We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Jack, CR Jr., Bennett, DA, Blennow, K, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology2016; 87: 539–47.CrossRefGoogle ScholarPubMed
2
Blennow, K.Biomarkers in Alzheimer’s disease drug development. Nat Med2010; 16: 1218–22.CrossRefGoogle ScholarPubMed
3
Olsson, B, Lautner, R, Andreasson, U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol2016; 15: 673–84.CrossRefGoogle Scholar
4
Portelius, E, Tran, AJ, Andreasson, U, et al. Characterization of amyloid beta peptides in cerebrospinal fluid by an automated immunoprecipitation procedure followed by mass spectrometry. J Proteome Res2007; 6: 4433–9.CrossRefGoogle ScholarPubMed
5
Andreasen, N, Minthon, L, Vanmechelen, E, et al. Cerebrospinal fluid tau and Abeta42 as predictors of development of Alzheimer’s disease in patients with mild cognitive impairment. Neurosci Lett1999; 273: 5–8.CrossRefGoogle ScholarPubMed
6
Blennow, K, Mattsson, N, Scholl, M, Hansson, O, Zetterberg, H.Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci2015; 36: 297–309.CrossRefGoogle ScholarPubMed
7
Lewczuk, P, Lelental, N, Spitzer, P, Maler, JM, Kornhuber, J.Amyloid-beta 42/40 cerebrospinal fluid concentration ratio in the diagnostics of Alzheimer’s disease: validation of two novel assays. J Alzheimers Dis2015; 43: 183–91.Google ScholarPubMed
8
Janelidze, S, Zetterberg, H, Mattsson, N, et al. CSF Abeta42/Abeta40 and Abeta 42/Abeta 38 ratios: better diagnostic markers of Alzheimer disease. Ann Clin Transl Neurol2016; 3: 154–65.CrossRefGoogle Scholar
9
Sato, C, Barthelemy, NR, Mawuenyega, KG, et al. Tau kinetics in neurons and the human central nervous system. Neuron2018; 98: 861–4.CrossRefGoogle ScholarPubMed
10
Mudher, A, Colin, M, Dujardin, S, et al. What is the evidence that tau pathology spreads through prion-like propagation?Acta Neuropathol Commun2017; 5: 99.CrossRefGoogle ScholarPubMed
11
Skillback, T, Rosen, C, Asztely, F, et al. Diagnostic performance of cerebrospinal fluid total tau and phosphorylated tau in Creutzfeldt–Jakob disease: results from the Swedish Mortality Registry. JAMA Neurol2014; 71: 476–83.CrossRefGoogle ScholarPubMed
Hampel, H, Buerger, K, Zinkowski, R, et al. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatry2004; 61: 95–102.CrossRefGoogle ScholarPubMed
14
Hanes, J, Kovac, A, Kvartsberg, H, et al. Evaluation of a novel immunoassay to detect p-tau Thr127 in the CSF to distinguish Alzheimer disease from other dementias. Neurology2020; 95: e3026–35.CrossRefGoogle Scholar
15
Hesse, C, Rosengren, L, Andreasen, N, et al. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett2001; 297: 187–90.CrossRefGoogle Scholar
16
Suarez-Calvet, M, Karikari, TK, Ashton, NJ, et al. Novel tau biomarkers phosphorylated at T181, T217 or T231 rise in the initial stages of the preclinical Alzheimer’s continuum when only subtle changes in Abeta pathology are detected. EMBO Mol Med2020; 12: e12921.CrossRefGoogle ScholarPubMed
17
Mattsson-Carlgren, N, Andersson, E, Janelidze, S, et al. Abeta deposition is associated with increases in soluble and phosphorylated tau that precede a positive tau PET in Alzheimer’s disease.Sci Adv2020; 6: eaaz2387.CrossRefGoogle ScholarPubMed
18
Meredith, JE Jr., Sankaranarayanan, S, Guss, V, et al. Characterization of novel CSF tau and p-tau biomarkers for Alzheimer’s disease. PloS One2013; 8: e76523.CrossRefGoogle Scholar
19
Zhang, Z, Song, M, Liu, X, et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat Med2014; 20: 1254–62.CrossRefGoogle ScholarPubMed
20
Blennow, K, Chen, C, Cicognola, C, et al. Cerebrospinal fluid tau fragment correlates with tau PET: a candidate biomarker for tangle pathology. Brain2020; 143: 650–60.CrossRefGoogle ScholarPubMed
21
Hansson, O, Zetterberg, H, Buchhave, P, et al. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol2006; 5: 228–34.CrossRefGoogle ScholarPubMed
22
Shaw, LM, Vanderstichele, H, Knapik-Czajka, M, et al. Cerebrospinal fluid biomarker signature in Alzheimer’s Disease Neuroimaging Initiative subjects. Ann Neurol2009; 65: 403–13.Google ScholarPubMed
23
Kuhlmann, J, Andreasson, U, Pannee, J, et al. CSF Abeta 1–42: an excellent but complicated Alzheimer’s biomarker – a route to standardisation. Clin Chim Acta2017; 467: 27–33.CrossRefGoogle ScholarPubMed
24
Hansson, O, Seibyl, J, Stomrud, E, et al. CSF biomarkers of Alzheimer’s disease concord with amyloid-beta PET and predict clinical progression: a study of fully automated immunoassays in BioFINDER and ADNI cohorts. Alzheimers Dement2018; 14: 1470–81.CrossRefGoogle ScholarPubMed
25
Kaplow, J, Vandijck, M, Gray, J, et al. Concordance of Lumipulse cerebrospinal fluid t-tau/Abeta 42 ratio with amyloid PET status. Alzheimers Dement2020; 16: 144–52.CrossRefGoogle Scholar
26
Boulo, S, Kuhlmann, J, Andreasson, U, et al. First amyloid beta 1–42 certified reference material for re-calibrating commercial immunoassays. Alzheimers Dement2020; 16:1493–503.CrossRefGoogle ScholarPubMed
27
Shaw, LM, Arias, J, Blennow, K, et al. Appropriate use criteria for lumbar puncture and cerebrospinal fluid testing in the diagnosis of Alzheimer’s disease. Alzheimers Dement2018; 14: 1505–21.Google ScholarPubMed
28
Janelidze, S, Stomrud, E, Palmqvist, S, et al. Plasma beta-amyloid in Alzheimer’s disease and vascular disease. Sci Rep2016; 6: 26801.CrossRefGoogle ScholarPubMed
29
Kaneko, N, Yamamoto, R, Sato, TA, Tanaka, K.Identification and quantification of amyloid beta-related peptides in human plasma using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Jpn Acad Ser B Phys Biol Sci2014; 90: 104–17.CrossRefGoogle ScholarPubMed
30
Pannee, J, Tornqvist, U, Westerlund, A, et al. The amyloid-beta degradation pattern in plasma: a possible tool for clinical trials in Alzheimer’s disease. Neurosci Lett2014; 573: 7–12.CrossRefGoogle ScholarPubMed
31
Ovod, V, Ramsey, KN, Mawuenyega, KG, et al. Amyloid beta concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement2017; 13: 841–9.Google ScholarPubMed
32
Nakamura, A, Kaneko, N, Villemagne, VL, et al. High performance plasma amyloid-beta biomarkers for Alzheimer’s disease. Nature2018; 554: 249–54.Google ScholarPubMed
33
Schindler, SE, Bollinger, JG, Ovod, V, et al. High-precision plasma beta-amyloid 42/40 predicts current and future brain amyloidosis. Neurology2019; 93: e1647–59.CrossRefGoogle ScholarPubMed
34
Palmqvist, S, Mattsson, N, Hansson, O, Alzheimer’s Disease Neuroimaging Initiative. Cerebrospinal fluid analysis detects cerebral amyloid-beta accumulation earlier than positron emission tomography. Brain2016; 139: 1226–36.CrossRefGoogle Scholar
35
Tatebe, H, Kasai, T, Ohmichi, T, et al. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case–control studies including patients with Alzheimer’s disease and Down syndrome. Mol Neurodegener2017; 12: 63.CrossRefGoogle ScholarPubMed
36
Mielke, MM, Hagen, CE, Xu, J, et al. Plasma phospho-tau 181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimers Dement2018; 14: 989–97.CrossRefGoogle Scholar
37
Thijssen, EH, La Joie, R, Wolf, A, et al. Diagnostic value of plasma phosphorylated tau 181 in Alzheimer’s disease and frontotemporal lobar degeneration. Nat Med2020; 26: 387–97.CrossRefGoogle ScholarPubMed
38
Janelidze, S, Mattsson, N, Palmqvist, S, et al. Plasma p-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med2020; 26: 379–86.CrossRefGoogle ScholarPubMed
39
Karikari, TK, Pascoal, TA, Ashton, NJ, et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol2020; 19: 422–33.CrossRefGoogle ScholarPubMed
40
Ashton, NJ, Pascoal, TA, Karikari, TK, et al. Plasma p-tau231: a new biomarker for incipient Alzheimer’s disease pathology. Acta Neuropathol2021; 141: 709–24.CrossRefGoogle ScholarPubMed
Barthelemy, NR, Bateman, RJ, Hirtz, C, et al. Cerebrospinal fluid phospho-tau T217 outperforms T181 as a biomarker for the differential diagnosis of Alzheimer’s disease and PET amyloid-positive patient identification. Alzheimers Res Ther2020; 12: 26.CrossRefGoogle ScholarPubMed
43
Palmqvist, S, Janelidze, S, Quiroz, YT, et al. Discriminative accuracy of plasma phospho-tau 217 for Alzheimer disease vs other neurodegenerative disorders. JAMA2020; 24: 772–81.Google Scholar
Lantero Rodriguez, J, Karikari, TK, Suarez-Calvet, M, et al. Plasma p-tau181 accurately predicts Alzheimer’s disease pathology at least 8 years prior to post-mortem and improves the clinical characterisation of cognitive decline. Acta Neuropathol2020; 140: 267–78.CrossRefGoogle ScholarPubMed
46
Kovacs, GG. Invited review: neuropathology of tauopathies: principles and practice. Neuropathol Appl Neurobiol2015; 41: 3–23.CrossRefGoogle ScholarPubMed
47
Rubenstein, R, Chang, B, Yue, JK, et al. Comparing plasma phospho tau, total tau, and phospho tau–total tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurol2017; 74: 1063–72.CrossRefGoogle ScholarPubMed
48
Palmqvist, S, Insel, PS, Stomrud, E, et al. Cerebrospinal fluid and plasma biomarker trajectories with increasing amyloid deposition in Alzheimer’s disease. EMBO Mol Med2019; 11: e11170.CrossRefGoogle ScholarPubMed
49
Randall, J, Mortberg, E, Provuncher, GK, et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. Resuscitation2013; 84: 351–6.CrossRefGoogle ScholarPubMed
50
Zetterberg, H, Wilson, D, Andreasson, U, et al. Plasma tau levels in Alzheimer’s disease. Alzheimers Res Ther2013; 5: 9.CrossRefGoogle ScholarPubMed
51
Mattsson, N, Zetterberg, H, Janelidze, S, et al. Plasma tau in Alzheimer disease. Neurology2016; 87: 1827–35.CrossRefGoogle ScholarPubMed
52
Mattsson, N, Zetterberg, H, Nielsen, N, et al. Serum tau and neurological outcome in cardiac arrest. Ann Neurol2017; 82: 665–75.CrossRefGoogle ScholarPubMed
53
Shahim, P, Tegner, Y, Wilson, DH, et al. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol2014; 71: 684–92.CrossRefGoogle ScholarPubMed
54
Vacchi, E, Kaelin-Lang, A, Melli, G. Tau and alpha synuclein synergistic effect in neurodegenerative diseases: when the periphery is the core. Int J Mol Sci2020; 21: 5030.Google ScholarPubMed
55
Gisslen, M, Price, RW, Andreasson, U, et al. plasma concentration of the neurofilament light protein (NfL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine2016; 3: 135–40.CrossRefGoogle ScholarPubMed
56
Mattsson, N, Andreasson, U, Zetterberg, H, Blennow, K. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol2019; 76: 791–9.CrossRefGoogle ScholarPubMed
57
Weston, PSJ, Poole, T, Ryan, NS, et al. Serum neurofilament light in familial Alzheimer disease: a marker of early neurodegeneration. Neurology2017; 89: 2167–75.CrossRefGoogle ScholarPubMed
58
Preische, O, Schultz, SA, Apel, A, et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat Med2019; 25: 277–83.CrossRefGoogle ScholarPubMed
59
Khalil, M, Teunissen, CE, Otto, M, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol2018; 14: 577–89.CrossRefGoogle ScholarPubMed
60
Schindler, SE, Bollinger, JG, Ovod, V, et al. High-precision plasma beta-amyloid 42/40 predicts current and future brain amyloidosis. Neurology2019; 93: e1647–59.CrossRefGoogle ScholarPubMed
61
Hansson, O, Janelidze, S, Hall, S, et al. Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder. Neurology2017; 88: 930–7.CrossRefGoogle ScholarPubMed
62
Illan-Gala, I, Lleo, A, Karydas, A, et al. Plasma tau and neurofilament light in frontotemporal lobar degeneration and Alzheimer’s disease. Neurology2021; 96: e671–83.CrossRefGoogle Scholar
63
Palmqvist, S, Janelidze, S, Stomrud, E, et al. Performance of fully automated plasma assays as screening tests for Alzheimer disease-related β-amyloid status.JAMA Neurol2019; 76: 1060–9.CrossRefGoogle ScholarPubMed
64
Hampel, H, O’Bryant, SE, Molinuevo, JL, et al. Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol2018; 14: 639–52.CrossRefGoogle ScholarPubMed
65
Karikari, TK, Benedet, AL, Ashton, NJ, et al. Diagnostic performance and prediction of clinical progression of plasma phospho-tau 181 in the Alzheimer’s disease neuroimaging initiative. Mol Psychiatry2020; 26: 429–42.Google Scholar
66
Mattke, S, Cho, SK, Bittner, T, Hlavka, J, Hanson, M.Blood-based biomarkers for Alzheimer’s pathology and the diagnostic process for a disease-modifying treatment: projecting the impact on the cost and wait times. Alzheimers Dement (Amst)2020; 12: e12081.Google ScholarPubMed
67
Beach, TG, Monsell, SE, Phillips, LE, Kukull, W.Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J Neuropathol Exp Neurol2012; 71: 266–73.CrossRefGoogle ScholarPubMed
68
Knopman, DS, DeKosky, ST, Cummings, JL, et al. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology2001; 56: 1143–53.CrossRefGoogle Scholar
69
Portelius, E, Olsson, B, Hoglund, K, et al. Cerebrospinal fluid neurogranin concentration in neurodegeneration: relation to clinical phenotypes and neuropathology. Acta Neuropathol2018; 136: 363–76.CrossRefGoogle ScholarPubMed
70
Blennow, K, de Leon, MJ, Zetterberg, H.Alzheimer’s disease. Lancet2006; 368: 387–403.CrossRefGoogle ScholarPubMed
71
Kennedy, ME, Stamford, AW, Chen, X, et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS beta-amyloid in animal models and in Alzheimer’s disease patients. Sci Transl Med2016; 8: 363ra150.CrossRefGoogle ScholarPubMed
72
Wessels, AM, Lines, C, Stern, RA, et al. Cognitive outcomes in trials of two BACE inhibitors in Alzheimer’s disease. Alzheimers Dement2020; 16: 1483–92.CrossRefGoogle ScholarPubMed
Olsson, B, Alberg, L, Cullen, NC, et al. NfL is a marker of treatment response in children with SMA treated with nusinersen. J Neurol2019; 266: 2129–36.CrossRefGoogle ScholarPubMed
75
Piehl, F, Kockum, I, Khademi, M, et al. Plasma neurofilament light chain levels in patients with MS switching from injectable therapies to fingolimod. Mult Scler2018; 24: 1046–54.CrossRefGoogle ScholarPubMed
76
Blennow, K, Zetterberg, H, Rinne, JO, et al. Effect of immunotherapy with bapineuzumab on cerebrospinal fluid biomarker levels in patients with mild to moderate Alzheimer disease. Arch Neurol2012; 69: 1002–10.Google ScholarPubMed
77
Ostrowitzki, S, Lasser, RA, Dorflinger, E, et al. A Phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther2017; 9: 95.CrossRefGoogle ScholarPubMed
78
Salloway, S, Sperling, R, Fox, NC, et al. Two Phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med2014; 370: 322–33.CrossRefGoogle ScholarPubMed
79
Tolar, M, Abushakra, S, Hey, JA, Porsteinsson, A, Sabbagh, M.Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimers Res Ther2020; 12: 95.CrossRefGoogle ScholarPubMed
80
Blennow, K, Zetterberg, H, Minthon, L, et al. Longitudinal stability of CSF biomarkers in Alzheimer’s disease. Neurosci Lett2007; 419: 18–22.CrossRefGoogle ScholarPubMed
81
Zetterberg, H, Pedersen, M, Lind, K, et al. Intra-individual stability of CSF biomarkers for Alzheimer’s disease over two years. J Alzheimers Dis2007; 12: 255–60.CrossRefGoogle ScholarPubMed
82
Sevigny, J, Chiao, P, Bussiere, T, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature2016; 537: 50–6.CrossRefGoogle ScholarPubMed
83
Sperling, RA, Jack, CR Jr., Black, SE, et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement2011; 7: 367–85.CrossRefGoogle ScholarPubMed
References
1
Khachaturian, ZS. Revised criteria for diagnosis of Alzheimer’s disease: National Institute on Aging–Alzheimer’s Association diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement2011; 7: 253–6.CrossRefGoogle ScholarPubMed
2
Jack, CR Jr., Bennett, DA, Blennow, K, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology2016; 87: 539–47.CrossRefGoogle ScholarPubMed
3
Magistretti, PJ, Pellerin, L.Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging.Philos Trans R Soc Lond B Biol Sci1999; 354: 1155–63.CrossRefGoogle ScholarPubMed
4
Minter, MR, Taylor, JM, Crack, PJ. The contribution of neuroinflammation to amyloid toxicity in Alzheimer’s disease.J Neurochem2016; 136: 457–74.CrossRefGoogle ScholarPubMed
5
Janelidze, S, Mattsson, N, Palmqvist, S, et al. Plasma p-tau181 in Alzheimer’s disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat Med2020; 26: 379–86.CrossRefGoogle ScholarPubMed
Palmqvist, S, Schöll, M, Strandberg, O, et al. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat Comm2017; 8: 1214.CrossRefGoogle ScholarPubMed
8
Ossenkoppele, R, Schonhaut, DR, Schöll, M, et al. Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease. Brain2016; 139: 1551–67.CrossRefGoogle ScholarPubMed
9
Koychev, I, Gunn, RN, Firouzian, A, et al. PET tau and amyloid-β burden in mild Alzheimer’sdisease: divergent relationship with age, cognition, and cerebrospinal fluid biomarkers. J Alzheimers Dis2017; 60: 283–93.CrossRefGoogle ScholarPubMed
10
Guerrero-Muñoz, MJ, Gerson, J, Castillo-Carranza, DL. Tau oligomers: the toxic player at synapses in Alzheimer’s disease. Front Cell Neurosci2015; 9: 464.CrossRefGoogle ScholarPubMed
11
Vargas, LM, Cerpa, W, Muñoz, FJ, Zanlungo, S, Alvarez, AR. Amyloid-β oligomers synaptotoxicity: the emerging role of EphA4/c-Abl signaling in Alzheimer’s disease.Biochim Biophys Acta Mol Basis Dis2018; 1864A: 1148–59.Google Scholar
12
Insel, PS, Ossenkoppele, R, Gessert, D, et al. Time to amyloid positivity and preclinical changes in brain metabolism, atrophy, and cognition: evidence for emerging amyloid pathology in Alzheimer’s disease. Front Neurosci2017; 11: 281.CrossRefGoogle ScholarPubMed
13
La Joie, R, Visani, AV, Baker, SL, et al. Prospective longitudinal atrophy in Alzheimer’s disease correlates with the intensity and topography of baseline tau-PET. Sci Transl Med2020; 12: eaau5732.CrossRefGoogle ScholarPubMed
14
Timmers, T, Ossenkoppele, R, Wolters, EE, et al. Associations between quantitative [18F]flortaucipir tau PET and atrophy across the Alzheimer’s disease spectrum. Alzheimers Res Ther2019; 11: 60.CrossRefGoogle ScholarPubMed
15
Salloway, S, Sperling, R, Fox, NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med2014; 370: 322–33.CrossRefGoogle ScholarPubMed
16
Weintraub, S, Carrillo, MC, Farias, ST, et al. Measuring cognition and function in the preclinical stage of Alzheimer’s disease.Alzheimers Dement (N Y)2018; 4: 64–75.CrossRefGoogle ScholarPubMed
17
Fazekas, F, Chawluk, JB, Alavi, A, et al. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol1987; 149: 351–6.CrossRefGoogle ScholarPubMed
18
Mirza, SS, Saeed, U, Knight, J, et al. APOE ε4, white matter hyperintensities, and cognition in Alzheimer and Lewy body dementia. Neurology2019; 93: e1807–19.CrossRefGoogle ScholarPubMed
19
Orgogozo, JM, Gilman, S, Dartigues, JF. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology2003; 61: 46–54.CrossRefGoogle Scholar
20
Sperling, RA, Jack, CR Jr., Black, SE, et al. Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement2011; 7: 367–85.CrossRefGoogle ScholarPubMed
21
Greenberg, SM, Vernooij, MW, Cordonnier, C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol2009; 8: 165–74.CrossRefGoogle ScholarPubMed
22
Tolar, M, Abushakra, S, Hey, JA, Porsteinsson, A, Sabbagh, M.Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimers Res Ther2020; 12: 95.Google ScholarPubMed
23
Wu, J, Dong, Q, Gui, J, et al. Predicting brain amyloid using multivariate morphometry statistics, sparse coding, and correntropy: validation in 1,125 individuals from the ADNI and OASIS database. bioRxiv2020;DOI: http://doi.org/10.1101/2020.10.16.343137.CrossRefGoogle Scholar
24
Lukic, AS, Andrews, RD, Bourakova, V, et al. MRI, FDG, and early frame amyloid image classifiers to characterize and differentiate Alzheimer’s disease variants and non-AD dementias. Alzheimers Dement2018; 14: P1429–30.CrossRefGoogle Scholar
25
Davatzikos, C, Resnick, SM, Wu, X, Parmpi, P, Clark, CM. Individual patient diagnosis of AD and FTD via high-dimensional pattern classification of MRI. Neuroimage2008; 41: 1220–7.CrossRefGoogle ScholarPubMed
Yu, P, Sun, J, Wolz, R, et al. Operationalizing hippocampal volume as an enrichment biomarker for amnestic mild cognitive impairment trials: effect of algorithm, test-retest variability, and cut point on trial cost, duration, and sample size. Neurobiol Aging2014; 35: 808–18.CrossRefGoogle ScholarPubMed
28
Rabin, JS, Neal, TE, Nierle, HE, et al. Multiple markers contribute to risk of progression from normal to mild cognitive impairment. Neuroimage Clin2020; 28: 102400.CrossRefGoogle ScholarPubMed
29
Woodard, JL, Bellaali, Y, Dricot, L, et al. Multivariate prediction of rate of decline in memory functioning over six years using imaging biomarkers. Alzheimers Dement2020; 16: e045645.CrossRefGoogle Scholar
30
Leung, KK, Barnes, J, Ridgway, GR, et al. Alzheimer’s Disease Neuroimaging Initiative. Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease. Neuroimage2010; 51: 1345–59.CrossRefGoogle Scholar
31
Hashimoto, M, Kazui, H, Matsumoto, K, et al. Does donepezil treatment slow the progression of hippocampal atrophy in patients with Alzheimer’s disease?Am J Psychiatry2005; 162: 676–82.CrossRefGoogle ScholarPubMed
32
Turner, RS, Hebron, ML, Lawler, A, et al. Nilotinib effects on safety, tolerability, and biomarkers in Alzheimer’s disease. Ann Neurol2020; 88: 183–94.CrossRefGoogle ScholarPubMed
33
Gauthier, S, Aisen, PS, Ferris, SH. Effect of tramiprosate in patients with mild-to-moderate Alzheimer’s disease: exploratory analyses of the MRI sub-group of the Alphase study. J Nutr Health Aging2009; 13: 550–7.CrossRefGoogle ScholarPubMed
34
Wessels, AM, Tariot, PN, Zimmer, JA, et al. Efficacy and safety of lanabecestat for treatment of early and mild Alzheimer disease: the AMARANTH and DAYBREAK-ALZ randomized clinical trials. JAMA Neurol2020; 77: 199–209.CrossRefGoogle ScholarPubMed
35
Novak, G, Fox, N, Clegg, S, et al. Changes in brain volume with bapineuzumab in mild to moderate Alzheimer’s disease. J Alzheimers Dis2016; 49: 1123–34.Google ScholarPubMed
36
Fox, NC, Black, RS, Gilman, S, et al. Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume in Alzheimer disease. Neurology2005; 64: 1563–72.CrossRefGoogle ScholarPubMed
37
Cheriyan, J, Kim, S, Wolansky, LJ, Cook, SD, Cadavid, D.Impact of inflammation on brain volume in multiple sclerosis. Arch Neurol2012; 69: 82–8.CrossRefGoogle Scholar
38
Reuter, M, Schmansky, NJ, Rosas, HD, Fischl, B.Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage2012; 61: 1402–18.CrossRefGoogle ScholarPubMed
39
Iglesias, JE, Van Leemput, K, Augustinack, J, et al. Bayesian longitudinal segmentation of hippocampal substructures in brain MRI using subject-specific atlases. Neuroimage2016; 141: 542–55.CrossRefGoogle ScholarPubMed
40
Teipel, SJ, Kuper-Smith, JO, Bartels, C, et al. Multicenter tract-based analysis of microstructural lesions within the Alzheimer’s disease spectrum: association with amyloid pathology and diagnostic usefulness.J Alzheimers Dis2019; 72: 455–65.CrossRefGoogle ScholarPubMed
41
Elahi, FM, Marx, G, Cobigo, Y, et al. Longitudinal white matter change in frontotemporal dementia subtypes and sporadic late onset Alzheimer’s disease. Neuroimage Clin2017; 16: 595–603.CrossRefGoogle ScholarPubMed
42
Pasternak, O, Sochen, N, Gur, Y, Intrator, N, Assaf, Y.Free water elimination and mapping from diffusion MRI.Magn Reson Med2009; 62: 717–30.Google ScholarPubMed
43
Hoy, AR, Ly, M, Carlsson, CM, et al. Microstructural white matter alterations in preclinical Alzheimer’s disease detected using free water elimination diffusion tensor imaging. PloS One2017; 12: e0173982.CrossRefGoogle ScholarPubMed
44
Binnewijzend, MA, Kuijer, JP, van der Flier, WM, et al. Distinct perfusion patterns in Alzheimer’s disease, frontotemporal dementia and dementia with Lewy bodies. Eur Radiol2014; 24: 2326–33.CrossRefGoogle ScholarPubMed
Guo, H, Grajauskas, L, Habash, B, D’Arc, RC, Song, X.Functional MRI technologies in the study of medication treatment effect on Alzheimer’s disease. Aging Med (Milton)2018; 1: 75–95.CrossRefGoogle Scholar
47
Zhang, N, Gordon, ML, Goldberg, TE. Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer’s disease. Neurosci Biobehav Rev2017; 72: 168–75.CrossRefGoogle Scholar
48
Smith, LA, Melbourne, A, Owen, D, et al. Cortical cerebral blood flow in ageing: effects of haematocrit, sex, ethnicity and diabetes.Eur Radiol2019; 29: 5549–58.CrossRefGoogle ScholarPubMed
Churchill, NW, Spring, R, Afshin-Pour, B, Dong, F, Strother, SC. An automated, adaptive framework for optimizing preprocessing pipelines in task-based functional MRI. PLoS One2015; 10: e0131520.CrossRefGoogle ScholarPubMed
51
Matthews, DC, Mao, X, Dowd, K, et al. Riluzole, a glutamate modulator, slows cerebral glucose metabolism decline in patients with Alzheimer’s disease: a pilot multimodal neuroimaging study. Brain2021; Jun 18: awab222.Google Scholar
52
Maul, S, Giegling, I, Rujescu, D.Proton magnetic resonance spectroscopy in common dementias: current status and perspectives.Front Psychiatry2020; 11: 769.CrossRefGoogle Scholar
53
van Berckel, BN, Ossenkoppele, R, Tolboom, N, et al. Longitudinal amyloid imaging using 11C-PiB: methodologic considerations.J Nucl Med2013; 54: 1570–6.CrossRefGoogle ScholarPubMed
54
Sevigny, J, Chiao, P, Bussière, T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature2016; 537: 50–6.CrossRefGoogle ScholarPubMed
55
Ostrowitzki, S, Lasser, RA, Dorflinger, E, et al. A Phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther2017; 9: 95.CrossRefGoogle ScholarPubMed
56
Schmidt, ME, Matthews, DC, Andrews, RD, Mosconi, L. Positron emission tomography in Alzheimer disease: diagnosis and use as biomarker endpoints. In Translational Neuroimaging, McArthur RA (ed.). New York: Academic Press; 2013: 131–74.Google Scholar
Chen, K, Roontiva, A, Thiyyagura, P, et al. Alzheimer’s Disease Neuroimaging Initiative. Improved power for characterizing longitudinal amyloid-β PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region. J Nucl Med2015; 56: 560–6.CrossRefGoogle Scholar
59
Schmidt, ME, Chiao, P, Klein, G, et al. The influence of biological and technical factors on quantitative analysis of amyloid PET: points to consider and recommendations for controlling variability in longitudinal data. Alzheimers Dement2015; 11: 1050–68.CrossRefGoogle ScholarPubMed
60
Rostomian, AH, Madison, C, Rabinovici, GD, Jagust, WJ. Early 11C-PIB frames and 18F-FDG PET measures are comparable: a study validated in a cohort of AD and FTLD patients. J Nucl Med2011; 52: 173–9.CrossRefGoogle Scholar
61
Brendel, M, Barthel, H, van Eimeren, T, et al. Assessment of 18F-PI-2620 as a biomarker in progressive supranuclear palsy. JAMA Neurol2020; 77: 1408–19.CrossRefGoogle ScholarPubMed
Betthauser, TJ, Cody, KA, Zammit, MD, et al. In vivo characterization and quantification of neurofibrillary tau PET radioligand 18F-MK-6240 in humans from Alzheimer disease dementia to young controls. J Nucl Med2019; 60: 93–9.CrossRefGoogle ScholarPubMed
64
Maass, A, Landau, S, Baker, SL, Alzheimer’s Disease Neuroimaging Initiative. Comparison of multiple tau-PET measures as biomarkers in aging and Alzheimer’s disease.Neuroimage2017; 157: 448–63.Google Scholar
Southekal, S, Devous, MD Sr., Kennedy, I, et al. Flortaucipir F 18 quantitation using parametric estimation of reference signal intensity. J Nucl Med2018; 59: 944–51.CrossRefGoogle ScholarPubMed
67
Beyer, L, Nitschmann, A, Barthel, H, et al. Early-phase [18F]PI-2620 tau-PET imaging as a surrogate marker of neuronal injury. Eur J Nucl Med Mol Imaging2020; 47: 2911–22.CrossRefGoogle ScholarPubMed
68
Foster, NL, Heidebrink, JL, Clark, CM, et al. FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain2007; 130: 2616–35.CrossRefGoogle Scholar
69
Xia, Y, Lu, S, Wen, L, et al. Automated identification of dementia using FDG-PET imaging. Biomed Res Int2014; 2014: 421743.CrossRefGoogle ScholarPubMed
70
Matthews, DC, Ritter, A, Thomas, RG, et al. Rasagiline effects on glucose metabolism, cognition, and tau in Alzheimer’s dementia. Alzheimers Dement (N Y)2021; 7: e12106.Google ScholarPubMed
Chen, K, Langbaum, JB, Fleisher, AS, et al. Alzheimer’s Disease Neuroimaging Initiative. Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: findings from the Alzheimer’s Disease Neuroimaging Initiative.Neuroimage2010; 51: 654–64.CrossRefGoogle Scholar
73
Kadir, A, Andreasen, N, Almkvist, O, et al. Effect of phenserine treatment on brain functional activity and amyloid in Alzheimer’s disease. Ann Neurol2008; 63: 621–31.CrossRefGoogle ScholarPubMed
74
Kreisl, WC, Kim, MJ, Coughlin, JM, et al. PET imaging of neuroinflammation in neurological disorders. Lancet Neurol2020; 19: 940–50.CrossRefGoogle ScholarPubMed
75
Mecca, AP, Chen, MK, O’Dell, RS, et al. In vivo measurement of widespread synaptic loss in Alzheimer’s disease with SV2A PET. Alzheimers Dement2020; 16: 974–82.CrossRefGoogle ScholarPubMed
76
Josephs, KA, Dickson, DW, Tosakulwong, N, et al. Rates of hippocampal atrophy and presence of post-mortem TDP-43 in patients with Alzheimer’s disease: a longitudinal retrospective study.Lancet Neurol2017; 16: 917–24.CrossRefGoogle ScholarPubMed
Conrado, DJ, Karlsson, MO, Romero, K, et al. Open innovation: towards sharing of data, models and workflows. Eur J Pharm Sci2017; 109: S65–71.CrossRefGoogle Scholar
2
Gurevitch, J, Koricheva, J, Nakagawa, S, et al. Meta-analysis and the science of research synthesis. Nature2018; 555: 175–82.CrossRefGoogle ScholarPubMed
Villa, C, Lavitrano, M, Salvatore, E, et al. Molecular and imaging biomarkers in Alzheimer’s disease: a focus on recent insights. J Pers Med2020; 10: 1–32.CrossRefGoogle ScholarPubMed
5
Sancesario, GM, Bernardini, S.Alzheimer’s disease in the omics era. Clin Biochem2018; 59: 9–16.CrossRefGoogle ScholarPubMed
6
Toga, AW, Neu, SC, Bhatt, P, et al. The Global Alzheimer’s Association Interactive Network. Alzheimers Dement2016; 12: 49–54.CrossRefGoogle ScholarPubMed
7
Neu, SC, Crawford, KL, Toga, AW. Sharing data in the global Alzheimer’s Association Interactive Network. Neuroimage2016; 124: 1168–74.CrossRefGoogle ScholarPubMed
8
Kraus, WE, Bhapkar, M, Huffman, KM, et al. 2 years of calorie restriction and cardiometabolic risk (CALERIE): exploratory outcomes of a multicentre, Phase 2, randomised controlled trial. Lancet Diabetes Endocrinol2019; 7: 673–83.CrossRefGoogle ScholarPubMed
Rygiel, K.Novel strategies for Alzheimer’s disease treatment: an overview of anti-amyloid beta monoclonal antibodies. Indian J Pharmacol2016; 48: 629–36.CrossRefGoogle ScholarPubMed
11
Tariot, PN, Lopera, F, Langbaum, JB, et al. The Alzheimer’s Prevention Initiative Autosomal-Dominant Alzheimer’s Disease Trial: a study of crenezumab versus placebo in preclinical PSEN1 E280A mutation carriers to evaluate efficacy and safety in the treatment of autosomal-dominant Alzheimer’s disease. Alzheimers Dement(N Y)2018; 4: 150–60.Google ScholarPubMed
12
Mills, SM, Mallmann, J, Santacruz, AM, et al. Preclinical trials in autosomal dominant AD: implementation of the DIAN-TU trial. Rev Neurol2013; 169: 737–43.Google ScholarPubMed
13
Sperling, RA, Donohue, MC, Raman, R, et al. Association of factors with elevated amyloid burden in clinically normal older individuals. JAMA Neurol2020; 77: 735–45.CrossRefGoogle ScholarPubMed
14
Tang, MX, Stern, Y, Marder, K, et al. The APOE-ε4 allele and the risk of Alzheimer disease among African Americans, whites, and Hispanics. JAMA1998; 279: 751–5.CrossRefGoogle ScholarPubMed
15
Duara, R, Loewenstein, DA, Lizarraga, G, et al. Effect of age, ethnicity, sex, cognitive status and APOE genotype on amyloid load and the threshold for amyloid positivity. Neuroimage Clin2019; 22: 101800.CrossRefGoogle ScholarPubMed
16
O’Bryant, SE, Zhang, F, Johnson, LA, et al. A precision medicine model for targeted NSAID therapy in Alzheimer’s disease. J Alzheimers Dis2018; 66: 97–104.CrossRefGoogle ScholarPubMed
17
Li, Y, Li, Y, Li, X, et al. Head injury as a risk factor for dementia and Alzheimer’s disease: a systematic review and meta-analysis of 32 observational studies. PLoS One2017; 12: e0169650.CrossRefGoogle ScholarPubMed
18
Neu, SC, Pa, J, Kukull, W, et al. Apolipoprotein E genotype and sex risk factors for Alzheimer disease: a meta-analysis. JAMA Neurol2017; 74: 1178–89.CrossRefGoogle ScholarPubMed
19
Funk-White, M, Moore, AA, McEvoy, LK, et al. Alcohol use patterns and cognitive impairment: a cross-country comparison. Alzheimer’s Association International Conference, July 26–30, 2020.CrossRefGoogle Scholar
20
Rane, S. Detecting cortical signatures of suspected non-amyloid pathology using large harmonized datasets. Alzheimer’s Association International Conference, July 26–30, 2020.CrossRefGoogle Scholar
21
Crawford, KL, Neu, SC, Toga, AW. The Image and Data Archive at the Laboratory of Neuro Imaging. Neuroimage2016; 124: 1080–3.CrossRefGoogle ScholarPubMed
22
Weiner, MW, Aisen, PS, Jack, CR, et al. The Alzheimer’s Disease Neuroimaging Initiative: progress report and future plans. Alzheimers Dement2010; 6: 202–11.CrossRefGoogle Scholar
23
Beekly, DL, Ramos, EM, van Belle, G, et al. The National Alzheimer’s Coordinating Center (NACC) Database: an Alzheimer disease database. Alzheimer Dis Assoc Disord2004; 18: 270–7.Google ScholarPubMed
24
Anthony, S, Pradier, C, Chevrier, R, et al. The French national Alzheimer database: a fast growing database for researchers and clinicians. Dement Geriatr Cogn Disord2014; 38: 271–80.CrossRefGoogle ScholarPubMed
References
1
Cacabelos, R, Fernández-Novoa, L, Lombardi, V, et al. Molecular genetics of Alzheimer’s disease and aging. Meth Find Exp Clin Pharmacol2005; 27: 1–573.Google ScholarPubMed
2
Cacabelos, R.Have there been improvement in Alzheimer’s disease drug discovery over the past 5 years?Expert Opin Drug Discov2018; 13: 523–38.CrossRefGoogle Scholar
3
Cacabelos, R, Cacabelos, N, Carril, JC. The role of pharmacogenomics in adverse drug reactions. Expert Rev Clin Pharmacol2019; 12: 407–42.CrossRefGoogle ScholarPubMed
4
Cacabelos, R, Cacabelos, P, Torrellas, C, et al. Pharmacogenomics of Alzheimer’s disease: novel therapeutic strategies for drug development. Methods Mol Biol2014; 1175: 323–556.CrossRefGoogle ScholarPubMed
5
Cacabelos, R, Carril, JC, Cacabelos, P, et al. Pharmacogenomics of Alzheimer’s disease: genetic determinants of phenotypic variation and therapeutic outcome. J Genomic Med Pharmacogenomics2016; 1: 151–209.Google Scholar
6
Cacabelos, R, Carril, JC, Sanmartín, A, et al. Pharmacoepigenetic processors: epigenetic drugs, drug resistance, toxicoepigenetics, and nutriepigenetics. In Pharmacoepigenetics, Cacabelos, R (ed.). San Diego, CA: Academic Press/Elsevier; 2019: 191–424.CrossRefGoogle ScholarPubMed
7
Kozyra, M, Ingelman-Sundberg, M, Lauschke, VM. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genet Med2017; 19: 20–9.CrossRefGoogle ScholarPubMed
8
Zhou, ZW, Chen, XW, Sneed, KB, et al. Clinical association between pharmacogenomics and adverse drug reactions. Drugs2015; 75: 589–631.CrossRefGoogle ScholarPubMed
9
Cacabelos, R, Tellado, I, Cacabelos, P.The epigenetic machinery in the life cycle and pharmacoepigenetics. In Pharmacoepigenetics, Cacabelos, R (ed.). San Diego, CA: Academic Press/Elsevier; 2019: 1–100.Google ScholarPubMed
10
Cacabelos, R.Pleiotropy and promiscuity in pharmacogenomics for the treatment of Alzheimer’s disease and related risk factors. Future Neurol2018; 13.CrossRefGoogle Scholar
11
Cacabelos, R.Epigenomic networking in drug development: from pathogenic mechanisms to pharmacogenomics. Drug Dev Res2014; 75:348–65.CrossRefGoogle ScholarPubMed
12
Dorszewska, J, Prendecki, M, Oczkowska, A, et al. Molecular basis of familial and sporadic Alzheimer’s disease. Curr Alzheimer Res2016; 13: 952–63.CrossRefGoogle ScholarPubMed
13
Jamal, S, Goyal, S, Shanker, A, et al. Computational screening and exploration of disease-associated genes in Alzheimer’s disease. J Cell Biochem2017; 118: 1471–9.CrossRefGoogle ScholarPubMed
14
Zhou, L, Li, HY, Wang, JH, et al. Correlation of gene polymorphisms of CD36 and ApoE with susceptibility of Alzheimer disease: a case–control study. Medicine (Baltimore)2018; 97: e12470.CrossRefGoogle ScholarPubMed
15
Davies, G, Harris, SE, Reynolds, CA, et al. A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Mol Psychiatry2014; 19: 76–87.CrossRefGoogle ScholarPubMed
16
Cacabelos, R.Pharmacogenetic considerations when prescribing cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Metab Toxicol2020; 16: 673–701.CrossRefGoogle ScholarPubMed
17
Shapira, M, Tur-Kaspa, I, Bosgraaf, L, et al. A transcription-activating polymorphism in the ACHE promoter associated with acute sensitivity to anti-acetylcholinesterases. Hum Mol Genet2000; 9: 1273–81.CrossRefGoogle ScholarPubMed
18
Lane, R, Feldman, HH, Meyer, J, et al. Synergistic effect of apolipoprotein E epsilon4 and butyrylcholinesterase K-variant on progression from mild cognitive impairment to Alzheimer’s disease. Pharmacogenet Genomics2008; 18: 289–98.CrossRefGoogle ScholarPubMed
19
Cuddy, LK, Seah, C, Pasternak, SH, et al. Amino-terminal β-amyloid antibody blocks β-amyloid-mediated inhibition of the high-affinity choline transporter CHT. Front Mol Neurosci2017; 10: 361.CrossRefGoogle ScholarPubMed
20
Payette, DJ, Xie, J, Guo, Q.Reduction in CHT1-mediated choline uptake in primary neurons from presenilin-1 M146V mutant knock-in mice. Brain Res2007; 1135: 12–21.CrossRefGoogle ScholarPubMed
21
Wang, Y, Zhou, Z, Tan, H, et al. Nitrosylation of vesicular transporters in brain of amyloid precursor protein/presenilin 1 double transgenic mice. J Alzheimers Dis2017; 55:1683–92.Google ScholarPubMed
22
Nagy, PM, Aubert, I.Overexpression of the vesicular acetylcholine transporter increased acetylcholine release in the hippocampus. Neuroscience2012; 218: 1–11.CrossRefGoogle ScholarPubMed
23
Kolisnyk, B, Al-Onaizi, MA, Xu, J, et al. Cholinergic regulation of hnRNPA2/B1 translation by M1 muscarinic receptors. J Neurosci2016; 36: 6287–96.CrossRefGoogle ScholarPubMed
24
Dolejší, E, Liraz, O, Rudajev, V, et al. Apolipoprotein E4 reduces evoked hippocampal acetylcholine release in adult mice. J Neurochem2016; 136:503–9.CrossRefGoogle ScholarPubMed
25
Albin, RL, Bohnen, NI, Muller, MLTM, et al. Regional vesicular acetylcholine transporter distribution in human brain: A [18F]fluoroethoxybenzovesamicol positron emission tomography study. J Comp Neurol2018; 526: 2884–97.CrossRefGoogle Scholar
26
Wallace, TL, Bertrand, D.Importance of the nicotinic acetylcholine receptor system in the prefrontal cortex. Biochem Pharmacol2013; 85: 1713–20.CrossRefGoogle ScholarPubMed
27
Ma, KG, Qian, YH. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer’s disease. Neuropeptides2019; 73: 96–106.CrossRefGoogle ScholarPubMed
28
Sadigh-Eteghad, S, Talebi, M, Mahmoudi, J, et al. Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25–35-mediated cognitive deficits in mice. Neuroscience2015; 298: 81–93.Google ScholarPubMed
29
Li, L, Liu, Z, Jiang, YY, et al. Acetylcholine suppresses microglial inflammatory response via α7nAChR to protect hippocampal neurons. J Integr Neurosci2019; 18: 51–6.Google ScholarPubMed
30
McKeever, PM, Kim, T, Hesketh, AR, et al. Cholinergic neuron gene expression differences captured by translational profiling in a mouse model of Alzheimer’s disease. Neurobiol Aging2017; 57: 104–19.CrossRefGoogle Scholar
Cacabelos, R, Llovo, R, Fraile, C, et al. Pharmacogenetic aspects of therapy with cholinesterase inhibitors: the role of CYP2D6 in Alzheimer’s disease pharmacogenetics. Curr Alzheimer Res2007; 4: 479–500.CrossRefGoogle ScholarPubMed
33
Cacabelos, R.Donepezil in Alzheimer’s disease: from conventional trials to pharmacogenetics. Neuropsychiatr Dis Treat2007; 3: 303–33.Google ScholarPubMed
34
Brewster, JT, Dell’Acqua, S, Thach, DQ, et al. Classics in chemical neuroscience: donepezil. ACS Chem Neurosci2019; 10: 155–67.CrossRefGoogle ScholarPubMed
35
Noetzli, M, Eap, CB. Pharmacodynamic, pharmacokinetic and pharmacogenetic aspects of drugs used in the treatment of Alzheimer’s disease. Clin Pharmacokinet2013; 52: 225–41.CrossRefGoogle ScholarPubMed
36
Noetzli, M, Guidi, M, Ebbing, K, et al. Population pharmacokinetic approach to evaluate the effect of CYP2D6, CYP3A, ABCB1, POR and NR1I2 genotypes on donepezil clearance. Br J Clin Pharmacol2014; 78: 135–44.CrossRefGoogle ScholarPubMed
37
Cacabelos, R.World Guide for Drug Use and Pharmacogenomics. Corunna:EuroEspes Publishing; 2012.Google Scholar
38
Xiao, T, Jiao, B, Zhang, W, et al. Effect of the CYP2D6 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheimer’s disease: a systematic review and meta-analysis. CNS Drugs2016; 30: 899–907.CrossRefGoogle ScholarPubMed
39
Cacabelos, R, Martínez, R, Fernández-Novoa, L, et al. Genomics of dementia: APOE- and CYP2D6-related pharmacogenetics. Int J Alzheimers Dis2012; 2012: 518901.Google ScholarPubMed
40
Zhong, Y, Zheng, X, Miao, Y, et al. Effect of CYP2D6*10 and APOE polymorphisms on the efficacy of donepezil in patients with Alzheimer’s disease. Am J Med Sci2013; 345: 222–6.CrossRefGoogle ScholarPubMed
41
Yaowaluk, T, Senanarong, V, Limwongse, C, et al. Influence of CYP2D6, CYP3A5, ABCB1, APOE polymorphisms and nongenetic factors on donepezil treatment in patients with Alzheimer’s disease and vascular dementia. Pharmgenomics Pers Med2019; 12: 209–24.Google ScholarPubMed
42
Sokolow, S, Li, X, Chen, L, et al. Deleterious effect of butyrylcholinesterase K-variant in donepezil treatment of mild cognitive impairment. J Alzheimers Dis2017; 56: 229–37.CrossRefGoogle ScholarPubMed
43
Russo, P, Kisialiou, A, Moroni, R, et al. Effect of genetic polymorphisms (SNPs) in CHRNA7 gene on response to acetylcholinesterase inhibitors (AChEI) in patients with Alzheimer’s disease. Curr Drug Targets2017; 18: 1179–90.CrossRefGoogle ScholarPubMed
44
Noetzli, M, Guidi, M, Ebbing, K, et al. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations. Ther Drug Monit2013; 35: 270–5.CrossRefGoogle ScholarPubMed
Gul, A, Bakht, J, Mehmood, F.Huperzine-A response to cognitive impairment and task switching deficits in patients with Alzheimer’s disease. J Chin Med Assoc2019; 82: 40–3.CrossRefGoogle ScholarPubMed
47
Lin, PP, Li, XN, Yuan, F, et al. Evaluation of the in vitro and in vivo metabolic pathway and cytochrome P450 inhibition/induction profile of huperzine A. Biochem Biophys Res Commun2016; 480: 248–53.CrossRefGoogle ScholarPubMed
48
Noetzli, M, Guidi, M, Ebbing, K, et al. Population pharmacokinetic study of memantine: effects of clinical and genetic factors. Clin Pharmacokinet2013; 52: 211–23.CrossRefGoogle ScholarPubMed
49
Cacabelos, R, Goldgaber, D, Vostrov, A, et al. APOE-TOMM40 in the pharmacogenomics of dementia. J Pharmacogenomics Pharmacoproteomics2014; 5: 135.Google Scholar
50
Cacabelos, R, Carril, JC, Cacabelos, N, et al. Sirtuins in Alzheimer’s disease: SIRT2-related genophenotypes and implications for pharmacoepigenetics. Int J Mol Sci2019; 20: E1249.CrossRefGoogle ScholarPubMed
References
1
Berger, H. Über das Elektrenkephalogramm des Menschen. Dritte Mitteilung. Arch Psychiatr Nervenkr1931; 94: 16–60.CrossRefGoogle Scholar
2
Berger, H. Über das Elektrenkephalogramm des Menschen. Fünfte Mitteilung. Arch Psychiatr Nervenkr1932; 98: 231–54.Google Scholar
3
Babiloni, C, Blinowska, K, Bonanni, L, et al. What electrophysiology tells us about Alzheimer’s disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging2020; 85: 58–73.CrossRefGoogle ScholarPubMed
4
Palop, JJ, Mucke, L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci2016; 17: 777–92.CrossRefGoogle ScholarPubMed
5
Styr, B, Slutsky, I.Imbalance between firing homeostasis and synaptic plasticity drives early-phase Alzheimer’s disease. Nat Neurosci2018; 21: 463–73.CrossRefGoogle ScholarPubMed
6
Canter, RG, Penney, J, Tsai, LH. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature2016; 539: 187–96.CrossRefGoogle ScholarPubMed
D’Amelio, M, Rossini, PM. Brain excitability and connectivity of neuronal assemblies in Alzheimer’s disease: from animal models to human findings. Prog Neurobiol2012; 99: 42–60.CrossRefGoogle ScholarPubMed
9
van Straaten, EC, Scheltens, P, Gouw, AA, Stam, CJ. Eyes-closed task-free electroencephalography in clinical trials for Alzheimer’s disease: an emerging method based upon brain dynamics. Alzheimers Res Ther2014; 6: 86.CrossRefGoogle ScholarPubMed
10
Delbeuck, X, Van der Linder, M, Colette, F.Alzheimer’s disease as a disconnection syndrome?Neuropyschol Rev2003; 13: 79–92.CrossRefGoogle ScholarPubMed
11
Briels, CT, Schoonhoven, DN, Stam, CJ, et al. Reproducibility of EEG functional connectivity in Alzheimer’s disease. Alzheimers Res Ther2020; 12: 68.CrossRefGoogle ScholarPubMed
12
Stam, CV, Van Straaten, ECW. The organization of physiological brain networks. Clin Neurophysiol2012; 123: 1067–87.CrossRefGoogle ScholarPubMed
13
Rossini, PM, Rossi, S, Babiloni, C, Polich, J.Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol2007; 83: 375–400.CrossRefGoogle ScholarPubMed
14
Prichep, LS, John, ER, Ferris, SH, et al. Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging. Neurobiol Aging2006; 27: 471–81.CrossRefGoogle ScholarPubMed
15
Gouw, AA, Alsema, AM, Tijms, BM, et al. EEG spectral analysis as a putative early prognostic biomarker in nondemented, amyloid positive subjects. Neurobiol Aging2017; 57: 133–42.CrossRefGoogle ScholarPubMed
16
Jelic, V, Johansson, S-E, Almkvist, O, et al. Quantitative electroencephalography in mild cognitve impairment: longitudinal changes and possible prediction of Alzheimer’s disease. Neurobiol Aging2000; 21: 533–40.CrossRefGoogle Scholar
17
van der Hiele, K, Bollen, EL, Vein, AA, et al. EEG markers of future cognitive performance in the elderly. J Clin Neurophysiol2008; 25: 83–9.CrossRefGoogle ScholarPubMed
18
Liedorp, M, van der Flier, WM, Hoogervorst, EL, Scheltens, P, Stam, CJ. Associations between patterns of EEG abnormalities and diagnosis in a large memory clinic cohort. Dement Geriatr Cogn Disord2008; 27: 18–23.CrossRefGoogle Scholar
19
Jeong, J.EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol2004; 115: 1490–505.CrossRefGoogle ScholarPubMed
20
Claus, JJ, Ongerboer de Visser, BW, Walstra, GJM, et al. Quantitative spectral electroencephalography in predicting survival in patients with early Alzheimer disease.Arch Neurol1998; 55: 1105–11.CrossRefGoogle ScholarPubMed
21
Stam, CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol2005; 116: 2266–301.CrossRefGoogle ScholarPubMed
22
Stam, CJ. Modern network science of neurological disorders. Nat Rev Neurosci2014; 15: 683–95.CrossRefGoogle ScholarPubMed
23
Stam, CJ, Jones, BF, Nolte, G, Breakspear, M, Scheltens, P.Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex2007; 17: 92–9.Google ScholarPubMed
24
Sun, J, Wang, B, Niu, Y, et al. Complexity analysis of EEG, MEG, and fMRI in mild cognitive impairment and Alzheimer’s disease: a review. Entropy2020; 22: 239.CrossRefGoogle ScholarPubMed
25
Dauwels, J, Vialatte, F, Cichocki, A.Diagnosis of Alzheimer’s disease from EEG signals: where are we standing?Curr Alzheimer Res2010; 7: 487–505.CrossRefGoogle ScholarPubMed
26
Simpraga, S, Alvarez-Jimenez, R, Mansvelder, HD, et al. EEG machine learning for accurate detection of cholinergic intervention and Alzheimer’s disease. Sci Rep2017; 7: 1–11.CrossRefGoogle ScholarPubMed
27
Vecchio, F, Miraglia, F, Alù, F, et al. Classification of Alzheimer’s disease with respect to physiological aging with innovative EEG biomarkers in a machine learning implementation.J Alzheimers Dis2020; 75: 1253–61.CrossRefGoogle Scholar
28
Dauwan, M, van der Zande, JJ, van Dellen, E, et al. Random forest to differentiate dementia with Lewy bodies from Alzheimer’s disease.Alzheimers Dement (Amst)2016; 4: 99–106.CrossRefGoogle ScholarPubMed
29
Van der Flier, WM, Scheltens, P.Use of laboratory and imaging investigations in dementia. J Neurol Neurosurg Psychiatry2005; 76: v45–52.CrossRefGoogle ScholarPubMed
30
Drago, V, Babiloni, C, Bartrés-Faz, D, et al. Disease tracking markers for Alzheimer’s disease at the prodromal (MCI) stage. J Alzheimers Dis2011; 26: 159–99.CrossRefGoogle ScholarPubMed
31
Rossini, PM, Di Iorio, R, Vecchio, F, et al. Early diagnosis of Alzheimer’s disease: the role of biomarkers including advanced EEG signal analysis. Report from the IFCN-sponsored panel of experts.Clin Neurophysiol2020; 131: 1287–310.CrossRefGoogle ScholarPubMed
32
Stam, CJ, van der Made, Y, Pijnenburg, YAL, Scheltens, Ph. EEG synchronization in mild cognitive impairment and Alzheimer’s disease. Acta Neurol Scand2003; 108: 90–6.CrossRefGoogle ScholarPubMed
Babiloni, C, Cassetta, E, Dal Forno, G, et al. Donepezil effects on sources of cortical rhythms in mild Alzheimer’s disease: responders vs. non-responders.Neuroimage2006; 31: 1650–65.CrossRefGoogle ScholarPubMed
35
Adler, G, Brassen, S, Chwalek, K, Dieter, B, Teufel, M.Prediction of treatment response to rivastigmine in Alzheimer’s dementia. J Neurol Neurosurg Psychiatry2004; 75: 292–4.Google ScholarPubMed
36
Jelic, V, Blomberg, M, Dierks, T, et al. EEG slowing and cerebrospinal fluid tau levels in patients with cognitive decline. Neuroreport1988; 9: 157–60.Google Scholar
37
Grunwald, M, Hensel, A, Wolf, H, Weiss, T, Gertz, HJ. Does the hippocampal atrophy correlate with the cortical theta power in elderly subjects with a range of cognitive impairment?J Clin Neurophysiol2007; 24: 22–6.CrossRefGoogle ScholarPubMed
38
Ponomareva, NV, Korovaitseva, GI, Rogaev, EI. EEG alterations in non-demented individuals related to apolipoprotein E genotype and to risk of Alzheimer disease. Neurobiol Aging2008; 29: 819–27.CrossRefGoogle ScholarPubMed
39
Babiloni, C, Del Percio, C, Bordet, R, et al. Effects of acetylcholinesterase inhibitors and memantine on resting-state electroencephalographic rhythms in Alzheimer’s disease patients. Clin Neurophysiol2013; 124: 837–50.CrossRefGoogle ScholarPubMed
40
Scheltens, P, Hallikainen, M, Grimmer, T, et al. Safety, tolerability and efficacy of the glutaminyl cyclase inhibitor PQ912 in Alzheimer’s disease: results of a randomized, double-blind, placebo-controlled Phase 2a study. Alzheimers Res Ther2018; 10: 107.CrossRefGoogle ScholarPubMed
41
Briels, CT, Stam, CJ, Scheltens, P, et al. In pursuit of a sensitive EEG functional connectivity outcome measure for clinical trials in Alzheimer’s disease. Clin Neurophysiol2020; 131: 88–95.CrossRefGoogle ScholarPubMed
42
de Waal, H, Stam, CJ, Lansbergen, MM, et al. The effect of Souvenaid on functional brain network organisation in patients with mild Alzheimer’s disease: a randomised controlled study. PLoS One2014; 9: e86558.CrossRefGoogle ScholarPubMed
43
Scheltens, P, Twisk, JW, Blesa, R, et al. Efficacy of Souvenaid in mild Alzheimer’s disease: results from a randomized, controlled trial. J Alzheimers Dis2012; 31: 225–36.CrossRefGoogle ScholarPubMed
44
Cassani, R, Estarellas, M, San-Martin, R, Fraga, FJ, Falk, TH. Systematic review on resting-state EEG for Alzheimer’s disease diagnosis and progression assessment. Dis Markers2018; 2018: 5174815.CrossRefGoogle ScholarPubMed