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1. I n t r o d u c t i o n . T h e usual definition of a finite probabilistic au toma ton 
(4; 5 ) does no t involve any outputs . In this paper, such a u t o m a t a are referred 
to as Rabin au tomata . Various other types of probabilistic a u t o m a t a are 
obtained by introducing ou tpu t functions. Similarly, as in connection with 
finite deterministic au tomata , the distinction between Moore a u t o m a t a and 
Mealy a u t o m a t a can then be made. Rabin a u t o m a t a m a y be regarded as 
a u t o m a t a where the ou tpu t function is deterministic. One can also consider 
the case where the transit ion function is deterministic. 

In § 3, theorems concerning the equivalence and non-equivalence of various 
types of finite au toma ta are proved. T h e main result is t h a t for any finite 
probabilistic au tomaton , there is an equivalent finite Rabin au tomat ion . Hence, 
an event represented in any finite probabilistic au toma ton can also be repre­
sented in a finite Rabin au tomaton . In § 4, the representat ion of events is 
reduced to the realization of functions, and a necessary and sufficient condition 
for a function to be realizable in a finite Rabin au toma ton is established. 

2. P r e l i m i n a r i e s . W e denote by M(i, j) the set of all i X j matrices con­
sisting of non-negative real numbers whose sum equals 1. T h u s M(l,j) de­
notes the set of all j -dimensional stochastic row vectors. A j -dimensional 
stochastic vector is termed a coordinate vector if one of its components equals 
1. T h e number of elements in a finite set V is denoted by \V\. 

By a finite probabilistic automaton we mean an ordered quintuple 

A = (S, X, Y, 6, F) 

where S, X, and Y are finite non-empty sets (called, respectively, the set of 
states, input alphabet, and output alphabet), 8 is an element of Mil, \S\) (called 
the initial distribution), and F is a function mapping the set S X X into the 
set M(\S\, \Y\). Assume t h a t 5 = {sly . . . , sk}, X = {x±, . . . , %i\, and 
Y = {yu • • • , Jm}- T h e (ifj)th en t ry in the matr ix F(su, xv), where 
1 < i, u < k, 1 < v < /, and 1 < j < m, is denoted by 

(1) pA(si,yj/su, %v). 

T h e number (1) is referred to as the probabil i ty of A entering the s ta te st 

and producing the ou tpu t yjy after being in the s ta te su and receiving the 
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input xv. Assume that s1, . . . , sn £ S, y1, . . . , yn Ç F, and x1, . . . , xn £ -X\ 
Let 

^ . . . 5 " , / . . . f/x1 ...xn)=Z 8(s°) n M * \ / A ' " 1 , x') 

where 8(s°) denotes, for s° = sjt the jth component of the vector 8. Further­
more, let 

(2) pA{yl . . . yn/xl . . . xn) = X) PA(S1 . . .sn,yl . . . yn/xl . . . xn), 

where the sum is taken over all ^-tuples (s1, . . . , sn). The number (2) is 
referred to as the probability of A giving the response yl . . . yn to the input 
x1 . . . xn. An element of the free semigroup generated by X ( F) is called a 
word over the alphabet X (F). Two finite probabilistic automata A and B 
with the same input and output alphabets are termed equivalent if 

PA{Q/P) = PB(Q/P), 

for any input word P and output word Q of the same length. 
Consider the sum 

pAiy/oc1. . . xn) = ^ ^ ( y • • • yn~ly/xl. . . xn) 

which is taken over all (n — 1)-tuples (y1, . . . , yn~l). Let X be a real number, 
0 < X < 1. We say that the output y represents in A the event 

E(A,y,\) = {P\pA(y/P) > X} 

with cut-point X. It is obvious that two equivalent automata represent the 
same events. 

If each of the matrices F(su, xv) satisfies the condition 

(3) F(sU} xv) = f(sU} xv)<l>(su, xv)} 

where / is a ^-dimensional stochastic column vector and <j> is an m-dimen-
sional stochastic row vector, then A is termed a finite probabilistic Mealy 
automaton (or, for short, a Mealy automaton). The components of the vectors 
/ and 4> are referred to, respectively, as transition probabilities and output 
probabilities. By considering the condition (3), we easily obtain the following 
theorem. 

THEOREM 1. A finite probabilistic automaton A = (S, X, Y, b, F) is a Mealy 
automaton if and only if every matrix F(s, x), where s £ S and x ^ I , is of 
rank 1. 

Assume that, for each su £ 5 and xv £ X, there is a ^-dimensional stochastic 
vector f(su, xv) and, for each st £ S, there is an m-dimensional stochastic 
vector 4>(si) such that (1) satisfies the condition 

(4) PA(SÎ, J if SU, XV) = f (s i/Su, Xv)<j>(y j/St), 
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where f (si/su, xv) denotes the ith component of the vector f(su, xv) and <t>(y j/si) 
denotes the j th component of the vector <j>(Si). Then the finite probabilistic 
automaton A is termed a finite probabilistic Moore automaton (or, for short, 
a Moore automaton). If, furthermore, all of the vectors <£($*), st £ S, are 
coordinate vectors, then the automaton is termed a Rabin automaton. 

Remark. The automata considered by Rabin (5) differ from the notion 
introduced above essentially only by the fact that they possess a fixed initial 
state (instead of an initial distribution of states). The same events are repre­
sented in Rabin automata and in the automata considered in (5) (where the 
events are represented by states), provided an initial distribution is allowed 
in the latter. 

A Mealy automaton is said to possess a deterministic transition function if 
all of the vectors f(sU} xv) appearing in (3) are coordinate vectors. Then the 
automaton is called, for short, a d.t. Mealy automaton. Similarly, if all of the 
vectors f appearing in (4) are coordinate vectors, then the automaton is 
called a d.t. Moore automaton. A finite probabilistic automaton is called a 
d.t. automaton if it is either a d.t. Mealy automaton or a d.t. Moore auto­
maton. If in (3) (in (4)) the vectors 0, as well as the initial distribution <5, 
are also coordinate vectors, then the d.t. Mealy (Moore) automaton is an 
ordinary finite deterministic Mealy (Moore) automaton. 

3. Equivalence t heo rems . We shall consider the problem of whether it 
suffices to have probabilistic transition functions or probabilistic output 
functions, i.e., whether, given a finite probabilistic automaton, one can con­
struct an equivalent Rabin automaton or an equivalent d.t. automaton. For 
Rabin automata, this is always possible. For d.t. automata, such a con­
struction is not, in general, possible. We shall first consider d.t. automata. 

THEOREM 2. Only regular events are represented in a d.t. Moore automaton. 

Proof. Let E(A,y, X) be an event represented in a d.t. Moore automaton 
A = (S, X, Y, <5, F) by the output y with cut-point X. By the definition of a 
d.t. Moore automaton, 

PAS1 . . . / , / . . . A*1 ...xn)=Z S ( / ) I W A A *4)*Gy VA 
s°es i=l 

where each of the numbers f{si/si'1, xl) equals either 0 or 1. In particular, 
for each input word x1 . . . xn and each state s0 Ç 5, there is exactly one 
sequence of states s1, . . . , sn such that 

(5) fWs*-1, xl) = 1 (i = 1, . . . , n). 

Denote sn = s°x1 . . . xn. Then, for any input word P, 

(6) PAy/P) =Z5(/)<K3'A0A 
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Let S = {si, . . . , sk], and consider the event E(i,j) represented by the s ta te 
Sj in the deterministic au tomaton A\ = (S, X,f, s^ wi thout ou tputs and with 
the initial s ta te st. Each of the events E(i,j), 1 < i,j < k, is regular. There­
fore, also each of the intersections 

(7) £ ( i , ix)r\...r\ E(k, ik) ( i < ij < k) 

is regular. Every input word P belongs to exactly one of the intersections 
(7) and, by (6), PA(J/P) assumes the same value for all words P belonging 
to the same intersection. Thus , the event E(A, y, X) is the union of some of 
the intersections (7). This implies t ha t the event E(A,y, X) is regular. 

T H E O R E M 3. For every d.t. Mealy automaton, there is an equivalent d.t. Moore 
automaton. 

Proof. Assume tha t A = (S, X, Y, 8, F) is a d.t. Mealy au tomaton such 
t h a t 

r \SU, xv) = j \SU, xv)(p\SU} xv)j 

where the vectors / are ^-dimensional coordinate vectors and the vectors <f> 
are m-dimensional stochastic vectors. Assume tha t \X\ — I. Consider the set 
S\ = 5 \J S X X. For each a G «Si, we define an m-dimensional stochastic 
vector <£i (<J) as follows: 

01 ((Su, Xv)) = <t>(Su, Xv)-

<l>i(su) m a y be chosen arbitrari ly. For each pair (a, x), where a G Si and 
x G X, we define a (kl + k)-dimensional coordinate vector /i(o-, x) as follows. 
W e assume tha t the elements of Si are ordered and thus each component of 
a (kl + k)-dimensional vector corresponds to some s ta te in Si. In the vector 
fi(s, x) the component corresponding to the s ta te (s, x) equals 1. In the 
v e c t o r / i ( ( s , x1), x2) the component corresponding to the s ta te (a(f(s, x1)), x2) 
equals 1, where a(f(s, x1)) denotes the s ta te su such t ha t in the vector f(s, x1) 
the uth component equals 1. Finally, let ôi be the (kl + k)-dimensional 
stochastic vector such t ha t the components corresponding to the s tates 5 
equal the same components in the vector 8, whereas the components corre­
sponding to the s tates (s, x) equal 0. 

Consider the d.t. Moore au tomaton B = (Si, X, Y, <5i, Fi) where Fi is 
determined by the vectors fi and <f>i. We claim tha t A and B are equivalent. 
In fact, for each s ta te s0 G S and each input word x1 . . . xn, there is exactly 
one sequence of s tates s1, . . . , sn such tha t (5) is satisfied, where f(si/si~l, xf) 
denotes the component of the vector / ( V - 1 , xl) corresponding to the s ta te s\ 
Hence, we obtain 

(8) PAy1 • • • / A 1 . • • x") = Z 5(5°)fi «(y'A1-1. *'), 
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where <j){y1/V'-1, x*) denotes the component of the vector <f>(si~1
y xl) corre­

sponding to y\ Similarly, for each a0 G Si and each input word x1 . . . xn, 
there is exactly one sequence of states a1, . . . , an G Si such that 

fitf/v^x*) = 1 (i = 1, . . . , » ) , 

where the left side denotes the component of / î fV - 1 , xz) corresponding to the 
state o-\ Furthermore, if o-0 = s0 G 5, then a1 = (si~1

1 x
l) for i = 1, . . . , n, 

where s1, . . . , sw are defined as above. Therefore, by the definition of the 
initial distribution, <5i, we obtain the result 

Pziy1 • • • y'/x1... *") = E M*0 ) ft *i(y7A 

where ôi(o-°) denotes the component of <5i corresponding to a0 and <£i(y/V) 
denotes the component of 0i(o"O corresponding to 3;^ Hence, by (8) and the 
definition of the vectors #1, we obtain the result 

^ ( y . . . yn/x1 . . . xn) = pA(yx . . . yn/x1 . . . xn). 

Thus, Theorem 3 follows. 

The next theorem is an immediate consequence of Theorems 2 and 3. 

THEOREM 4. Only regular events are represented in a d.t. automaton. 

On the other hand, it is well known (5) that there are Rabin automata 
where non-regular events can be represented. Thus, we obtain the following 

THEOREM 5. There is a Rabin automaton A such that no d.t. automaton is 
equivalent to A. 

It is interesting to note that Theorem 5 does not hold for infinite proba­
bilistic automata (2, Theorem 9). 

We shall now prove that it suffices to have a probabilistic transition func­
tion in a finite probabilistic automaton. 

THEOREM 6. For any finite probabilistic automaton, there is an equivalent 
Rabin automaton. 

{Hence, all events represented in a finite probabilistic automaton can also be 
represented in a Rabin automaton.) 

Proof. Let A = (S, X, Y, ô, F) be a finite probabilistic automaton, where 
we use our earlier notations: |5 | = k, \ Y\ = m. Consider the set S\ = S X Y. 
For each a Ç Si, we define an w-dimensional coordinate vector </>(a-) such that, 
in each </>((s, y)), the component corresponding to the output y equals 1. For 
each pair (<r,x), where a = (s,y) G Si and x Ç X, we define a ^ - d i m e n ­
sional stochastic vector /(cr, x) such that 

f((S',y')/<r,x) = F{s',y'/s,x), 

where we use the same notation as before. (Thus, the vector /((s, y), x) is 
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independent of y.) Finally, we define a &m-dimensional stochastic vector <5i 
arbitrarily in such a way that 

where 5i((s, y)) denotes the component corresponding to the element 
(s, y) £ Si and ô(s) denotes the component corresponding to the element 
5 G S. 

Consider the Rabin automaton B = (Si, X, Y, <5i, Fi) where Fi is deter­
mined by the vectors / and </>. By the definition of F\ and <$i, we obtain the 
result 

(9) pB((s1,y1)...(sn,yn),y1...yn/x\..xn) 

= Z Sl(s°,y',)flFlast,yt),yi/(st-l,y1-l),xt) 

^«(^rW./A*-1 ,**) 
S0£S i=l 

, / 1 w 1 n i l n \ 

= pA(s .. .s ,y . . .y /x . . .x ). 
On the other hand, 

PB((S\ yh) . . . (sn, yin), y1 . . . yn/x1 . . . xn) = 0 

if, for some j , y1* ^ yj. Thus, by (9), the equation 

pB{yl • • • yn/xl . . . xn) = pA(yl. . . yn/x1 . . . xn) 

follows. This completes the proof of Theorem 6. 

As an immediate corollary, we obtain a result established also by Buharajev 
(2, Theorem 8): 

THEOREM 7. For any Mealy automaton, there is an equivalent Moore auto­
maton. 

I t is shown in (4) that non-regular events can be represented in a three-
state Rabin automaton where the input alphabet consists of a single element. 
We shall now prove that non-regular events cannot be represented in any 
finite two-state probabilistic automaton whose input alphabet consists of a 
single element. (It is well known (cf. 5) that non-regular events can be repre­
sented in a two-state Rabin automaton whose input alphabet consists of two 
elements.) 

THEOREM 8. Assume that A = (S, X, Y, ô, F) is a finite probabilistic auto­
maton such that \S\ = 2 and \X\ = 1. Then only regular events can be represented 
in A. 

Proof. Let \Y\ = m. Following the proof of Theorem 6, we construct a 
Rabin automaton B equivalent to A. Because the vectors / ( (s , y), x) are 
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independent of y, we conclude that there are at most two distinct vectors 
f((s, y), x). This implies that the rank of the 2m-dimensional stochastic matrix 
formed by these vectors is at most 2. Hence, the characteristic values of the 
matrix are real. By a result of Paz (4, Corollary 8), we conclude that only 
regular events are represented in B. Theorem 8 now follows because A and B 
are equivalent. 

4. Realization of functions. In the theory of finite deterministic auto­
mata, one considers mappings from the set of input words into the set of 
output words realized by a given automaton. Several results about such 
mappings are known (cf. 3 and the references given there). In this section, 
we shall consider analogous problems for finite probabilistic automata. Con­
siderations are restricted to Rabin automata. 

For a Rabin automaton A = (5, X, F, <5, F), we define 

pA(s/xl . . . xn) = £ pAis1. . . 5n-15, yl. . . yn/xl . . . xn), 

where the sum is taken over all (2n — 1)-tuples (s1, . . . , sn~1
1 y

1, . . . , yn). We 
say that a subset S\ of S represents in A the event 

E(A,Sl9\) = \P\T,sesipA(s/P) > X} 

with cut-point X. It is obvious that an event can be represented in a Rabin 
automaton by a set of states if and only if it can be represented in a Rabin 
automaton by an output. 

Denote by X* the free semigroup generated by X and containing the 
identity e, called the empty word. (Thus, X* consists of all words over the 
alphabet X and of the empty word e. Note that in the earlier sections of this 
paper we have not included the empty word in our discussions.) Again, let 
S = {si, . . . , sk} and X = {x±, . . . , Xi}. We define the function 

ZA:X*->M(l,k) 
as follows: 

ZA(e) = Ô, 

ZA(P) = (PAWP), . . . , pA(sk/P)), for P * e. 

The function ZA is said to be realized by the automaton A. Obviously, a 
function Z: X* —> M(l, k) is realized by a Rabin automaton if and only if 
there are ^-dimensional stochastic matrices N(xi), . . . , N(xi) such that 

(10) Z{Pxt) = Z(P)N(xt), 

for all P e X* and all i, 1 < i < /. 
An event E C X* — {e} is representable in a Rabin automaton if and 

only if there is a function Z: X* —> M(l, k) realized by a Rabin automaton 
such that, for some X (0 < X < 1) and some ^-dimensional column vector g 
whose components are 0's and l's, the following condition is satisfied: P 6 E 
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if and only if Z(P)g > X, where P £ X* — {e}. By Theorem 6, this state­
ment is valid also as regards representability in any finite probabilistic auto­
mata. We shall now establish a criterion for a function to be realized in a 
Rabin automaton. 

THEOREM 9. A function Z: X* —» M(l, k) is realized by a Rabin automaton 
if and only if the following two conditions are satisfied: 

(i) For all P e X* and all x £ X, if 

then also 

z{P) =T,ytZ(Pt), 

Z(Px) =T,yiZ{Pix). 

(ii) If Z(Pi), . . . , Z(PV), where 1 < v < k, are linearly independent and 
x Ç X, then there are k-dimensional row vectors Zv+1, . . . , Zlc and Uv+u . . . , Uk 

such that 
WziPjlHlziP^i 

Z(PM \\Z(Pvx) 
(11) Zv+i Uv±\ 

is a stochastic k X k matrix. 

Proof. We shall first prove the "only if" part. Assume that, for eachx* Ç X, 
there is a k X k stochastic matrix N(xi) such that (10) is satisfied. Condition 
(i) follows, by the distributive law for matrix multiplication. Given linearly 
independent vectors Z(Pi), . . . , Z(PV), we choose ^-dimensional row vectors 
Zi, v + 1 < i < k, such that all of the vectors Z are linearly independent. 
For x £ X, let Ut = Z< N(x), v + 1 < i < k. Then, by (10), 

| |z(Pi)| | \\z{Pix)\ 

Z(PV) 
Zv+i 

•N(x) Z{P,x) 

U* 
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and hence, by the assumption concerning N(x), the matrix (11) is a k X k 
stochastic matrix. Thus, also condition (ii) is satisfied. 

For the "if" part, assume that (i) and (ii) are satisfied. We choose elements 
Pi , . . . , Pv G X*, 1 < v < k, such that Z(Pi) , . . . , Z(PV) are linearly 
independent and, for no elements Qi, . . . , Qv+\ G X*, Z(Qi), . . . , Z(Qv+i) 
are linearly independent. This implies that, for any P G X*, there are real 
numbers Y;-, 1 < j < v, such that 

(12) Z(P)=t,y,Z(Pi). 
3=1 

By (ii) there is, for x G X, a stochastic matrix N(x) (not necessarily unique) 
such that 

(13) Z(Pj)N(x) = Z(Pj x) (; = 1, . . . , v). 

Let P G X* and x f I be arbitrary. Because the condition (i) is satisfied, 
we obtain, by (12), 

Z(Px) =£yjZ(Pjx) 
3=1 

and thus, by (13), equation (10) follows. Hence, we have established Theorem 
9. 

Remark 1. The condition (ii) is satisfied if and only if it is satisfied for the 
maximal number v of linearly independent vectors Z(Pi) , . . . , Z(PV). If 
v = k, then the stochastic matrices N(x) defining the automaton are unique. 

Remark 2. For an analogous result concerning deterministic automata, 
condition (i) is both necessary and sufficient. In fact, consider functions 
Z: X* —> M'(l, k), where M' ( l , k) denotes the set of ^-dimensional coordinate 
(row) vectors. A function Z is realized by a finite deterministic automaton if 
and only if, for all Pi , P 2 G X* and x G X, the equation Z(Pi) = Z(P2) 
implies the equation Z(P\x) = Z(P2x). Clearly, condition (i) and this con­
dition are equivalent in the deterministic case. 

Remark 3. Buharajev (1) has mentioned without proof the result that two 
conditions (i)' and ( i i / are necessary and sufficient for the realizability of 
functions Z. Condition (i)r is essentially the same as condition (i). Condition 
(ii)r is as follows: If y^/Li T* Z(Pj) is a stochastic vector, then also 

y ^ L i y i Z(Pj Q) is a stochastic vector, for any Q G X*. If one considers 
mappings Z: X* —> M(1, k) such that there are k linearly independent vectors 
Z(P), then Buharajev's result follows from Theorem 9 (because coordinate 
vectors can be expressed as linear combinations of the vectors Z(P)). For 
mappings Z possessing less than k linearly independent images Z(P) , it seems 
a plausible conjecture that condition (i) (or (i);) alone is sufficient for the 
realizability of Z. 
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