A LEMMA ABOUT
 THE EPSTEIN ZETA-FUNCTION
 by VEIKKO ENNOLA
 (Received 18 December, 1963)

1. Let $h(m, n)=\alpha m^{2}+2 \delta m n+\beta n^{2}$ be a positive definite quadratic form with determinant $\alpha \beta-\delta^{2}=1$. It may be put in the shape

$$
h(m, n)=y^{-1}\left\{(m+n x)^{2}+n^{2} y^{2}\right\}
$$

with $y>0$. We write (for $s>1$)

$$
G(x, y)(s)=Z_{h}(s)=\sum_{\substack{m=-\infty \\(m, n) \neq(0,0)}}^{\infty} \sum_{n=-\infty}^{\infty} h(m, n)^{-s} .
$$

The function $Z_{h}(s)$ may be analytically continued over the whole s-plane. Its only singularity is a simple pole with residue π at $s=1$.

Let s be a fixed real number $(\neq 1)$. In [1] it is shown that the partial derivative $G_{x}(x, y)$ with respect to x of the function $G(x, y)$ can be written

$$
G_{x}(x, y)=-\frac{16 \pi^{s+1} y^{\frac{1}{2}}}{\Gamma(s)} \Lambda
$$

where

$$
\Lambda=\int_{0}^{\infty} \psi\left(\delta_{t}\right) \cosh \left(s-\frac{1}{2}\right) t d t
$$

with

$$
\delta_{t}=e^{-2 \pi y \cosh t}
$$

and

$$
\psi(\delta)=\sum_{r=1}^{\infty} r^{s+\frac{1}{2}} \sigma_{1-2 s}(r) \delta^{r} \sin 2 \pi r x
$$

Here

$$
\sigma_{\alpha}(r)=\sum_{d \mid r} d^{\alpha},
$$

where the sum is to be taken over all positive divisors of the natural number r.
Now we have ([1], p. 75, Lemma 2)
Lemma A. $G_{x}(x, y)<0$ for $0<s \leqq 3, y \geqq \frac{3}{5}$ and $0<x<\frac{1}{2}$.
In order to prove Lemma A it is sufficient to show that the following is true.
Lemma B. For $0<s \leqq 3,0<\delta<40^{-1}, 0<x<\frac{1}{2}$, we have $\psi(\delta)>0$.

The proof of Lemma B given in [1] is not correct. \dagger (The lower bound of $\omega_{d_{0}}$ on p. 77 does not follow from the condition $\frac{1}{4} \leqq d_{0} x<\frac{1}{2}$.) The purpose of this paper is to give a proof of Lemma B.
2. Put

$$
\omega_{d}=\sum_{f=1}^{\infty} f^{s+\frac{1}{2}} \delta^{d f} \sin 2 \pi d f x
$$

Then

$$
\psi(\delta)=\sum_{d=1}^{\infty} d^{\frac{z}{z}-s} \omega_{d} .
$$

For $|z|<1$, we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} n^{3} z^{n}=\left(z+4 z^{2}+z^{3}\right)(1-z)^{-4} \tag{1}\\
& \sum_{n=1}^{\infty} n^{4} z^{n}=\left(z+11 z^{2}+11 z^{3}+z^{4}\right)(1-z)^{-5} \tag{2}\\
& \sum_{n=1}^{\infty} n^{5} z^{n}=\left(z+26 z^{2}+66 z^{3}+26 z^{4}+z^{5}\right)(1-z)^{-6} \tag{3}\\
& \sum_{n=1}^{\infty} \frac{1}{2} n(n+1) z^{n}=z(1-z)^{-3} \tag{4}
\end{align*}
$$

For $d \geqq 2$, we have, by (2),

$$
\begin{align*}
\left|\omega_{d}\right| & \leqq \sum_{f=1}^{\infty} f^{\frac{7}{7}} \delta^{d f} \leqq \sum_{f=1}^{\infty} f^{4} \delta^{d f} \\
& <\delta^{d}\left(1+11.40^{-2}+11.40^{-4}+40^{-6}\right)\left(1-40^{-2}\right)^{-5}<1 \cdot 02 \delta^{d} \tag{5}
\end{align*}
$$

Put

$$
\begin{equation*}
u=\pi-2 \pi x . \tag{6}
\end{equation*}
$$

Then, for $d \geqq 2$, we also have, by (3),

$$
\begin{align*}
\left|\omega_{d}\right| & \leqq \sum_{f=1}^{\infty} f^{s+\frac{t}{t}} \delta^{d f}|\sin d f u|<d u \sum_{f=1}^{\infty} f^{s+\frac{\xi}{2}} \delta^{d f}<d u \sum_{f=1}^{\infty} f^{5} \delta^{d f} \\
& <\delta^{d} d u\left(1+26.40^{-2}+66.40^{-4}+26.40^{-6}+40^{-8}\right)\left(1-40^{-2}\right)^{-6} \\
& <1.03 \delta^{d} d u . \tag{7}
\end{align*}
$$

On applying partial summation, we obtain

$$
\begin{equation*}
4 \omega_{d} \sin ^{2}(\pi d x)=\sum_{f=1}^{\infty} g_{f}\{(f+1) \sin 2 \pi d x-\sin 2 \pi(f+1) d x\} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{f}=f^{s+\frac{1}{2}} \delta^{d \rho}-2(f+1)^{s+\frac{1}{2}} \delta^{d(f+1)}+(f+2)^{s+\frac{1}{d}} \delta^{d(f+2)} \tag{9}
\end{equation*}
$$

\dagger It has been pointed out by Professor G. Emersleben that, according to the original paper of Epstein [2], all the Zeta-functions have the value -1 at $s=0$. Therefore $G_{x}(x, y)$ and $G_{y}(x, y)$ vanish at $s=0$, so that Statement R and Lemmas 1 and 2 in [1] hold true only for $s>0$ and not for $s \geqq 0$. This fact can, of course, also be seen for example from the expression (4) in [1], since $1 / \Gamma(s)=0$ for $s=0$.
3. We suppose first that

$$
0<x \leqq \frac{3}{8}
$$

Clearly, there exists a natural number d_{0} such that

$$
\begin{equation*}
\frac{1}{8} \leqq d_{0} x \leqq \frac{3}{8} \tag{10}
\end{equation*}
$$

Now it is easy to see that $g_{f}>0$. (See [1], p. 76, (12).) By (8), this implies that $\omega_{d}>0$ for $0<d x<\frac{1}{2}$. Hence $\omega_{d}>0$ for $d \leqq d_{0}$, so that

$$
\begin{equation*}
\psi(\delta) \geqq \sum_{d=d_{0}}^{\infty} d^{\frac{t}{t}-s} \omega_{d} \geqq d_{0}^{\frac{2}{2}-s} \omega_{d_{0}}-\sum_{d=d_{0}+1}^{\infty} d^{\frac{t}{t}-s}\left|\omega_{d}\right| \tag{11}
\end{equation*}
$$

We shall now determine a lower bound for $\omega_{d_{0}}$. By (10),

$$
\sin 2 \pi d_{0} x \geqq 2^{- \pm}
$$

so that (8) and (9) imply

$$
\begin{align*}
\omega_{d_{0}} & \geqq \omega_{d_{0}} \sin ^{2}\left(\pi d_{0} x\right) \\
& =\frac{1}{4} \sum_{f=1}^{\infty} g_{f}\left\{(f+1) \sin 2 \pi d_{0} x-\sin 2 \pi(f+1) d_{0} x\right\} \\
& \geqq \frac{1}{4} \sum_{f=1}^{\infty} g_{f}\left\{(f+1) 2^{-\frac{1}{2}}-1\right\} \\
& =\frac{1}{4}\left(2^{\frac{1}{2}}-1\right) \delta^{d_{0}}+\frac{1}{4}\left(1-2^{-\frac{1}{2}}\right) 2^{s+\frac{1}{2}} \delta^{2 d_{0}} \\
& >\frac{1}{4}\left(2^{\frac{1}{2}}-1\right) \delta^{d_{0}} \\
& >0 \cdot 1 \delta^{d_{0}} . \tag{12}
\end{align*}
$$

By (5), (11), (12), we have

$$
d_{0}^{s-ł} \delta^{-d_{0}} \psi(\delta)>0.1-1 \cdot 02 \sum_{d=d_{0}+1}^{\infty}\left(\frac{d}{d_{0}}\right)^{\frac{z}{3}-s} \delta^{d-d_{0}}
$$

Here

$$
\left(\frac{d}{d_{0}}\right)^{\frac{2}{2}-s}<\left(\frac{d}{d_{0}}\right)^{\frac{2}{2}} \leqq 2^{\frac{1}{2}}\left(d-d_{0}\right)\left(d-d_{0}+1\right)
$$

Hence we obtain, by (4),

$$
\begin{aligned}
d_{0}^{s-\frac{3}{2}} \delta^{-d_{0}} \psi(\delta) & >0 \cdot 1-1 \cdot 02 \cdot 2^{\frac{3}{2}} \sum_{k=1}^{\infty} \frac{1}{2} k(k+1) \delta^{k} \\
& =0 \cdot 1-1 \cdot 02 \cdot 2^{\frac{1}{2}} \delta(1-\delta)^{-3} \\
& >0 \cdot 1-1 \cdot 02 \cdot 2^{\frac{1}{2}} \cdot 40^{-1}\left(1-40^{-1}\right)^{-3} \\
& >0 .
\end{aligned}
$$

4. We suppose now that

$$
\frac{3}{8}<x<\frac{1}{2}
$$

We shall use the notation (6). Then

$$
\sin 2 \pi x=\sin u>u\left(1-\frac{u^{2}}{6}\right)>u\left(1-\frac{\pi^{2}}{96}\right)>0.89 u
$$

Using this estimate we obtain

$$
\begin{align*}
\omega_{1} & \geqq \delta \sin u-\sum_{f=2}^{\infty} f^{s+\frac{1}{2}} \delta^{f}|\sin f u| \\
& >0.89 \delta u-\sum_{f=2}^{\infty} f^{s+\frac{1}{2}} \delta^{f} f u \\
& >\delta u\left\{0.89-2^{-\frac{1}{2}} \sum_{s=2}^{\infty} f^{5} \delta^{f-1}\right\} . \tag{13}
\end{align*}
$$

Here we have, by (3),

$$
\begin{aligned}
2^{-\frac{1}{2}} \sum_{f=2}^{\infty} f^{5} \delta^{f-1}= & 2^{-\frac{1}{2}}\left\{40\left(40^{-1}+26 \cdot 40^{-2}+66 \cdot 40^{-3}+26 \cdot 40^{-4}+40^{-5}\right)\left(1-40^{-1}\right)^{-6}-1\right\} \\
& <2^{-\frac{1}{2}}\left\{\left(1+28 \cdot 40^{-1}\right)\left(1-6 \cdot 40^{-1}\right)^{-1}-1\right\}=2^{-\frac{1}{2}}<0.71
\end{aligned}
$$

On substituting this estimate in (13) we obtain

$$
\begin{equation*}
\omega_{1}>0.18 \delta u \tag{14}
\end{equation*}
$$

On the other hand, we have, by (1) and (7),

$$
\begin{align*}
\sum_{d=2}^{\infty} d^{7-s}\left|\omega_{d}\right| & <1.03 \delta u \sum_{d=2}^{\infty} d^{\frac{t}{2}-s} \delta^{d-1} \\
& <1 \cdot 03.2^{-\frac{1}{2}} \delta u \sum_{d=2}^{\infty} d^{3} \delta^{d-1} \\
& <1 \cdot 03.2^{-\frac{1}{2}} \delta u\left\{40\left(40^{-1}+4.40^{-2}+40^{-3}\right)\left(1-40^{-1}\right)^{-4}-1\right\} \\
& <1 \cdot 03.2^{-\frac{1}{2}} \cdot 0 \cdot 22 \delta u \\
& <0 \cdot 17 \delta u \tag{15}
\end{align*}
$$

The assertion follows from (14) and (15).

REFERENCES

1. J. W. S. Cassels, On a problem of Rankin about the Epstein Zeta-function, Proc. Glasgow Math. Assoc. 4 (1959), 73-80.
2. P. Epstein, Zur Theorie allgemeiner Zetafunktionen, Math. Ann. 56 (1903), 615-644.
3. R. A. Rankin, A minimum problem for the Epstein Zeta-function, Proc. Glasgow Math. Assoc. 1 (1953), 149-158.

University of Turku
 Finland

