMed
Sanchez, F, Lolicato, F, Romero, S et al. An improved IVM method for cumulus-oocyte complexes from small follicles in polycystic ovary syndrome patients enhances oocyte competence and embryo yield. Hum Reprod, 2017;32:20562068.CrossRefGoogle ScholarPubMed
Martinez-Madrid, B, Dolmans, MM, Langendonckt, AV et al. Ficoll density gradient method for recovery of isolated human ovarian primordial follicles. Fertil Steril, 2004;82:16481653.CrossRefGoogle ScholarPubMed
Telfer, EE, McLaughlin, M, Ding, C et al. A two-step serum-free culture system supports development of human oocytes from primordial follicles in the presence of activin. Hum Reprod, 2008;23:11511158.CrossRefGoogle ScholarPubMed
Xu, M, Barrett, SL, West-Farrell, E et al. In vitro grown human ovarian follicles from cancer patients support oocyte growth. Hum Reprod, 2009;24:25312540.CrossRefGoogle ScholarPubMed
Yin, H, Kristensen, SG, Jiang, H et al. Survival and growth of isolated pre-antral follicles from human ovarian medulla tissue during long-term 3D culture.Hum Reprod, 2016;31:15311539.CrossRefGoogle ScholarPubMed
Xiao, S, Zhang, J, Romero, MM et al. In vitro follicle growth supports human oocyte meiotic maturation. Sci Rep, 2015;5:17323.CrossRefGoogle ScholarPubMed
McLaughlin, M, Albertini, DF, Wallace, WHB et al. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system. Mol Hum Reprod, 2018;24:135142.CrossRefGoogle Scholar
Carroll, J, Whittingham, DG, Wood, MJ et al. Extra-ovarian production of mature viable mouse oocytes from frozen primary follicles. J Reprod Fert, 1990;90:321327.CrossRefGoogle ScholarPubMed
Carroll, J, Gosden, RG. Transplantation of frozen-thawed mouse primordial follicles. Hum Reprod, 1993;8:11631167.CrossRefGoogle ScholarPubMed
Cortvrindt, R, Smitz, J, Van, Steirteghem, AC. A morphological and functional study of the effect of slow freezing followed by complete in-vitro maturation of primary mouse ovarian follicles.Hum Reprod, 1996;11:26482655.CrossRefGoogle ScholarPubMed
Jewgenow, K, Penfold, LM, Meyer, HHD et al. Viability of small preantral ovarian follicles from domestic cats after cryoprotectant exposure and cryopreservation. J Reprod Fertil, 1998;112:3947.CrossRefGoogle ScholarPubMed
dela Pena, EC, Takahashi, Y, Katagiri, S et al. Birth of pups after transfer of mouse embryos derived from vitrified preantral follicles. Reproduction, 2002;123:593600.CrossRefGoogle ScholarPubMed
Choi, WJ, Yeo, HJ, Shin, JK et al. Effect of vitrification method on survivability, follicular growth and ovulation of preantral follicles in mice. J Obstet Gynaecol Res, 2007;33:128133.CrossRefGoogle ScholarPubMed
Nagano, M, Atabay, EP, Atabay, EC et al. Effects of isolation method and pre-treatment with ethylene glycol or raffinose before vitrification on in vitro viability of mouse preantral follicles. Biomed Res, 2007;28:153160.CrossRefGoogle ScholarPubMed
Mazur, P. Cryobiology: the freezing of biological systems. Science, 1970;168:939949.CrossRefGoogle ScholarPubMed
Leibo, SP. Water permeability and its activation energy of fertilized and unfertilized mouse ova. J Membr Biol, 1980;53:179188.CrossRefGoogle ScholarPubMed
Hunter, J, Bernard, A, Fuller, B et al. Plasma membrane water permeabilities of human oocytes: the temperature dependence of water movement in individual cells. J Cell Physiol, 1992;150:175179.CrossRefGoogle ScholarPubMed
Karow, AM. Organ cryopreservation. In Fuller, BJ, Grout, BWW (eds.) Clinical Applications of Cryobiology. London: CRC Press. 1991, 191217.Google Scholar
Navarro-Costa, P, Correia, SC, Gouveia-Oliveira, A et al. Effects of mouse ovarian tissue cryopreservation on granulosa cell-oocyte interaction.Hum Reprod, 2005;20:16071614.CrossRefGoogle ScholarPubMed
Amorim, CA, Goncalves, PB, Figueiredo, JR. Cryopreservation of oocytes from pre-antral follicles. Hum Reprod Update, 2003;9:119129.CrossRefGoogle ScholarPubMed
Demirci, B, Lornage, J, Salle, B et al. Follicular viability and morphology of sheep ovaries after exposure to cryoprotectant and cryopreservation with different freezing protocols. Fertil Steril, 2001;75:754762.CrossRefGoogle ScholarPubMed
Amorim, CA, Rondina, D, Rodrigues, AP et al. Isolated ovine primordial follicles cryopreserved in different concentrations of ethylene glycol. Theriogenology, 2003;60:735742.CrossRefGoogle ScholarPubMed
Parkes, AS. Factors affecting the viability of frozen ovarian tissue. J Endocrinol, 1958;17:337343.CrossRefGoogle ScholarPubMed
Newton, H, Aubard, Y, Rutherford, A et al. Low temperature storage and grafting of human ovarian tissue. Hum Reprod, 1996;11:14871491.CrossRefGoogle ScholarPubMed
Newton, H, Illingworth, P. In-vitro growth of murine pre-antral follicles after isolation from cryopreserved ovarian tissue. Hum Reprod, 2001;16:423429.CrossRefGoogle ScholarPubMed
Newton, H, Fisher, J, Arnold, JR et al. Permeation of human ovarian tissue with cryoprotective agents in preparation for cryopreservation. Hum Reprod, 1998;13:376380.CrossRefGoogle ScholarPubMed
Candy, CJ, Wood, MJ, Whittingham, DG. Effect of cryoprotectants on the survival of follicles in frozen mouse ovaries. J Reprod Fertil, 1997;110:1119.CrossRefGoogle ScholarPubMed
Devireddy, RV. Predicted permeability parameters of human ovarian tissue cells to various cryoprotectants and water. Mol Reprod Dev, 2005;70:333343.CrossRefGoogle ScholarPubMed
Oktay, K, Nugent, D, Newton, H et al. Isolation and characterization of primordial follicles from fresh and cryopreserved human ovarian tissue. Fertil Steril, 1997;67:481486.CrossRefGoogle ScholarPubMed
Hovatta, O, Silye, R, Krausz, T et al. Cryopreservation of human ovarian tissue using dimethylsulphoxide and propanediol-sucrose as cryoprotectants. Hum Reprod, 1996;11:12681272.CrossRefGoogle ScholarPubMed
Abir, R, Roizman, P, Fisch, B et al. Pilot study of isolated early human follicles cultured in collagen gels for 24 hours. Hum Reprod, 1999;14:12991301.CrossRefGoogle ScholarPubMed
Oktay, K, Newton, H, Gosden, RG. Transplantation of cryopreserved human ovarian tissue results in follicle growth initiation in SCID mice.Fertil Steril, 2000;73:599603.CrossRefGoogle ScholarPubMed
Kim, SS, Radford, J, Harris, M et al. Ovarian tissue harvested from lymphoma patients to preserve fertility may be safe for autotransplantation. Hum Reprod, 2001;16:20562060.CrossRefGoogle ScholarPubMed
Poirot, C, Vacher-Lavenu, MC, Helardot, P et al. Human ovarian tissue cryopreservation: indications and feasibility. Hum Reprod, 2002;17:14471452.CrossRefGoogle ScholarPubMed
Edgar, DH, Karani, J, Gook, DA. Increasing dehydration of human cleavage-stage embryos prior to slow cooling significantly increases cryosurvival. Reprod Biomed Online, 2009;19:521525.CrossRefGoogle ScholarPubMed
Gook, DA, Edgar, DH. Implantation rates of embryos generated from slow cooled human oocytes from young women are comparable to those of fresh and frozen embryos from the same age group. J Assist Reprod Genet, 2011;28:11711176.CrossRefGoogle ScholarPubMed
Gook, DA, Edgar, DH, Stern, C. The effects of cryopreservation regimens on the morphology of human ovarian tissue. Mol Cell Endocrinol, 2000;169:99103.CrossRefGoogle ScholarPubMed
Devireddy, RV. Cryobiology of ovarian tissues: known knowns and known unknowns. Minerva Ginecol, 2018;70:387401.Google ScholarPubMed
Gook, DA, Edgar, DH. Practical aspects of human ovarian tissue storage. In Patrizio, P, Tucker, MJ, Guelman, V (eds.) A Color Atlas for Human Assisted Reproduction. Philadelphia, PA: Lippinctt Williams &Wilkins. 2003, 161177.Google Scholar
Chen, SU, Chien, CL, Wu, MY et al. Novel direct cover vitrification for cryopreservation of ovarian tissues increases follicle viability and pregnancy capability in mice. Hum Reprod, 2006;21:27942800.CrossRefGoogle ScholarPubMed
Wang, WH, Liu, HC, He, Z et al. All cell types in mouse ovary can be well preserved by vitrification. Fertil Steril, 2007;88:S92.CrossRefGoogle Scholar
Wang, Y, Xiao, Z, Li, L et al. Novel needle immersed vitrification: a practical and convenient method with potential advantages in mouse and human ovarian tissue cryopreservation. Hum Reprod, 2008;23:22562265.CrossRefGoogle ScholarPubMed
Bandeira, FT, Carvalho, AA, Castro, SV et al. Two methods of vitrification followed by in vitro culture of the ovine ovary: evaluation of the follicular development and ovarian extracellular matrix. Reprod Domest Anim, 2015;50:177185.CrossRefGoogle ScholarPubMed
Xiao, Z, Wang, Y, Li, LL et al. In vitro culture thawed human ovarian tissue: NIV versus slow freezing method. Cryo Letters, 2013;34:520526.Google ScholarPubMed
Xiao, Z, Li, SW, Zhang, YY et al. Niv versus dropping vitrification in cryopreservation of human ovarian tissue. Cryo Letters, 2014;35:226231.Google ScholarPubMed
Xiao, Z, Zhang, Y, Fan, W. Cryopreservation of human ovarian tissue using the silver closed vitrification system. J Assist Reprod Genet, 2017;34:14351444.CrossRefGoogle ScholarPubMed
Sugishita, Y, Suzuki, N. Fertility preservation for adolescent and young adult cancer patients in Japan. Obstet Gynecol Sci, 2018;61:443452.CrossRefGoogle Scholar
Ting, AY, Yeoman, RR, Campos, JR et al. Morphological and functional preservation of pre-antral follicles after vitrification of macaque ovarian tissue in a closed system. Hum Reprod, 2013;28:12671279.CrossRefGoogle Scholar
Bordes, A, Lornage, J, Demirci, B et al. Normal gestations and live births after orthotopic autograft of vitrified-warmed hemi-ovaries into ewes. Hum Reprod, 2005;20:27452748.CrossRefGoogle ScholarPubMed
Isachenko, V, Lapidus, I, Isachenko, E et al. Human ovarian tissue vitrification versus conventional freezing: morphological, endocrinological, and molecular biological evaluation. Reproduction, 2009;138:319327.CrossRefGoogle ScholarPubMed
Rall, WF, Wood, MJ, Kirby, C et al. Development of mouse embryos cryopreserved by vitrification. J Reprod Fertil, 1987;80:499504.CrossRefGoogle ScholarPubMed
Karran, G, Legge, M. Non-enzymatic formation of formaldehyde in mouse oocyte freezing mixtures. Hum Reprod, 1996;11:26812686.CrossRefGoogle ScholarPubMed
Kagawa, N, Silber, S, Kuwayama, M. Successful vitrification of bovine and human ovarian tissue. Reprod Biomed Online, 2009;18:568577.CrossRefGoogle ScholarPubMed
Snow, M, Cox, SL, Jenkin, G et al. Fertility of mice following receipt of ovaries slow cooled in dimethyl sulphoxide or ethylene glycol is largely independent of cryopreservation equilibration time and temperature. Reprod Fertil Dev, 2003;15:407414.CrossRefGoogle ScholarPubMed
Keros, V, Xella, S, Hultenby, K et al. Vitrification versus controlled-rate freezing in cryopreservation of human ovarian tissue. Hum Reprod, 2009;24:16701683.CrossRefGoogle ScholarPubMed
Sheikhi, M, Hultenby, K, Niklasson, B et al. Clinical grade vitrification of human ovarian tissue: an ultrastructural analysis of follicles and stroma in vitrified tissue. Hum Reprod, 2011;26:594603.CrossRefGoogle ScholarPubMed
Ali, J, Shelton, JN. Design of vitrification solutions for the cryopreservation of embryos. J Reprod Fertil, 1993;99:471477.CrossRefGoogle ScholarPubMed
Hashimoto, S, Suzuki, N, Yamanaka, M et al. Effects of vitrification solutions and equilibration times on the morphology of cynomolgus ovarian tissues. Reprod Biomed Online, 2010;21:501509.CrossRefGoogle ScholarPubMed
Suzuki, N, Hashimoto, S, Igarashi, S et al. Assessment of long-term function of heterotopic transplants of vitrified ovarian tissue in cynomolgus monkeys. Hum Reprod, 2012;27:24202429.CrossRefGoogle ScholarPubMed
Suzuki, N, Yoshioka, N, Takae, S et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod, 2015;30:608615.CrossRefGoogle ScholarPubMed
Nakamura, Y, Obata, R, Okuyama, N et al. Residual ethylene glycol and dimethyl sulphoxide concentration in human ovarian tissue during warming/thawing steps following cryopreservation. Reprod Biomed Online, 2017;35:311313.CrossRefGoogle ScholarPubMed
Oktem, O, Alper, E, Balaban, B et al. Vitrified human ovaries have fewer primordial follicles and produce less antimullerian hormone than slow-frozen ovaries. Fertil Steril, 2011;95:2661–2664 e1.CrossRefGoogle ScholarPubMed
Seki, S, Mazur, P. Ultra-rapid warming yields high survival of mouse oocytes cooled to -196 degrees C in dilutions of a standard vitrification solution. PLoS One, 2012;7:e36058.CrossRefGoogle Scholar
Rimon, E, Cohen, T, Dantes, A et al. Apoptosis in cryopreserved human ovarian tissue obtained from cancer patients: a tool for evaluating cryopreservation utility. Int J Oncol, 2005;27:345353.Google ScholarPubMed
Camboni, A, Martinez-Madrid, B, Dolmans, MM et al. Preservation of fertility in young cancer patients: contribution of transmission electron microscopy. Reprod Biomed Online, 2008;17:136150.CrossRefGoogle ScholarPubMed
Sheikhi, M, Hultenby, K, Niklasson, B et al. Preservation of human ovarian follicles within tissue frozen by vitrification in a xeno-free closed system using only ethylene glycol as a permeating cryoprotectant. Fertil Steril, 2013;100:170–7 e1–2.CrossRefGoogle Scholar
Schubert, B, Canis, M, Darcha, C et al. Human ovarian tissue from cortex surrounding benign cysts: a model to study ovarian tissue cryopreservation. Hum Reprod, 2005;20:17861792.CrossRefGoogle Scholar
Hreinsson, J, Zhang, P, Swahn, ML et al. Cryopreservation of follicles in human ovarian cortical tissue. Comparison of serum and human serum albumin in the cryoprotectant solutions. Hum Reprod, 2003;18:24202428.CrossRefGoogle ScholarPubMed
Fabbri, R, Pasquinelli, G, Bracone, G et al. Cryopreservation of human ovarian tissue. Cell Tissue Bank, 2006;7:123133.CrossRefGoogle ScholarPubMed
Eyden, B, Radford, J, Shalet, SM et al. Ultrastructural preservation of ovarian cortical tissue cryopreserved in dimethylsulfoxide for subsequent transplantation into young female cancer patients. Ultrastruct Pathol, 2004;28:239245.CrossRefGoogle ScholarPubMed
Cortvrindt, RG, Smitz, JE. Fluorescent probes allow rapid and precise recording of follicle density and staging in human ovarian cortical biopsy samples. Fertil Steril, 2001;75:588593.CrossRefGoogle ScholarPubMed
Maltaris, T, Dragonas, C, Hoffmann, I et al. Simple prediction of the survival of follicles in cryopreserved human ovarian tissue. J Reprod Dev, 2006;52:577582.CrossRefGoogle ScholarPubMed
Eppig, JJ, Schroeder, AC. Capacity of mouse oocytes from preantral follicles to undergo embryogenesis and development to live young after growth, maturation, and fertilization in vitro. Biol Reprod, 1989;41:268276.CrossRefGoogle ScholarPubMed
Telfer, EE, Binnie, JP McCaffery, FH et al. In vitro development of oocytes from porcine and bovine primary follicles. Mol Cell Endocrinol, 2000;163:117123.CrossRefGoogle ScholarPubMed
Xu, J, Lawson, MS, Yeoman, RR et al. Secondary follicle growth and oocyte maturation during encapsulated three-dimensional culture in rhesus monkeys: effects of gonadotrophins, oxygen and fetuin. Hum Reprod, 2011;26:10611072.CrossRefGoogle ScholarPubMed
Wang, TR, Yan, LY, Yan, J et al. Basic fibroblast growth factor promotes the development of human ovarian early follicles during growth in vitro. Hum Reprod, 2014;29:568576.CrossRefGoogle ScholarPubMed
Sztein, JM, O’Brien, MJ, Farley, JS et al. Rescue of oocytes from antral follicles of cryopreserved mouse ovaries: competence to undergo maturation, embryogenesis, and development to term. Hum Reprod, 2000;15:567571.CrossRefGoogle ScholarPubMed
Lee, RK, Ho, HY, Yu, SL et al. Blastocyst development after cryopreservation and subcutaneous transplantation of mouse ovarian tissue. J Assist Reprod Genet, 2005;22:95101.CrossRefGoogle ScholarPubMed
Wang, TR, Yan, J, Lu, CL et al. Human single follicle growth in vitro from cryopreserved ovarian tissue after slow freezing or vitrification. Hum Reprod, 2016;31:763773.CrossRefGoogle ScholarPubMed
Eppig, JJ, O’Brien, MJ. Development in vitro of mouse oocytes from primordial follicles. Biol Reprod, 1996;54:197207.CrossRefGoogle ScholarPubMed
O’Brien, MJ, Pendola, JK, Eppig, JJ. A revised protocol for in vitro development of mouse oocytes from primordial follicles dramatically improves their developmental competence. Biol Reprod, 2003;68:16821686.CrossRefGoogle ScholarPubMed
Paulini, F, Vilela, JM, Chiti, MC et al. Survival and growth of human preantral follicles after cryopreservation of ovarian tissue, follicle isolation and short-term xenografting. Reprod Biomed Online, 2016;33:425432.CrossRefGoogle ScholarPubMed
Wandji, SA, Srsen, V, Voss, AK et al. Initiation in vitro of growth of bovine primordial follicles. Biol Reprod, 1996;55:942948.CrossRefGoogle ScholarPubMed
Wandji, SA, Srsen, V, Nathanielsz, PW et al. Initiation of growth of baboon primordial follicles in vitro. Hum Reprod, 1997;12:19932001.CrossRefGoogle ScholarPubMed
Muruvi, W, Picton, HM, Rodway, RG et al. In vitro growth of oocytes from primordial follicles isolated from frozen-thawed lamb ovaries. Theriogenology, 2005;64:13571370.CrossRefGoogle ScholarPubMed
Osborn, SM, Gook, DAStern, C et al. The isolation and culture of human primordial follicles from fresh ovarian tissue. Hum Reprod, 1997;12:P153.CrossRefGoogle Scholar
Amorim, CA, Van, Langendonckt, A, David, A et al. Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. Hum Reprod, 2009;24:9299.CrossRefGoogle Scholar
Hovatta, O, Wright, C, Krausz, T et al. Human primordial, primary and secondary ovarian follicles in long-term culture: effect of partial isolation. Hum Reprod, 1999;14:25192524.CrossRefGoogle ScholarPubMed
Hovatta, O. Cryopreservation and culture of human primordial and primary ovarian follicles. Mol Cell Endocrinol, 2000;169:9597.CrossRefGoogle ScholarPubMed
Laronda, MM, Duncan, FE, Hornick, JE et al. Alginate encapsulation supports the growth and differentiation of human primordial follicles within ovarian cortical tissue. J Assist Reprod Genet, 2014;31:10131028.CrossRefGoogle ScholarPubMed
Cox, SL, Shaw, J, Jenkin, G. Transplantation of cryopreserved fetal ovarian tissue to adult recipients in mice. J Reprod Fertil, 1996;107:315322.CrossRefGoogle ScholarPubMed
Liu, J, Van der Elst, J, Van den Broecke, R et al. Live offspring by in vitro fertilization of oocytes from cryopreserved primordial mouse follicles after sequential in vivo transplantation and in vitro maturation. Biol Reprod, 2001;64:171178.CrossRefGoogle ScholarPubMed
Gook, DA, McCully, BA, Edgar, DH et al. Development of antral follicles in human cryopreserved ovarian tissue following xenografting. Hum Reprod, 2001;16:417422.CrossRefGoogle ScholarPubMed
Van den Broecke, R, Liu, J, Handyside, A et al. Follicular growth in fresh and cryopreserved human ovarian cortical grafts transplanted to immunodeficient mice. Eur J Obstet Gynecol Reprod Biol, 2001a;97:193201.CrossRefGoogle ScholarPubMed
Kim, SS, Soules, MR, Battaglia, DE. Follicular development, ovulation, and corpus luteum formation in cryopreserved human ovarian tissue after xenotransplantation. Fertil Steril, 2002;78:7782.CrossRefGoogle ScholarPubMed
Gook, DA, Edgar, DH, Borg, J et al. Diagnostic assessment of the developmental potential of human cryopreserved ovarian tissue from multiple patients using xenografting. Hum Reprod, 2005;20:7278.CrossRefGoogle ScholarPubMed
Kim, SS, Kang, HG, Kim, NH et al. Assessment of the integrity of human oocytes retrieved from cryopreserved ovarian tissue after xenotransplantation. Hum Reprod, 2005;20:25022508.Google ScholarPubMed
Maltaris, T, Beckmann, MW, Binder, H et al. The effect of a GnRH agonist on cryopreserved human ovarian grafts in severe combined immunodeficient mice. Reproduction, 2007;133:503509.CrossRefGoogle ScholarPubMed
Gook, DA, Edgar, DH, Borg, J et al. Oocyte maturation, follicle rupture and luteinization in human cryopreserved ovarian tissue following xenografting. Hum Reprod, 2003;18:17721781.CrossRefGoogle ScholarPubMed
Schmidt, KL, Yding, Andersen C, Loft, A et al. Follow-up of ovarian function post-chemotherapy following ovarian cryopreservation and transplantation. Hum Reprod, 2005;20:35393546.CrossRefGoogle ScholarPubMed
Stern, CJ, Toledo, MG, Hale, LG et al. The first Australian experience of heterotopic grafting of cryopreserved ovarian tissue: evidence of establishment of normal ovarian function. Aust N Z J Obstet Gynaecol, 2011;51:268275.CrossRefGoogle ScholarPubMed
Gougeon, A. Dynamics of follicular growth in the human: a model from preliminary results. Hum Reprod, 1986;1:8187.CrossRefGoogle Scholar
Kim, SS, Donnez, J, Barri, P et al. Recommendations for fertility preservation in patients with lymphoma, leukemia, and breast cancer. J Assist Reprod Genet, 2012;29:465468.CrossRefGoogle ScholarPubMed
Imbert, R, Moffa, F, Tsepelidis, S et al. Safety and usefulness of cryopreservation of ovarian tissue to preserve fertility: a 12-year retrospective analysis. Hum Reprod, 2014;29:19311940.CrossRefGoogle ScholarPubMed
Liebenthron, J, Dittrich, R, Toth, B et al. Orthotopic ovarian tissue transplantation-results in relation to experience of the transplanting centers, overnight tissue transportation and transplantation into the peritoneum. Hum Reprod, 2015;30:i97i98.Google Scholar
Andersen, CY, Silber, SJ, Bergholdt, SH et al. Long-term duration of function of ovarian tissue transplants: case reports. Reprod Biomed Online, 2012;25:128132.CrossRefGoogle ScholarPubMed
Silber, SJ. Ovary cryopreservation and transplantation for fertility preservation. Mol Hum Reprod, 2012;18:5967.CrossRefGoogle ScholarPubMed
Meirow, D, Ra’anani, H, Shapira, M et al. Transplantations of frozen-thawed ovarian tissue demonstrate high reproductive performance and the need to revise restrictive criteria. Fertil Steril, 2016;106:467474.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet, 2015;32:11671170.CrossRefGoogle ScholarPubMed
Demeestere, I, Simon, P, Dedeken, L et al. Live birth after autograft of ovarian tissue cryopreserved during childhood. Hum Reprod, 2015;30:21072109.CrossRefGoogle ScholarPubMed
Diaz-Garcia, C, Domingo, J, Garcia-Velasco, JA et al. Oocyte vitrification versus ovarian cortex transplantation in fertility preservation for adult women undergoing gonadotoxic treatments: a prospective cohort study. Fertil Steril, 2018;109:478–485 e2.CrossRefGoogle ScholarPubMed
Jensen, AK, Macklon, KT, Fedder, J et al. 86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen-thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children. J Assist Reprod Genet, 2017;34:325336.CrossRefGoogle ScholarPubMed
Siegel, RL, Miller, KD, Jemal, A. Cancer statistics, 2018. CA: A Cancer J Clin, 2018;68(1):730.Google ScholarPubMed
Dolmans, MM, Masciangelo, R. Risk of transplanting malignant cells in cryopreserved ovarian tissue. Minerva Ginecol, 2018;70(4):436443.Google ScholarPubMed
Donnez, J, Dolmans, MM. Fertility preservation in women. N Engl J Med, 2017;377(17):16571665.CrossRefGoogle ScholarPubMed
Ethics Committee of the American Society for Reproductive Medicine. Fertility preservation and reproduction in patients facing gonadotoxic therapies: a committee opinion. Fertil Steril, 2013;100(5):12241231.CrossRefGoogle Scholar
Raffi, F, Metwally, M, Amer, S. The impact of excision of ovarian endometrioma on ovarian reserve: a systematic review and meta-analysis. Clini Endocrinol Metab, 2012;97(9):31463154.CrossRefGoogle ScholarPubMed
Jadoul, P et al. Surgical treatment of ovarian endometriomas: state of the art? Fertil Steril, 2012;98(3):556563.CrossRefGoogle ScholarPubMed
Donnez, J et al. Safety of conservative management and fertility outcome in women with borderline tumors of the ovary. Fertil Steril, 2003;79(5):12161221.CrossRefGoogle ScholarPubMed
Daraï, E et al. Fertility and borderline ovarian tumor: a systematic review of conservative management, risk of recurrence and alternative options. Hum Reprod Update, 2013;19(2):151166.CrossRefGoogle ScholarPubMed
Donnez, J et al. Fertility preservation in women with ovarian endometriosis. Front Biosci (Elite Ed), 2012;4:16541662.CrossRefGoogle ScholarPubMed
Masciangelo, R et al. Safety of ovarian tissue transplantation in patients with borderline ovarian tumors. Hum Reprod, 2018;33(2):212219.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, M-M. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet, 2015;32(8):11671170.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM. Fertility preservation in women. Nat Rev Endocrinol, 2013;9(12):735749.CrossRefGoogle ScholarPubMed
Wallace, WHB, Kelsey, TW, Anderson, RA. Fertility preservation in pre-pubertal girls with cancer: the role of ovarian tissue cryopreservation. Fertil Steril, 2016;105(1):612.CrossRefGoogle ScholarPubMed
Wallace, WHB et al. Fertility preservation for girls and young women with cancer: population-based validation of criteria for ovarian tissue cryopreservation. Lancet Oncol, 2014;15(10):11291136.CrossRefGoogle Scholar
American Cancer Society. What Are the Key Statistics for Childhood Leukemia? 2017.Google Scholar
National Cancer Institute. Surveillance, E., and End Results Program. Physician Data Query (PDQ). Childhood Acute Lymphoblastic Leukemia Treatment. 2014.Google Scholar
National Cancer Institute. Surveillance, E., and End Results Program. Physician Data Query (PDQ). Childhood Acute Myeloid Leukemia/Other Myeloid Malignancies Treatment. 2014.Google Scholar
Kyono, K et al. Potential indications for ovarian autotransplantation based on the analysis of 5,571 autopsy findings of females under the age of 40 in Japan. Fertil Steril, 2010;93(7):24292430.CrossRefGoogle ScholarPubMed
Meirow, D et al. Searching for evidence of disease and malignant cell contamination in ovarian tissue stored from hematologic cancer patients. Hum Reprod, 2008;23(5):10071013.CrossRefGoogle ScholarPubMed
Dolmans, MM et al. Reimplantation of cryopreserved ovarian tissue from patients with acute lymphoblastic leukemia is potentially unsafe. Blood, 2010;116(16):29082914.CrossRefGoogle ScholarPubMed
Rosendahl, M et al. Evidence of residual disease in cryopreserved ovarian cortex from female patients with leukemia. Fertil Steril, 2010;94(6):21862190.CrossRefGoogle ScholarPubMed
Greve, T et al. Cryopreserved ovarian cortex from patients with leukemia in complete remission contains no apparent viable malignant cells. Blood, 2012;120(22):43114316.CrossRefGoogle ScholarPubMed
Shapira, M et al. First delivery in a leukemia survivor after transplantation of cryopreserved ovarian tissue, evaluated for leukemia cells contamination. Fertil Steril, 2018;109(1):4853.CrossRefGoogle Scholar
Jessica, H et al. Adolescent non-Hodgkin lymphoma and Hodgkin lymphoma: state of the science. Br J Haematol, 2009;144(1):2440.Google Scholar
Jacques, D, Marie-Madeleine, D. Preservation of fertility in females with haematological malignancy. Br J Haematol, 2011;154(2):175184.Google Scholar
Donnez, J et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet, 2004;364(9443):14051410.CrossRefGoogle ScholarPubMed
Meirow, D et al. Ovarian tissue banking in patients with Hodgkin’s disease: is it safe? Fertil Steril, 1998;69(6):996998.Google Scholar
Kim, SS et al. Ovarian tissue harvested from lymphoma patients to preserve fertility may be safe for autotransplantation. Hum Reprod, 2001;16(10):20562060.CrossRefGoogle ScholarPubMed
Seshadri, T et al. Lack of evidence of disease contamination in ovarian tissue harvested for cryopreservation from patients with Hodgkin lymphoma and analysis of factors predictive of oocyte yield. Br J Cancer, 2006;94:1007.CrossRefGoogle ScholarPubMed
Bittinger, SE et al. Detection of Hodgkin lymphoma within ovarian tissue. Fertil Steril, 2011;95(2):803 e3-6.CrossRefGoogle ScholarPubMed
Dolmans, M-M et al. A review of 15 years of ovarian tissue bank activities. J Assist Reprod Genet, 2013;30(3):305314.CrossRefGoogle ScholarPubMed
Society, AC. How Common Is Breast Cancer? 2017.Google Scholar
Society, AC. Breast Cancer Facts & Figures. 2017.Google Scholar
Dolmans, MM et al. Risk of transferring malignant cells with transplanted frozen-thawed ovarian tissue. Fertil Steril, 2013;99(6):15141522.CrossRefGoogle ScholarPubMed
Perrotin, F et al. Incidence, diagnostic et pronostic des métastases ovariennes du cancer du sein. Gynecologie Obstetrique Fertilite, 2001;29(4):308315.CrossRefGoogle Scholar
Li, CI et al. Trends in incidence rates of invasive lobular and ductal breast carcinoma. JAMA, 2003;289(11):14211424.CrossRefGoogle ScholarPubMed
Sánchez-Serrano, M et al. Malignant cells are not found in ovarian cortex from breast cancer patients undergoing ovarian cortex cryopreservation†. Hum Reprod, 2009;24(9):22382243.CrossRefGoogle ScholarPubMed
Rosendahl, M et al. Cryopreservation of ovarian tissue for fertility preservation: no evidence of malignant cell contamination in ovarian tissue from patients with breast cancer. Fertil Steril, 2011;95(6):21582161.CrossRefGoogle ScholarPubMed
Luyckx, V et al. Is transplantation of cryopreserved ovarian tissue from patients with advanced-stage breast cancer safe? A pilot study. J Assist Reprod Genet, 2013;30(10):12891299.CrossRefGoogle ScholarPubMed
Bockstaele, L et al. Evaluation of quantitative polymerase chain reaction markers for the detection of breast cancer cells in ovarian tissue stored for fertility preservation. Fertil Steril, 2015;104(2):410–417.e4.CrossRefGoogle ScholarPubMed
American Cancer Society. Key Statistics for Ovarian Cancer. 2018; Available from: www.cancer.org/cancer/ovarian-cancer/about/key-statistics.htmlGoogle Scholar
Lotz, L et al. Xenotransplantation of cryopreserved ovarian tissue from patients with ovarian tumors into SCID mice–no evidence of malignant cell contamination. Fertil Steril, 2011;95(8):2612–2614 e1.CrossRefGoogle ScholarPubMed
Stern, CJ et al. First reported clinical pregnancy following heterotopic grafting of cryopreserved ovarian tissue in a woman after a bilateral oophorectomy. Hum Reprod, 2013;28(11):29962999.CrossRefGoogle Scholar
Stern, CJ et al. Delivery of twins following heterotopic grafting of frozen-thawed ovarian tissue. Hum Reprod, 2014;29(8):1828.CrossRefGoogle ScholarPubMed
Dittrich, R et al. Pregnancies and live births after 20 transplantations of cryopreserved ovarian tissue in a single center. Fertil Steril, 2015;103(2):462468.CrossRefGoogle ScholarPubMed
Kristensen, SG et al. Fertility preservation and refreezing of transplanted ovarian tissue-a potential new way of managing patients with low risk of malignant cell recurrence. Fertil Steril, 2017;107(5):12061213.CrossRefGoogle ScholarPubMed
Kim, SS, Hwang, IT, Lee, HC. Heterotopic autotransplantation of cryobanked human ovarian tissue as a strategy to restore ovarian function. Fertil Steril, 2004;82(4):930932.CrossRefGoogle ScholarPubMed
Kim, SS et al. Long-term ovarian function and fertility after heterotopic autotransplantation of cryobanked human ovarian tissue: 8-year experience in cancer patients. Fertil Steril, 2009;91(6):23492354.CrossRefGoogle ScholarPubMed
Kim, SS. Assessment of long term endocrine function after transplantation of frozen-thawed human ovarian tissue to the heterotopic site: 10 year longitudinal follow-up study. J Assist Reprod Genet, 2012;29(6):489493.CrossRefGoogle ScholarPubMed
Bastings, L et al. Autotransplantation of cryopreserved ovarian tissue in cancer survivors and the risk of reintroducing malignancy: a systematic review. Hum Reprod Update, 2013;19(5):483506.CrossRefGoogle ScholarPubMed
Schmidt, KT et al. Autotransplantation of cryopreserved ovarian tissue in 12 women with chemotherapy-induced premature ovarian failure: the Danish experience. Fertil Steril, 2011;95(2):695701.CrossRefGoogle ScholarPubMed
Donnez, J et al. Restoration of ovarian activity and pregnancy after transplantation of cryopreserved ovarian tissue: a review of 60 cases of reimplantation. Fertil Steril, 2013;99(6):15031513.CrossRefGoogle ScholarPubMed
Pan, Z et al. Retrospective analysis on coexisting ovarian cancer in 976 patients with clinical stage I endometrial carcinoma. J Obstet Gynaecol Res, 2011;37(4):352358.CrossRefGoogle ScholarPubMed
Dundar, E et al. The significance of local cellular immune response of women 50 years of age and younger with endometrial carcinoma. Eur J Gynaecol Oncol, 2002;23(3):243246.Google ScholarPubMed
Dolmans, MM et al. Evaluation of minimal disseminated disease in cryopreserved ovarian tissue from bone and soft tissue sarcoma patients. Hum Reprod, 2016;31(10):22922302.CrossRefGoogle ScholarPubMed
Abir, R et al. Occasional involvement of the ovary in Ewing sarcoma. Hum Reprod, 2010;25(7):17081712.CrossRefGoogle ScholarPubMed
Greve, T et al. Ovarian tissue cryopreserved for fertility preservation from patients with Ewing or other sarcomas appear to have no tumour cell contamination. Eur J Cancer, 2013;49(8):19321938.CrossRefGoogle ScholarPubMed
Azem, F et al. Histologic evaluation of fresh human ovarian tissue before cryopreservation. Int J Gynecol Pathol, 2010;29(1):1923.CrossRefGoogle ScholarPubMed
Donnez, J et al. Pregnancy and live birth after autotransplantation of frozen-thawed ovarian tissue in a patient with metastatic disease undergoing chemotherapy and hematopoietic stem cell transplantation. Fertil Steril, 2011;95(5):1787.e1-1787.e4.CrossRefGoogle Scholar
Poirot, CJ et al. Feasibility of ovarian tissue cryopreservation for prepubertal females with cancer. Pediatr Blood Cancer, 2007;49(1):7478.CrossRefGoogle ScholarPubMed
Burchill, SA et al. Circulating neuroblastoma cells detected by reverse transcriptase polymerase chain reaction for tyrosine hydroxylase mRNA are an independent poor prognostic indicator in stage 4 neuroblastoma in children over 1 year. J Clin Oncol, 2001;19(6):17951801.CrossRefGoogle ScholarPubMed
Yáñez, Y et al. TH and DCX mRNAs in peripheral blood and bone marrow predict outcome in metastatic neuroblastoma patients. J Cancer Res Clin Oncol, 2016;142(3):573580.CrossRefGoogle ScholarPubMed
Grèze, V et al. Highly sensitive assessment of neuroblastoma minimal residual disease in ovarian tissue using RT-qPCR – A strategy for improving the safety of fertility restoration. Pediatr Blood Cancer, 2017;64(5):e26287.CrossRefGoogle ScholarPubMed
Soares, M et al. Is transplantation of a few leukemic cells inside an artificial ovary able to induce leukemia in an experimental model? J Assist Reprod Genet, 2015;32(4):597606.CrossRefGoogle Scholar
Soares, M et al. Eliminating malignant cells from cryopreserved ovarian tissue is possible in leukaemia patients. Br J Haematol, 2017;178(2):231239.CrossRefGoogle ScholarPubMed
Shapira, M et al. First delivery in a leukemia survivor after transplantation of cryopreserved ovarian tissue, evaluated for leukemia cells contamination. Fertil Steril, 2018;109(1):4853.CrossRefGoogle Scholar
Martinez, F. Update on fertility preservation from the Barcelona International Society for Fertility Preservation-ESHRE-ASRM 2015 expert meeting: indications, results and future perspectives. Hum Reprod, 2017 September 1;32(9):18021811.CrossRefGoogle ScholarPubMed
Bromer, JG, Patrizio, P. Preservation and postponement of female fertility. Placenta, 2008;29(Suppl B):200205.CrossRefGoogle ScholarPubMed
Demirtas, E, Elizur, SE, Holzer, H et al. Immature oocyte retrieval in the luteal phase to preserve fertility in cancer patients. Reprod Biomed Online, 2008;17(4):520523.CrossRefGoogle ScholarPubMed
Donnez, J, Martinez-Madrid, B, Jadoul, P et al. Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update, 2006;12(5):519535.CrossRefGoogle ScholarPubMed
Martin, JR, Kodaman, P, Oktay, K, Taylor, HS. Ovarian cryopreservation with transposition of a contralateral ovary: a combined approach for fertility preservation in women receiving pelvic radiation. Fertil Steril, 2007;87(1):189 e57.CrossRefGoogle ScholarPubMed
Tao, T, Del Valle, A. Human oocyte and ovarian tissue cryopreservation and its application. J Assist Reprod Genet, 2008;25(7):287296.CrossRefGoogle ScholarPubMed
Lee, SJ, Schover, LR, Partridge, AH et al. American Society of Clinical Oncology recommendations on fertility preservation in cancer patients. J Clin Oncol, 2006;24(18):29172931.CrossRefGoogle Scholar
Oktay, K, Harvey, BE, Partridge, AH et al. Fertility preservation in patients with cancer: ASCO clinical practice guideline update. J Clin Oncol, 2018;36(19):19942001.CrossRefGoogle ScholarPubMed
von Wolff, M, Germeyer, A, Liebenthron, J, Korell, M, Nawroth, F. Practical recommendations for fertility preservation in women by the FertiProtekt network: Part II: fertility preservation techniques. Arch Gynecol Obstet, 2018 January;297(1):257267.CrossRefGoogle ScholarPubMed
Oktay, K, Sonmezer, M. Ovarian tissue banking for cancer patients: fertility preservation, not just ovarian cryopreservation. Hum Reprod, 2004;19(3):477480.CrossRefGoogle Scholar
Kim, SS. Ovarian tissue banking for cancer patients. To do or not to do? Hum Reprod, 2003;18(9):17591761.CrossRefGoogle ScholarPubMed
Kim, SS, Hwang, IT, Lee, HC. Heterotopic autotransplantation of cryobanked human ovarian tissue as a strategy to restore ovarian function. Fertil Steril, 2004;82(4):930932.CrossRefGoogle ScholarPubMed
Oktay, K, Karlikaya, G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med, 2000;342(25):1919.CrossRefGoogle ScholarPubMed
Radford, JA, Lieberman, BA, Brison, DR et al. Orthotopic reimplantation of cryopreserved ovarian cortical strips after high-dose chemotherapy for Hodgkin’s lymphoma. Lancet, 2001;357(9263):11721175.CrossRefGoogle ScholarPubMed
Andersen, CY, Rosendahl, M, Byskov, AG et al. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod, 2008;23(10):22662272.CrossRefGoogle ScholarPubMed
Demeestere, I, Simon, P, Emiliani, S, Delbaere, A, Englert, Y. Fertility preservation: successful transplantation of cryopreserved ovarian tissue in a young patient previously treated for Hodgkin’s disease. Oncologist, 2007;12(12):14371442.CrossRefGoogle Scholar
Meirow, D, Levron, J, Eldar-Geva, T et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med, 2005;353(3):318321.CrossRefGoogle Scholar
Donnez, J, Dolmans, MM, Demylle, D et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet, 2004;364(9443):14051410.CrossRefGoogle ScholarPubMed
Sanchez-Serrano, M, Crespo, J, Mirabet, V et al. Twins born after transplantation of ovarian cortical tissue and oocyte vitrification. Fertil Steril, 2010;93(1):268 e1113.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM. Ovarian cortex transplantation: 60 reported live births brings the success and worldwide expansion of the technique towards routine clinical practice. J Assist Reprod Genet, 2015;32(8):11671170.CrossRefGoogle ScholarPubMed
Andersen, CY, Silber SJ, Bergholdt SH, Jorgensen JS, Ernst E. Long-term duration of function of ovarian tissue transplants: case reports. Reprod Biomed Online, 2012;25(2):128132.CrossRefGoogle ScholarPubMed
Silber, S, Pineda, J, Lenahan, K, DeRosa, M, Melnick, J. Fresh and cryopreserved ovary transplantation and resting follicle recruitment. Reprod BioMed Online, 2015;30:643650.CrossRefGoogle ScholarPubMed
Jensen, AK, Kristensen, SG, Macklon, KT et al. Outcomes of transplantations of cryopreserved ovarian tissue to 41 women in Denmark. Hum Reprod, 2015;30:28382845.CrossRefGoogle ScholarPubMed
Jensen, AK, Macklon, KT, Fedder, Jet al. 86 successful births and 9 ongoing pregnancies worldwide in women transplanted with frozen-thawed ovarian tissue: focus on birth and perinatal outcome in 40 of these children. J Assist Reprod Genet, 2017 March;34(3):337.CrossRefGoogle ScholarPubMed
Donnez, J, Squifflet, J, Van Eyck, AS et al. Restoration of ovarian function in orthotopically transplanted cryopreserved ovarian tissue: a pilot experience. Reprod Biomed Online, 2008;16(5):694704.CrossRefGoogle ScholarPubMed
Oktay, K. Spontaneous conceptions and live birth after heterotopic ovarian transplantation: is there a germline stem cell connection? Hum Reprod, 2006;21(6):13451348.CrossRefGoogle Scholar
Israely, T, Nevo, N, Harmelin, A, Neeman, M, Tsafriri, A. Reducing ischaemic damage in rodent ovarian xenografts transplanted into granulation tissue. Hum Reprod, 2006;21(6):13681379.CrossRefGoogle ScholarPubMed
Israely, T, Dafni, H, Nevo, N, Tsafriri, A, Neeman, M. Angiogenesis in ectopic ovarian xenotransplantation: multiparameter characterization of the neovasculature by dynamic contrast-enhanced MRI. Magn Reson Med, 2004;52(4):741750.CrossRefGoogle ScholarPubMed
Martinez-Madrid, B, Dolmans, MM, Van, Langendonckt, A, Defrere, S, Donnez, J. Freeze–thawing intact human ovary with its vascular pedicle with a passive cooling device. Fertil Steril, 2004;82(5):13901394.CrossRefGoogle ScholarPubMed
Bedaiwy, MA, Hussein, MR, Biscotti, C, Falcone, T. Cryopreservation of intact human ovary with its vascular pedicle. Hum Reprod, 2006;21(12):32583269.CrossRefGoogle ScholarPubMed
Qi, S, Ma, A, Xu, D, Daloze, P, Chen, H. Cryopreservation of vascularized ovary: an evaluation of histology and function in rats. Microsurgery, 2008;28(5):380386.CrossRefGoogle ScholarPubMed
Silber, SJ, DeRosa, M, Pineda, J et al. A series of monozygotic twins discordant for ovarian failure: ovary transplantation (cortical versus microvascular) and cryopreservation. Hum Reprod, 2008;23(7):15311537.CrossRefGoogle ScholarPubMed
Gosden, RG. Ovary and uterus transplantation. Reproduction, 2008;136(6):671680.CrossRefGoogle ScholarPubMed
Baird, DT, Webb, R, Campbell, BK, Harkness, LM, Gosden, RG. Long-term ovarian function in sheep after ovariectomy and transplantation of autografts stored at –196°C. Endocrinology, 1999;140(1):462471.CrossRefGoogle Scholar
Martinez-Madrid, B, Camboni, A, Dolmans, MM et al. Apoptosis and ultrastructural assessment after cryopreservation of whole human ovaries with their vascular pedicle. Fertil Steril, 2007;87(5):11531165.CrossRefGoogle ScholarPubMed
Falcone, T, Attaran, M, Bedaiwy, MA, Goldberg, JM. Ovarian function preservation in the cancer patient. Fertil Steril, 2004;81(2):243257.CrossRefGoogle ScholarPubMed
Wang, X, Chen, H, Yin, H et al. Fertility after intact ovary transplantation. Nature, 2002;415(6870):385.CrossRefGoogle ScholarPubMed
Winston, RM, Browne, JC. Pregnancy following autograft transplantation of fallopian tube and ovary in the rabbit. Lancet, 1974;2(7879):494495.CrossRefGoogle ScholarPubMed
Goding, JR, McCracken, JA, Baird, DT. The study of ovarian function in the ewe by means of a vascular autotransplantation technique. J Endocrinol, 1967;39(1):3752.CrossRefGoogle Scholar
Jeremias, E, Bedaiwy, MA, Gurunluoglu, R et al. Heterotopic autotransplantation of the ovary with microvascular anastomosis: a novel surgical technique. Fertil Steril, 2002;77(6):12781282.CrossRefGoogle ScholarPubMed
Wallin, A, Ghahremani, M, Dahm-Kahler, P, Brannstrom, M. Viability and function of the cryopreserved whole ovary: in vitro studies in the sheep. Hum Reprod, 2009;24(7):16841694.CrossRefGoogle ScholarPubMed
Paldi, E, Gal, D, Barzilai, A. Hampel N, Malberger E. Genital organs. Auto and homotransplantation in 40 dogs. Int J Fertil, 1975;20(1):512.Google Scholar
Scott, JR, Keye, WR, Poulson, AM, Reynolds, WA. Microsurgical ovarian transplantation in the primate. Fertil Steril, 1981;36(4):512515.CrossRefGoogle ScholarPubMed
Mhatre, P, Mhatre, J, Magotra, R. Ovarian transplant: a new frontier. Transplant Proc, 2005;37(2):13961398.CrossRefGoogle ScholarPubMed
Leporrier, M, von Theobald, P, Roffe, JL, Muller, G. A new technique to protect ovarian function before pelvic irradiation. Heterotopic ovarian autotransplantation. Cancer, 1987;60(9):22012204.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Hilders, CG, Baranski, AG, Peters, L, Ramkhelawan, A, Trimbos, JB. Successful human ovarian autotransplantation to the upper arm. Cancer, 2004;101(12):27712778.CrossRefGoogle ScholarPubMed
Silber, SJ, Grudzinskas, G, Gosden, RG. Successful pregnancy after microsurgical transplantation of an intact ovary. N Engl J Med, 2008;359(24):26172618.CrossRefGoogle ScholarPubMed
Bedaiwy, MA, Jeremias, E, Gurunluoglu, R et al. Restoration of ovarian function after autotransplantation of intact frozen–thawed sheep ovaries with microvascular anastomosis. Fertil Steril, 2003;79(3):594602.CrossRefGoogle ScholarPubMed
Falcone, T, Bedaiwy, MA. Cryopreservation of intact ovaries – size is a variable? Fertil Steril, 2005;83(5):1587;author reply 1588.CrossRefGoogle ScholarPubMed
Jadoul, P, Donnez, J, Dolmans, MM et al. Laparoscopic ovariectomy for whole human ovary cryopreservation: technical aspects. Fertil Steril, 2007;87(4):971975.CrossRefGoogle ScholarPubMed
Yin, H, Wang, X, Kim, SS et al. Transplantation of intact rat gonads using vascular anastomosis: effects of cryopreservation, ischaemia and genotype. Hum Reprod, 2003;18(6):11651172.CrossRefGoogle ScholarPubMed
Revel, A, Elami, A, Bor, A et al. Whole sheep ovary cryopreservation and transplantation. Fertil Steril, 2004;82(6):17141715.CrossRefGoogle ScholarPubMed
Grazul-Bilska, AT, Banerjee, J, Yazici, I et al. Morphology and function of cryopreserved whole ovine ovaries after heterotopic autotransplantation. Reprod Biol Endocrinol, 2008;6:16.CrossRefGoogle ScholarPubMed
Arav, A, Revel, A, Nathan, Y et al. Oocyte recovery, embryo development and ovarian function after cryopreservation and transplantation of whole sheep ovary. Hum Reprod, 2005;20(12):35543559.CrossRefGoogle ScholarPubMed
Arav, A, Gavish, Z, Elami, A et al. Ovarian function 6 years after cryopreservation and transplantation of whole sheep ovaries. Reprod Biomed Online, 2010;20:4852.CrossRefGoogle ScholarPubMed
Imhof, M, Hofstetter, G, Bergmeister, H et al. Cryopreservation of a whole ovary as a strategy for restoring ovarian function. J Assist Reprod Genet, 2004;21(12):459465.CrossRefGoogle ScholarPubMed
Imhof, M, Bergmeister, H, Lipovac, M et al. Orthotopic microvascular reanastomosis of whole cryopreserved ovine ovaries resulting in pregnancy and live birth. Fertil Steril,2006;85(Suppl. 1):12081215.CrossRefGoogle ScholarPubMed
Suzuki, N, Yoshioka N, Takae S, et al. Successful fertility preservation following ovarian tissue vitrification in patients with primary ovarian insufficiency. Hum Reprod, 2015;30(3):608615.CrossRefGoogle ScholarPubMed
Fahy, GM, Wowk, B, Wu, J et al. Cryopreservation of organs by vitrification: perspectives and recent advances. Cryobiology, 2004;48(2):157178.CrossRefGoogle ScholarPubMed
Rall, WF, Fahy, GM. Ice-free cryopreservation of mouse embryos at –196°C by vitrification. Nature, 1985;313(6003):573–575.CrossRefGoogle Scholar
Courbiere, B, Massardier, J, Salle, B et al. Follicular viability and histological assessment after cryopreservation of whole sheep ovaries with vascular pedicle by vitrification. Fertil Steril, 2005;84(Suppl. 2):10651071.CrossRefGoogle ScholarPubMed
Courbiere, B, Caquant, L, Mazoyer, C et al. Difficulties improving ovarian functional recovery by microvascular transplantation and whole ovary vitrification. Fertil Steril, 2009;91(6):2697–2706.CrossRefGoogle ScholarPubMed
Patrizio, P, Bromer, JG, Martel, J, Siber, S, Arav, A. Cryopreservation of 11 whole human ovaries: histology, immunohistochemistry and technical details. The 64th Annual Meeting of the American Society for Reproductive Medicine, San Francisco USA, May 2008.CrossRefGoogle Scholar
Bromer, JG, Patrizio, P. Fertility preservation: the rational for preserving whole ovary. Semin Reprod Med, 2009;27(64):465471.CrossRefGoogle Scholar
Martinez-Madrid, B, Donnez, J. Cryopreservation of intact human ovary with its vascular pedicle – or cryopreservation of hemiovaries? Hum Reprod, 2007;22(6):17951796; author reply 1796–1797.CrossRefGoogle ScholarPubMed
Bedaiwy, MA, Falcone, T. Technical challenges in freeze–thawing of human ovary. Fertil Steril, 2005;83(4):10681069; author reply 1069–1070.CrossRefGoogle ScholarPubMed
Patrizio, P, Gavish, Z, Martel, M et al. Whole ovary cryopreservation using a novel multi-gradient freezing device. The 63rd Annual Meeting of the American Society for Reproductive Medicine, Washington, DC, October 2007.Google Scholar