Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T19:33:15.444Z Has data issue: false hasContentIssue false

Section 2 - Systems Involved in Mitochondrial Diseases

Published online by Cambridge University Press:  28 April 2018

Patrick F. Chinnery
Affiliation:
University of Cambridge
Michael J. Keogh
Affiliation:
University of Newcastle upon Tyne
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Nesbitt, V, Pitceathly, RD, Turnbull, DM, et al. The UK MRC Mitochondrial Disease Patient Cohort Study: Clinical phenotypes associated with the m.3243A>G mutation – implications for diagnosis and management. J Neurol Neurosurg Psychiatry 2013; 84(8): 936938.CrossRefGoogle ScholarPubMed
Halter, JP, Michael, W, Schupbach, M, et al. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Brain 2015.Google Scholar
Uziel, G, Moroni, I, Lamantea, E, et al. Mitochondrial disease associated with the T8993 G mutation of the mitochondrial ATPase 6 gene: A clinical, biochemical, and molecular study in six families. J Neurol Neurosurg Psychiatry 1997; 63(1): 1622.CrossRefGoogle Scholar
Horvath, R, Hudson, G, Ferrari, G, et al. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain 2006; 129(Pt. 7): 16741684.Google Scholar
Tzoulis, C, Engelsen, BA, Telstad, W, et al. The spectrum of clinical disease caused by the A467 T and W748S POLG mutations: A study of 26 cases. Brain 2006.Google Scholar
Pfeffer, G, Gorman, GS, Griffin, H, et al. Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain 2014; 137(Pt. 5): 13231336.CrossRefGoogle ScholarPubMed
Bricout, M, Grevent, D, Lebre, AS, et al. Brain imaging in mitochondrial respiratory chain deficiency: Combination of brain MRI features as a useful tool for genotype/phenotype correlations. J Med Genet 2014; 51(7): 429435.CrossRefGoogle ScholarPubMed
Pfeffer, G, Horvath, R, Klopstock, T, et al. New treatments for mitochondrial disease – no time to drop our standards. Nature Reviews Neurology 2013; 9(8): 474481.CrossRefGoogle ScholarPubMed
Koga, Y, Akita, Y, Nishioka, J, et al. L-arginine improves the symptoms of strokelike episodes in MELAS. Neurology 2005; 64(4): 710712.CrossRefGoogle ScholarPubMed

References

Pitceathly, RDS, Rahman, S, Hanna, MG. Single deletions in mitochondrial DNA – Molecular mechanisms and disease phenotypes in clinical practice. Neuromuscul Disord 2012 Jul;22(7):577586.CrossRefGoogle ScholarPubMed
Nesbitt, V, Pitceathly, RDS, Turnbull, DM, et al. The UK MRC Mitochondrial Disease Patient Cohort Study: Clinical phenotypes associated with the m.3243A>G mutation – implications for diagnosis and management. J Neurol Neurosurg Psychiatry. 2013 Aug;84(8):936938.Google Scholar
Rahman, S, Hanna, MG. Diagnosis and therapy in neuromuscular disorders: Diagnosis and new treatments in mitochondrial diseases. J Neurol Neurosurg Psychiatry 2009 Sep;80(9):943953.CrossRefGoogle ScholarPubMed
Hanisch, F, Kornhuber, M, Alston, CL, et al. SANDO syndrome in a cohort of 107 patients with CPEO and mitochondrial DNA deletions. J Neurol Neurosurg Psychiatry 2015 Jun;86(6)630634.CrossRefGoogle Scholar
Garone, C, Tadesse, S, Hirano, M. Clinical and genetic spectrum of mitochondrial neurogastrointestinal encephalomyopathy. Brain 2011 Nov;134(Pt. 11):33263332.CrossRefGoogle ScholarPubMed
Pitceathly, RDS, Murphy, SM, Cottenie, E, et al. Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease. Neurology 2012 Sep;79(11):11451154.CrossRefGoogle ScholarPubMed
Horga, A, Pitceathly, RDS, Blake, JC, et al. Peripheral neuropathy predicts nuclear gene defect in patients with mitochondrial ophthalmoplegia. Brain 2014 Dec;137(Pt. 12):32003212.Google Scholar
Pitceathly, RDS, Tomlinson, SE, Hargreaves, I, et al. Distal myopathy with cachexia: An unrecognised phenotype caused by dominantly-inherited mitochondrial polymerase γ mutations. J Neurol Neurosurg Psychiatry 2013 Jan;84(1):107110.Google Scholar
Pitceathly, RDS, Morrow, JM, Sinclair, CDJ, Woodward, C, Sweeney, MG, Rahman, S, et al. Extra-ocular muscle MRI in genetically-defined mitochondrial disease. Eur Radiol 2015 May 21. [Epub ahead of print]Google ScholarPubMed
Chanprasert, S, Wong, L-JC, Wang, J, Scaglia, F. TK2-related mitochondrial DNA depletion syndrome, myopathic form. In Pagon, RA, Adam, MP, Ardinger, HH, Bird, TD, Dolan, CR, Fong, C-T, et al., editors. GeneReviews(®) [Internet]. Seattle: University of Washington, Seattle; 1993–2015.Google Scholar
Pfeffer, G, Majamaa, K, Turnbull, DM, et al. Treatment for mitochondrial disorders. Cochrane Database Syst Rev Online 2012 April;4:CD004426.Google Scholar
Pitceathly, RDS, McFarland, R. Mitochondrial myopathies in adults and children: Management and therapy development. Curr Opin Neurol 2014 Oct;27(5):576582.Google Scholar
Clark, KM, Bindoff, LA, Lightowlers, RN, et al. Reversal of a mitochondrial DNA defect in human skeletal muscle. Nat Genet 1997 Jul;16(3):222224.Google Scholar
Duncan, AJ, Knight, JA, Costello, H, et al. POLG mutations and age at menopause. Hum Reprod Oxf Engl 2012 Jul;27(7):22432244.Google Scholar
Pitceathly, RDS, Taanman, J-W, Rahman, S, et al. COX10 mutations resulting in complex multisystem mitochondrial disease that remains stable into adulthood. JAMA Neurol 2013 Dec;70(12):15561561.Google ScholarPubMed

References

Fraser, JA, Biousse, V, Newman, NJ. The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol 2010;55(4):299334.Google Scholar
Yu-Wai-Man, P, Griffiths, PG, Chinnery, PF. Mitochondrial optic neuropathies – disease mechanisms and therapeutic strategies. Prog Retin Eye Res 2011;30(2):81114.Google Scholar
Yu-Wai-Man, P, Chinnery, PF. Leber hereditary optic neuropathy. In Pagon, RA, Bird, TC, Dolan, CR, Stephens, K, editors. Gene Reviews. 2013; available online at www.ncbi.nlm.nih.gov/books/NBK1174/ (Accessed December 8, 2015).Google Scholar
Pfeffer, G, Burke, A, Yu-Wai-Man, P, Compston, DA, Chinnery, PF. Clinical features of MS associated with Leber hereditary optic neuropathy mtDNA mutations. Neurology 2013;81(24):20732081.CrossRefGoogle ScholarPubMed
Yu-Wai-Man, P, Griffiths, PG, Gorman, GS, et al. Multi-system neurological disease is common in patients with OPA1 mutations. Brain 2010;133(3):771786.CrossRefGoogle ScholarPubMed
Bau, V, Zierz, S. Update on chronic progressive external ophthalmoplegia. Strabismus 2005;13(3):133142.CrossRefGoogle ScholarPubMed
Schoser, BG, Pongratz, D. Extraocular mitochondrial myopathies and their differential diagnoses. Strabismus 2006;14(2):107113.CrossRefGoogle ScholarPubMed
Richardson, C, Smith, T, Schaefer, A, et al. Ocular motility findings in chronic progressive external ophthalmoplegia. Eye 2005;19(3):258263.Google Scholar
Ziccardi, L, Sadun, F, De Negri, AM, et al. Retinal function and neural conduction along the visual pathways in affected and unaffected carriers with Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 2013;54(10):68936901.Google Scholar
Phillips, PH, Vaphiades, M, Glasier, CM, et al. Chiasmal enlargement and optic nerve enhancement on magnetic resonance imaging in Leber hereditary optic neuropathy. Arch Ophthalmol 2003;121(4):577579.CrossRefGoogle ScholarPubMed
Yu-Wai-Man, C, Smith, FE, Blamire, A, et al. Extraocular muscle atrophy and central nervous system involvement in chronic progressive external ophthalmoplegia. PLoS One. 2013;8(9):e75048.Google Scholar
Barboni, P, Savini, G, Valentino, ML, et al. Leber’s hereditary optic neuropathy with childhood onset. Invest Ophthalmol Vis Sci 2006;47(12):53035309.Google Scholar
Barboni, P, Savini, G, Valentino, ML, et al. Retinal nerve fiber layer evaluation by optical coherence tomography in Leber’s hereditary optic neuropathy. Ophthalmology 2005;112(1):120126.Google Scholar
Pan, BX, Ross-Cisneros, FN, Carelli, V, et al. Mathematically modeling the involvement of axons in Leber’s hereditary optic neuropathy. Invest Ophthalmol Vis Sci 2012;53(12):76087617.Google Scholar
Kirkman, MA, Yu-Wai-Man, P, Korsten, A, et al. Gene-environment interactions in Leber hereditary optic neuropathy. Brain 2009;132(9):23172326.CrossRefGoogle ScholarPubMed
La Morgia, C, Ross-Cisneros, FN, Sadun, AA, et al. Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies. Brain 2010;133(8):24262438.Google Scholar
Yu-Wai-Man, P, Votruba, M, Moore, AT, Chinnery, PF. Treatment strategies for inherited optic neuropathies – past, present and future. Eye 2014;28(5):521537.CrossRefGoogle ScholarPubMed
Klopstock, K, Yu-Wai-Man, P, Dimitriadis, K, et al. A randomized placebo-controlled trial of idebenone in Leber’s hereditary optic neuropathy. Brain 2011;134(9):26772686.Google Scholar
Yu Wai Man, CY, Chinnery, PF, Griffiths, PG. Extraocular muscles have fundamentally distinct properties that make them selectively vulnerable to certain disorders. Neuromuscul Disord 2005;15(1):1723.Google Scholar
Greaves, LC, Yu-Wai-Man, P, Blakely, EL, et al. Mitochondrial DNA defects and selective extraocular muscle involvement in CPEO. Invest Ophthalmol Vis Sci 2010;51(7):33403346.CrossRefGoogle ScholarPubMed

References

Jacobs, HT, Hutchin, TP, Kappi, T, et al. Mitochondrial DNA mutations in patients with postlingual, nonsyndromic hearing impairment. Eur J Hum Genet 2005;13(1):2633. doi: 10.1038/sj.ejhg.5201250Google Scholar
Morton, CC, Nance, WE. Newborn hearing screening – a silent revolution. The New England Journal of Medicine 2006;354(20):21512164. doi: 10.1056/NEJMra050700Google Scholar
Bai, U, Seidman, MD, Hinojosa, R, et al. Mitochondrial DNA deletions associated with aging and possibly presbycusis: A human archival temporal bone study. The American Journal of Otology 1997;18(4):449453.Google Scholar
Chinnery, PF, Elliott, C, Green, GR, et al. The spectrum of hearing loss due to mitochondrial DNA defects. Brain: A Journal of Neurology 2000;123 (Pt. 1):8292.CrossRefGoogle ScholarPubMed
Sue, CM, Lipsett, LJ, Crimmins, DS, et al. Cochlear origin of hearing loss in MELAS syndrome. Annals of Neurology 1998;43(3):350359. doi: 10.1002/ana.410430313Google Scholar
Liu, Y, Xue, J, Zhao, D, et al. Audiological evaluation in Chinese patients with mitochondrial encephalomyopathies. Chin Med J (Engl) 2014;127(12):23042309.Google ScholarPubMed
Kullar, PJ, Quail, J, Lindsey, P, et al. Both mitochondrial DNA and mitonuclear gene mutations cause hearing loss through cochlear dysfunction. Brain: A Journal of Neurology 2016;139(Pt 6):e33. doi: 10.1093/brain/aww051CrossRefGoogle ScholarPubMed
Ceranic, B, Luxon, LM. Progressive auditory neuropathy in patients with Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry 2004;75(4):626630.Google Scholar
Santarelli, R, Rossi, R, Scimemi, P, et al. OPA1-related auditory neuropathy: Site of lesion and outcome of cochlear implantation. Brain: A Journal of Neurology 2015;138(Pt 3):563576. doi: 10.1093/brain/awu378Google Scholar
Edmonds, JL, Kirse, DJ, Kearns, D, et al. The otolaryngological manifestations of mitochondrial disease and the risk of neurodegeneration with infection. Arch Otolaryngol Head Neck Surg 2002;128(4):355362.CrossRefGoogle ScholarPubMed
Chen, JC, Tsai, TC, Liu, CS, et al. Acute hearing loss in a patient with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Acta neurologica Taiwanica 2007;16(3):168172.Google Scholar
Uimonen, S, Moilanen, JS, Sorri, M, et al. Hearing impairment in patients with 3243A–>G mtDNA mutation: Phenotype and rate of progression. Hum Genet 2001;108(4):284–9.CrossRefGoogle Scholar
Estivill, X, Govea, N, Barcelo, E, et al. Familial progressive sensorineural deafness is mainly due to the mtDNA A1555 G mutation and is enhanced by treatment of aminoglycosides. American Journal of Human Genetics 1998;62(1):2735.CrossRefGoogle Scholar
Hobbie, SN, Bruell, CM, Akshay, S, et al. Mitochondrial deafness alleles confer misreading of the genetic code. Proc Natl Acad Sci U S A 2008;105(9):32443249. doi: 10.1073/pnas.0707265105Google Scholar
Priuska, EM, Schacht, J. Formation of free radicals by gentamicin and iron and evidence for an iron/gentamicin complex. Biochem Pharmacol 1995;50(11):17491752.Google Scholar
Al-Malky, G, Suri, R, Sirimanna, T, et al. Normal hearing in a child with the m.1555A>G mutation despite repeated exposure to aminoglycosides. Has the penetrance of this pharmacogenetic interaction been overestimated? International Journal of Pediatric Otorhinolaryngology 2014;78(6):969973. doi: 10.1016/j.ijporl.2014.02.015Google Scholar
Guan, MX, Enriquez, JA, Fischel-Ghodsian, N, et al. The deafness-associated mitochondrial DNA mutation at position 7445, which affects tRNASer(UCN) precursor processing, has long-range effects on NADH dehydrogenase subunit ND6 gene expression. Mol Cell Biol 1998;18(10):58685879.CrossRefGoogle ScholarPubMed
Sevior, KB, Hatamochi, A, Stewart, IA, et al. Mitochondrial A7445 G mutation in two pedigrees with palmoplantar keratoderma and deafness. Am J Med Genet 1998;75(2):179185.Google Scholar
Nakamura, M, Nakano, S, Goto, Y, et al. A novel point mutation in the mitochondrial tRNA(Ser(UCN)) gene detected in a family with MERRF/MELAS overlap syndrome. Biochemical and Biophysical Research Communications 1995;214(1):8693. doi: 10.1006/bbrc.1995.2260Google Scholar
Luo, LF, Hou, CC, Yang, WX. Nuclear factors: roles related to mitochondrial deafness. Gene 2013;520(2):7989. doi: 10.1016/j.gene.2013.03.041Google Scholar
Bonneux, S, Fransen, E, Van Eyken, E, et al. Inherited mitochondrial variants are not a major cause of age-related hearing impairment in the European population. Mitochondrion 2011;11(5):729734. doi: 10.1016/j.mito.2011.05.008Google Scholar
Li, JN, Han, DY, Ji, F, et al. Successful cochlear implantation in a patient with MNGIE syndrome. Acta Otolaryngol 2011;131(9):10121016. doi: 10.3109/00016489.2011.579623Google Scholar
Yamaguchi, T, Himi, T, Harabuchi, Y, et al. Cochlear implantation in a patient with mitochondrial disease–Kearns-Sayre syndrome: A case report. Adv Otorhinolaryngol 1997;52:321–3.Google Scholar
Scarpelli, M, Zappini, F, Filosto, M, et al. Mitochondrial sensorineural hearing loss: A retrospective study and a description of cochlear implantation in a MELAS patient. Genet Res Int 2012:287432. doi: 10.1155/2012/287432Google Scholar

References

Anan, R, Nakagawa, M, Miyata, M, et al. Cardiac involvement in mitochondrial diseases. A study on 17 patients with documented mitochondrial DNA defects. Circulation 1995; 91(4): 955961.Google Scholar
Bates, MG, Bourke, JP, Giordano, C, d’Amati, G, Turnbull, DM, Taylor, RW. Cardiac involvement in mitochondrial DNA disease: Clinical spectrum, diagnosis, and management. European Heart Journal 2012; 33(24): 30233033.CrossRefGoogle ScholarPubMed
Limongelli, G, Tome-Esteban, M, Dejthevaporn, C, Rahman, S, Hanna, MG, Elliott, PM. Prevalence and natural history of heart disease in adults with primary mitochondrial respiratory chain disease. European Journal of Heart Failure 2010; 12(2): 114121.CrossRefGoogle ScholarPubMed
Florian, A, Ludwig, A, Stubbe-Drager, B, et al. Characteristic cardiac phenotypes are detected by cardiovascular magnetic resonance in patients with different clinical phenotypes and genotypes of mitochondrial myopathy. Journal of Cardiovascular Magnetic Resonance: Official Journal of the Society for Cardiovascular Magnetic Resonance 2015; 17: 40.CrossRefGoogle ScholarPubMed
Taylor, RW, Giordano, C, Davidson, MM, et al. A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. Journal of the American College of Cardiology 2003; 41(10): 17861796.Google Scholar
Hagen, CM, Aidt, FH, Havndrup, O, et al. Private mitochondrial DNA variants in Danish patients with hypertrophic cardiomyopathy. PloS One 2015; 10(4): e0124540.Google Scholar
Vydt, TC, de Coo, RF, Soliman, OI, et al. Cardiac involvement in adults with m.3243A>G MELAS gene mutation. The American Journal of Cardiology 2007; 99(2): 264269.Google Scholar
Okajima, Y, Tanabe, Y, Takayanagi, M, Aotsuka, H. A follow up study of myocardial involvement in patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS). Heart 1998; 80(3): 292295.Google Scholar
Tveskov, C, Angelo-Nielsen, K. Kearns-Sayre syndrome and dilated cardiomyopathy. Neurology 1990; 40(3 Pt. 1): 553–4.Google Scholar
Stalder, N, Yarol, N, Tozzi, P, et al. Mitochondrial A3243 G mutation with manifestation of acute dilated cardiomyopathy. Circulation Heart Failure 2012; 5(1): e13.Google Scholar
Kohli, SK, Pantazis, AA, Shah, JS, et al. Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: Time for a reappraisal of diagnostic criteria? European Heart Journal 2008; 29(1): 8995.Google Scholar
Finsterer, J. Cardiogenetics, neurogenetics, and pathogenetics of left ventricular hypertrabeculation/noncompaction. Pediatric Cardiology 2009; 30(5): 659681.Google Scholar
Tang, S, Batra, A, Zhang, Y, Ebenroth, ES, Huang, T. Left ventricular noncompaction is associated with mutations in the mitochondrial genome. Mitochondrion 2010; 10(4): 350357.CrossRefGoogle ScholarPubMed
Di Leo, R, Musumeci, O, de Gregorio, C, et al. Evidence of cardiovascular autonomic impairment in mitochondrial disorders. Journal of Neurology 2007; 254(11): 14981503.CrossRefGoogle ScholarPubMed
Young, TJ, Shah, AK, Lee, MH, Hayes, DL. Kearns-Sayre syndrome: A case report and review of cardiovascular complications. Pacing and Clinical Electrophysiology: PACE 2005; 28(5): 454457.Google Scholar
Muller-Hocker, J, Jacob, U, Seibel, P. The common 4977 base pair deletion of mitochondrial DNA preferentially accumulates in the cardiac conduction system of patients with Kearns-Sayre syndrome. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc. 1998; 11(3): 295301.Google Scholar
Majamaa-Voltti, K, Peuhkurinen, K, Kortelainen, ML, Hassinen, IE, Majamaa, K. Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G. BMC Cardiovascular Disorders 2002; 2: 12.Google Scholar
Wahbi, K, Larue, S, Jardel, C, et al. Cardiac involvement is frequent in patients with the m.8344A>G mutation of mitochondrial DNA. Neurology 2010; 74(8): 674677.Google Scholar
Sproule, DM, Kaufmann, P, Engelstad, K, Starc, TJ, Hordof, AJ, De Vivo, DC. Wolff-Parkinson-White syndrome in patients with MELAS. Archives of Neurology 2007; 64(11): 16251627.Google Scholar
Nikoskelainen, EK, Savontaus, ML, Huoponen, K, Antila, K, Hartiala, J. Pre-excitation syndrome in Leber’s hereditary optic neuropathy. Lancet 1994; 344(8926): 857858.CrossRefGoogle ScholarPubMed
Kirkman, MA, Yu-Wai-Man, P, Korsten, A, et al. Gene-environment interactions in Leber hereditary optic neuropathy. Brain: A Journal of Neurology 2009; 132(Pt 9): 23172326.CrossRefGoogle ScholarPubMed
Khambatta, S, Nguyen, DL, Beckman, TJ, Wittich, CM. Kearns-Sayre syndrome: A case series of 35 adults and children. International Journal of General Medicine 2014; 7: 325332.Google Scholar
Subbiah, RN, Kuchar, D, Baron, D. Torsades de pointes in a patient with Kearns-Sayre syndrome: A fortunate finding. Pacing and Clinical Electrophysiology: PACE 2007; 30(1): 137139.Google Scholar
DiMauro, S, Hirano, M. Merrf. In Pagon, RA, Adam, MP, Ardinger, HH, et al., eds. GeneReviews(R). Seattle (WA); 1993.Google Scholar
Thorburn, DR, Rahman, S. Mitochondrial DNA-associated Leigh Syndrome and NARP. In Pagon, RA, Adam, MP, Ardinger, HH, et al., eds. GeneReviews(R). Seattle (WA); 1993.Google Scholar
Thorburn, DR, Chow, CW, Kirby, DM. Respiratory chain enzyme analysis in muscle and liver. Mitochondrion 2004; 4(5–6): 363375.Google Scholar
Rawle, MJ, Larner, AJ. NARP Syndrome: A 20-Year Follow-Up. Case Reports in Neurology 2013; 5(3): 204207.Google Scholar
Sorajja, P, Sweeney, MG, Chalmers, R, et al. Cardiac abnormalities in patients with Leber’s hereditary optic neuropathy. Heart 2003; 89(7): 791792.Google Scholar
Dudek, J, Maack, C. Barth syndrome cardiomyopathy. Cardiovascular Research 2017.Google Scholar
Roberts, AE, Nixon, C, Steward, CG, et al. The Barth Syndrome Registry: Distinguishing disease characteristics and growth data from a longitudinal study. American Journal of Medical Genetics Part A 2012; 158A(11): 27262732.Google Scholar
Clarke, SL, Bowron, A, Gonzalez, IL, et al. Barth syndrome. Orphanet J Rare Dis 2013; 8: 23.Google Scholar
Kulik, W, Van Lenthe, H, Stet, FS, et al. Bloodspot assay using HPLC-tandem mass spectrometry for detection of Barth syndrome. Clin Chem 2008; 54(2): 371378.Google Scholar
Spencer, CT, Bryant, RM, Day, J, et al. Cardiac and clinical phenotype in Barth syndrome. Pediatrics 2006; 118(2): e33746.Google Scholar
Mangat, J, Lunnon-Wood, T, Rees, P, Elliott, M, Burch, M. Successful cardiac transplantation in Barth syndrome – single-centre experience of four patients. Pediatr Transplant 2007; 11(3): 327331.Google Scholar
Mayr, JA, Haack, TB, Graf, E, et al. Lack of the mitochondrial protein acylglycerol kinase causes Sengers syndrome. American Journal of Human Genetics 2012; 90(2): 314320.Google Scholar
Haghighi, A, Haack, TB, Atiq, M, et al. Sengers syndrome: Six novel AGK mutations in seven new families and review of the phenotypic and mutational spectrum of 29 patients. Orphanet J Rare Dis 2014; 9: 119.Google Scholar
Hollingsworth, KG, Gorman, GS, Trenell, MI, et al. Cardiomyopathy is common in patients with the mitochondrial DNA m.3243A>G mutation and correlates with mutation load. Neuromuscular Disorders: NMD 2012; 22(7): 592596.Google Scholar
Lodi, R, Rajagopalan, B, Blamire, AM, Crilley, JG, Styles, P, Chinnery, PF. Abnormal cardiac energetics in patients carrying the A3243 G mtDNA mutation measured in vivo using phosphorus MR spectroscopy. Biochim Biophys Acta 2004; 1657(2–3): 146150.Google Scholar
Bates, MG, Hollingsworth, KG, Newman, JH, et al. Concentric hypertrophic remodelling and subendocardial dysfunction in mitochondrial DNA point mutation carriers. Eur Heart J Cardiovasc Imaging 2013; 14(7): 650658.Google Scholar
Partington, SL, Givertz, MM, Gupta, S, Kwong, RY. Cardiac magnetic resonance aids in the diagnosis of mitochondrial cardiomyopathy. Circulation 2011; 123(6): e2279.CrossRefGoogle ScholarPubMed
Authors/Task Force m, Elliott, PM, Anastasakis, A, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: The Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). European Heart Journal 2014; 35(39): 27332779.Google ScholarPubMed
Brignole, M, Auricchio, A, Baron-Esquivias, G, et al. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: The Task Force on Cardiac Pacing and Resynchronization Therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). European Heart Journal 2013; 34(29): 22812329.Google Scholar

References

Haas, RH, Parikh, S, Falk, MJ, et al. The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 2008;94(1):1637.Google Scholar
Niezgoda, J, Morgan, PG. Anaesthetic considerations in patients with mitochondrial defects. Paediatr Anaesth 2013;23(9):785793.CrossRefGoogle ScholarPubMed
Ajit Bolar, N, Vanlander, AV, Wilbrecht, C, et al. Mutation of the iron-sulfur cluster assembly gene IBA57 causes severe myopathy and encephalopathy. Hum Mol Genet 2013;22(13):25902602.Google Scholar
Falk, MJ, Sondheimer, N. Mitochondrial genetic diseases. Curr Opin Pediatr 2010;22(6):711716.Google Scholar
Song, Y, Pinniger, GJ, Bakker, AJ, et al. Lipopolysaccharide-induced weakness in the preterm diaphragm is associated with mitochondrial electron transport chain dysfunction and oxidative stress. PLoS One 2013;8(9):e73457.Google Scholar
Amornvit, J, Pasutharnchat, N, Pachinburavan, M, et al. Fulminant respiratory muscle paralysis, an expanding clinical spectrum of mitochondrial A3243 G tRNALeu mutation. J Med Assoc Thai 2014;97(4):467472.Google Scholar
Wilnai, Y, Seaver, LH, Enns, GM. Atypical amyoplasia congenita in an infant with Leigh syndrome: A mitochondrial cause of severe contractures? Am J Med Genet A 2012;158A(9):23532357.Google Scholar
Barclay, AR, Sholler, G, Christodolou, J, et al. Pulmonary hypertension – a new manifestation of mitochondrial disease. J Inherit Metab Dis 2005;28(6):10811089.Google Scholar
Navarro-Sastre, A, Tort, F, Stehling, O, et al. A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am J Hum Genet 2011;89(5):656667.Google Scholar
Stettner, GM, Viscomi, C, Zeviani, M, et al. Hypoxic and hypercapnic challenges unveil respiratory vulnerability of Surf1 knockout mice, an animal model of Leigh syndrome. Mitochondrion 2011;11(3):413420.Google Scholar
Quintana, A, Zanella, S, Koch, H, et al. Fatal breathing dysfunction in a mouse model of Leigh syndrome. J Clin Invest 2012;122(7):23592368.Google Scholar
Ventura, F, Rocca, G, Gentile, R, De Stefano, F. Sudden death in Leigh syndrome: An autopsy case. Am J Forensic Med Pathol 2012;33(3):259261.Google Scholar
Klopstock, T, Jaksch, M, Gasser, T. Age and cause of death in mitochondrial diseases. Neurology 1999;53(4):855857.Google Scholar
Driessen, JJ. Neuromuscular and mitochondrial disorders: What is relevant to the anaesthesiologist? Current Opinion in Anaesthesiology 2008;21:350355.Google Scholar
DiMauro, S, Schon, EA. Mitochondrial respiratory-chain diseases. N Engl J Med 2003;348(26):26562668.Google Scholar
Cooper, MA, Fox, R. Anesthesia for corrective spinal surgery in a patient with Leigh’s disease. Anesth Analg 2003;97(5):15391541.Google Scholar
Pravdic, D, Hirata, N, Barber, L, et al. Complex I and ATP synthase mediate membrane depolarization and matrix acidification by isoflurane in mitochondria. Eur J Pharmacol 2012;690(13):149157.CrossRefGoogle ScholarPubMed
Kayser, EB, Suthammarak, W, Morgan, PG, Sedensky, MM. Isoflurane selectively inhibits distal mitochondrial complex I in Caenorhabditis elegans. Anesth Analg 2011;112(6):13211329.Google Scholar
Morgan, PG, Hoppel, CL, Sedensky, MM. Mitochondrial defects and anaesthetic sensitivity. Anesthesiology 2002;96(5):12681270.Google Scholar
Kajimoto, M, Atkinson, DB, Ledee, DR, et al. Propofol compared with isoflurane inhibits mitochondrial metabolism in immature swine cerebral cortex. J Cereb Blood Flow Metab 2014;34(3):514521.Google Scholar
Weinberg, GL, Palmer, JW, VadeBoncouer, TR, et al. Bupivacaine inhibits acylcarnitine exchange in cardiac mitochondria. Anesthesiology 2000;92(2):523528.Google Scholar
Onyuksel, H, Sethi, V, Weinberg, GL, et al. Bupivacaine, but not lidocaine, disrupts cardiolipin-containing small biomimetic unilamellar liposomes. Chem Biol Interact 2007;169(3):154159.Google Scholar

References

Van den Ouweland, J, Lemkes, H, Ruitenbeek, W, et al. Mutation in mitochondrial tRNALeu (UUR) gene in a large pedigree with maternally transmitted type 2 diabetes and deafness. Nat. Genet 1992; 1: 368371.Google Scholar
Schaefer, AM, Walker, M, Turnbull, DM, Taylor, RW. Endocrine disorders in mitochondrial disease. Molecular and Cellular Endocrinology 2013; 379: 211.Google Scholar
Newkirk, JE, Taylor, RW, Howell, N, et al. Maternally inherited diabetes and deafness: Prevalence in a hospital diabetic population. Diabetic Med 1997; 14: 457460.Google Scholar
Choo-Kang, A, Lynn, S, Taylor, G, et al. Defining the importance of mitochondrial gene defects in maternally inherited diabetes by sequencing the entire mitochondrial genome. Diabetes 2002; 51: 23172320.Google Scholar
McFarland, R, Schaefer, AM, Gardner, JL, et al. Familial myopathy: New insights into the T14709 C mitochondrial tRNA mutation. Ann. Neurol 2004; 55: 478484.Google Scholar
Whittaker, RG, Schaefer, AM, McFarland, R et al. Prevalence and progression of diabetes in mitochondrial disease. Diabetologia 2007; 50: 20852089.Google Scholar
Kameoka, K, Isotani, H, Tanaka, K, et al. Impaired insulin secretion in Japanese diabetic subjects with an A-to-G mutation at nucleotide 8296 of the mitochondrial DNA in tRNALys. Diabetes Care 1998; 21: 20342035.Google Scholar
Tawata, M, Hayashi, J, Isobe, K, et al. A new mitochondrial DNA mutation at 14577 T/C is probably a major pathogenic factor for maternally inherited Type 2 diabetes. Diabetes 2000; 49: 12691272.Google Scholar
Nile, DL, Brown, AE, Kumaheri, MA, et al. Age-related mitochondrial DNA depletion and the impact on pancreatic beta cell function. PLoS One. 2014; 9(12) e115433.Google Scholar
Wellcome Centre for Mitochondrial Research: Diabetes Guidelines. www.newcastle-mitochondria.com/wp-content/uploads/192016/03/Diabetic-Guideline.pdf.Google Scholar
NICE (2015) Diabetes in pregnancy: Management of diabetes and its complications from preconception to the postnatal period. NICE Guidelines NG3.Google Scholar
Perkins, J, Dunn, JP, Jagasia, SM. Perspectives in gestational diabetes mellitus: A review of screening, diagnosis and treatment. Clinical Diabetes 2007; 25(2):5762.Google Scholar
Wellcome Centre for Mitochondrial Research: Guideline Development Group (2013) Newcastle Mitochondrial Disease Guidelines: Pregnancy in Mitochondrial Disease (2nd). www.newcastle-mitochondria.com/wp-content/uploads/192012/09/Pregnancy-Guidelines.pdf.Google Scholar

References

Scharfe, C, Lu, HH, Neuenburg, J, et al. Mapping gene associations in human mitochondria using clinical disease phenotypes. PLoS Comput Biol 2009 5(4): e1000374.Google Scholar
Gabbard, SL, Lacy, BE. Chronic intestinal pseudo-obstruction. Nutr Clin Pract 2013 Jun;28(3):307316. Review.Google Scholar
Amiot, A, Joly, F, Cazals-Hatem, D et al. Prognostic yield of esophageal manometry in chronic intestinal pseudo-obstruction: A retrospective cohort of 116 adult patients. Neurogastroenterol Motil 2012 24:1008–e542.Google Scholar
Lee, WS, Sokol, RJ. Mitochondrial hepatopathies: Advances in genetics, therapeutic approaches, and outcomes. J Pediatr. 2013 Oct;163(4):942948.Google Scholar
Christen, HJ, Hanefeld, F, Kruse, E, et al. Foix-Chavany-Marie (anterior operculum) syndrome in childhood: A reappraisal of Worster-Drought syndrome. Dev Med Child Neurol 2000 Feb;42(2):122132. Review.Google Scholar
Kornblum, C, Broicher, R, Walther, E, et al. Cricopharyngeal achalasia is a common cause of dysphagia in patients with mtDNA deletions. Neurology 2001 May22;56(10):14091412.Google Scholar
Chitkara, DK, Nurko, S, Shoffner, JM, et al. Abnormalities in gastrointestinal motility are associated with diseases of oxidative phosphorylation in children. Am J Gastroenterol 2003 Apr;98(4):871877. Review.Google Scholar
Yadak, R, Sillevis Smitt, P, Van Gisbergen, MW et al. Mitochondrial neurogastrointestinal encephalomyopathy: From pathogenesis to emerging therapeutic options. Frontiers in Cellular Neuroscience. 2017 epub Manuscript ID: 247080.Google Scholar
Halter, JP, Michael, W, Schüpbach, M, et al. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Brain 2015 Oct;138(Pt. 10):28472858.Google Scholar
Bax, BE, Bain, MD, Scarpelli, M, et al. Clinical and biochemical improvements in a patient with MNGIE following enzyme replacement. Neurology 2013; 81: 12691271.Google Scholar
Di Meo, I, Lamperti, C, Tiranti, V. Mitochondrial diseases caused by toxic compound accumulation: From etiopathology to therapeutic approaches. EMBO Mol Med 2015 Jul 20;7(10):12571266.Google Scholar

References

Bullock, J., Boyle, J. and Wang., M. B. NMS Physiology 578. 2001: Lippincott Williams & Wilkins. 853.Google Scholar
Rahman, S. and Hall, A. M.. Mitochondrial disease – an important cause of end-stage renal failure. Pediatr Nephrol 2013. 28(3):357361.Google Scholar
Hall, A. M. and Unwin, R. J.. The not so “mighty chondrion”: emergence of renal diseases due to mitochondrial dysfunction. Nephron Physiol 2007. 105(1): 110.Google Scholar
Martin-Hernandez, E., et al., Renal pathology in children with mitochondrial diseases. Pediatr Nephrol 2005. 20(9): 12991305.Google Scholar
Che, R., et al., Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 2014. 306(4): F36778.Google Scholar
Emma, F., et al., Renal mitochondrial cytopathies. Int J Nephrol 2011. 2011: 609213.Google Scholar
NICE Chronic kidney disease: Early identification and management of chronic kidney disease in adults in primary and secondary care. Clinical Guideline 182, 2014. 65.Google Scholar
Hall, A. M., et al., Tenofovir-associated kidney toxicity in HIV-infected patients: A review of the evidence. Am J Kidney Dis 2011. 57(5): 773780.Google Scholar
Labarga, P., et al., Kidney tubular abnormalities in the absence of impaired glomerular function in HIV patients treated with tenofovir. AIDS, 2009. 23(6): 689696.Google Scholar
Cooper, R. D., et al., Systematic review and meta-analysis: Renal safety of tenofovir disoproxil fumarate in HIV-infected patients. Clin Infect Dis 2010. 51(5): 496505.CrossRefGoogle ScholarPubMed
Hall, A. M., Update on tenofovir toxicity in the kidney. Pediatr Nephrol 2013. 28(7): 10111123.Google Scholar
Niaudet, P. and Rotig, A.. The kidney in mitochondrial cytopathies. Kidney Int 1997. 51(4): 10001007.Google Scholar
Ashraf, S., et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest 2013. 123(12): 51795189.Google Scholar
Montini, G., Malaventura, C. and Salviati, L., Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med 2008. 358(26): 28492850.Google Scholar
Rotig, A., et al., Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet 2000. 356(9227): 391395.Google Scholar
Salviati, L., et al., Infantile encephalomyopathy and nephropathy with CoQ10 deficiency: A CoQ10-responsive condition. Neurology 2005. 65(4): 606608.Google Scholar
Doleris, L. M., et al., Focal segmental glomerulosclerosis associated with mitochondrial cytopathy. Kidney Int 2000. 58(5): 18511858.Google Scholar
Guery, B., et al., The spectrum of systemic involvement in adults presenting with renal lesion and mitochondrial tRNA(Leu) gene mutation. J Am Soc Nephrol 2003. 14(8): 20992108.Google Scholar
Eckardt, K. U., et al., Autosomal dominant tubulointerstitial kidney disease: Diagnosis, classification, and management – A KDIGO consensus report. Kidney Int 2015.Google Scholar
Jansen, J. J., et al., Mutation in mitochondrial tRNA(Leu(UUR)) gene associated with progressive kidney disease. J Am Soc Nephrol 1997. 8(7): 11181124.Google Scholar

References

Inczedy-Farkas, G., et al., Psychiatric symptoms of patients with primary mitochondrial DNA disorders. Behav Brain Funct 2012; 8: 9.Google Scholar
Gardner, A., et al., Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord 2003; 76(1–3): 5568.Google Scholar
Wang, G. X., et al., Mitochondrial haplogroups and hypervariable region polymorphisms in schizophrenia: A case-control study. Psychiatry Res 2013; 209(3): 279283.Google Scholar
Anglin, R. E., et al., The psychiatric manifestations of mitochondrial disorders: A case and review of the literature. J Clin Psychiatry 2012; 73(4): 506512.Google Scholar
Fattal, O., et al., Psychiatric comorbidity in 36 adults with mitochondrial cytopathies. CNS Spectr 2007; 12(6): 429438.Google Scholar
Anglin, R. E., et al., The psychiatric presentation of mitochondrial disorders in adults. J Neuropsychiatry Clin Neurosci 2012; 24(4): 394409.Google Scholar
Tzoulis, C. and Bindoff, L. A.. Serial diffusion imaging in a case of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. Stroke 2009; 40(2): e15–7.Google Scholar
Tzoulis, C. and Bindoff, L. A.. Acute mitochondrial encephalopathy reflects neuronal energy failure irrespective of which genome the genetic defect affects. Brain 2012; 135(Pt. 12): 36273634.Google Scholar
Boles, R. G., et al. Cyclical vomiting syndrome and mitochondrial DNA mutations. Lancet 1997; 350: 12991300.Google Scholar
Chinnery, P. F. and Turnbull, D. M.. Vomiting, anorexia, and mitochondrial DNA disease. Lancet 1998; 351(9100): 448.Google Scholar
Bindoff, L. A., Mitochondrial gastroenterology, in Mitochondrial Medicine, DiMauro, S., Hirano, M. and Schon, E. A., Editors, . 2006, Informa Health Care.Google Scholar
Gramstad, A., et al., Neuropsychological performance in patients with POLG1 mutations and the syndrome of mitochondrial spinocerebellar ataxia and epilepsy (MSCAE). Epilepsy Behav 2009; 16 (1): 172174.Google Scholar
Anglin, R., Rosebush, P and Mazurek, M. Psychotropic medications and mitochondrial toxicity. Nat Rev Neurosci 2012; 13(9): 650.Google Scholar
Burkhardt, C., et al., Neuroleptic medications inhibit complex-I of the electron-transport chain. Annals of Neurology 1993; 33(5): 512517.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×